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Abstract: This paper presents the functional expansion approach as a generalized method for finding
traveling wave solutions of various nonlinear partial differential equations. The approach can be
seen as a combination of the Kudryashov and G′/G solving methods. It allowed the extension of
the first method to the use of second order auxiliary equations, and, at the same time, it allowed
non-standard G′/G-solutions to be generated. The functional expansion is illustrated here on the
Dodd–Bullough–Mikhailov model, using a linear second order ordinary differential equation as an
auxiliary equation.

Keywords: functional expansion; DBM equation; traveling waves; Kudryashov method; G′/G-
approach

1. Introduction

Solving nonlinear partial differential equations (NPDEs) is an important issue in
many problems from mathematical physics. This is mainly related to the fact that the
integrability of these equations is a problem in itself and there are not any clear prescriptions
or algorithms that can be used for solving such equations. Many approaches have been
proposed, both for establishing if the equations are integrable or not, and for solving the
integrable ones. It is important to mention that the same NPDE could present many classes
of solutions, depending on the values of the parameters appearing in the equation.

An important class of solutions is represented by the traveling wave solutions. They
are very important in the theory of solitons and are related to a symmetry transformation,
which leads to a one-dimensional, nonlinear ordinary differential equation (NODE) [1].
This is obtained by using the wave variable and a whole symmetry group accepted by the
initial equation. Let us consider that the variable u(t, x) defined in a 2D space satisfies an
NPDE of the following form:

F(u, ut, ux, uxx, utt, · · · ) = 0. (1)

Traditionally, the wave variable includes the wave velocity V, and has the following
form:

ξ = x−Vt. (2)

It transforms (1) into a NODE of the form:

∆(u, u′, u′′, · · · ) = 0, (3)

where u′ = du(ξ)/dξ. In principle, solving (3) is simpler than solving (1) and then,
by pulling back the solutions of (3) to the initial variables {x, t}, one can find solutions of
the NPDE (1).

Many approaches for finding traveling wave solutions have been proposed and are
currently used in literature. Some of them have a strong theoretical basis and are related to
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approaches such as the inverse scattering method [2], Lax operators [3,4], Hirota and super-
Hirota biliniarization [5–8], Lie symmetry theory [9,10], the ghost field method [11–14],
the homotopy technique [15], etc. There are also direct approaches, trying to see if the
investigated NPDE accepts traveling wave solutions with a pre-defined mathematical form:
harmonic solutions expressed through sine–cosine [16], hyperbolic solutions expressed by
cosh or tanh [17,18], the first integral method [19,20], etc. These attempts were generated
by the fact that such solutions correspond to important equations from soliton theory, such
as Riccati [21] or Jacobi [22,23] equations. These were only a step before the invention of
the so-called auxiliary equation method for solving NPDEs [24]. In this case the NPDE
solutions u(ξ) have to be expressed as combinations or expansions of any of the known
solutions G(ξ) of these basic “auxiliary” equations. Many investigation methods based
on auxiliary equations have been proposed, such as the exponential method [25,26] or the
Kudryashov method [27,28]. In the last mentioned case, the following is supposed:

u(ξ) =
∑M

i=0 aiGi

∑N
j=0 bjGj

, (4)

where G(ξ) represents a solution of the Riccati equation:

G′ = αG2 + βG. (5)

As the Riccati equation is a very simple, first order equation, the solution (4) depends
on G(ξ) only, having at the end the following form:

u(ξ) = h(G).

Many other types of auxiliary equations have been considered in the literature, some of
them being of higher differential orders. For example, if a second order auxiliary equation,
∆(G, G′, G′′) = 0 is considered, the solution u(ξ) will also depend on the first derivative of
G(ξ) and it should be expressed as follows:

u(ξ) = h(G, G′). (6)

The question is how the Kudryashov method can be extended in the case of second
order auxiliary equations. Many authors use the G′/G-method, in its classic form [29],
or in various extended or generalized versions [30,31]. In this approach the solution (6) has
to mainly be considered as an expansion with constant or function coefficients ai of the
following form:

u(ξ) =
m

∑
i=−m

ai(ξ)

(
G′

G

)i

. (7)

The method does not offer a clear answer as to why the only possible combination is
in the form of (7) and if other extended forms are still possible: answering these questions
was the main aim of this work. The starting point is represented by our previous paper [32],
where the functional expansion method was proposed. This approach can be seen as an
extension of many other approaches, including the Kudryashov method, and it has been
shown that for models such as KdV, Gardner and Kundu–Mukherjee–Naskar (KMN) [33],
more general solutions other than G′/G can be generated that use a linear second order
ODE as an auxiliary equation. Here, the Dodd–Bullough–Mikhailov (DBM) equation was
used as an exemplifying model.

As many other methods can obtain traveling wave solutions, the functional expansion
method has two important ingredients: (i) transformation of the NPDE into a NODE using
the wave variable; (ii) finding solutions of the NODE in terms of the known solutions
of the auxiliary equation. Both ingredients bring specific aspects and could generate in-
tensive analysis and discussions. The NPDE solutions strongly depend on how these
ingredients are chosen. We will see that the functional expansion method supposes a very
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specific (double) balancing procedure that creates the differences between this and the
other approaches.

The paper is structured in the following sections: after these general ideas, the func-
tional expansion method will be briefly reviewed in the next section. A second order
auxiliary equation and a specific class of NPDEs will be considered, which is quite a general
class of equations, including models such as Korteweg de Vries, nonlinear Schrödinger,
Klein–Gordon, etc. As we already mentioned, to illustrate how the functional expansion
works, a specific case belonging to the mentioned class of equations, namely the DBM
equation, will be considered in the third section of the paper. We obtain traveling wave
solutions for the model and we try to prove if they are new ones or if they can be reduced to
already-known solutions for the same model. This checking is very important [34], and we
will comment on it at the end of the paper.

2. Key Issues on Functional Expansion
2.1. The Functional Expansion Method

Let us consider that to solve (1) we transform it into a NODE of the form in (3), using
the wave variable (2). We are looking for the solutions of (3) that can be expressed as
combinations of solutions G(ξ) of an auxiliary equation of the form:

Θ(G, G′, G′′, · · ·G(n)) = 0. (8)

Depending on the differentiability order of (8), the most general form for the solution
of (3), should be:

u(ξ) = H(G, G′, G′′, · · · , G(n−1)). (9)

In particular, the previous relation could be considered as:

u(ξ) =
m

∑
i=−m

Pi(G) H(G, G′, G′′, · · · ). (10)

Here Pi(G) are 2m + 1 functionals depending on G(ξ) and that have to be determined.
H(G, G′, G′′, · · · ) can be a very general expression containing G(ξ) and its derivatives.
Depending on the form of P and H, one can generate very complex solutions. The choices
covering almost all the approaches currently used in the literature are H depending on G
and G′ only. More strictly, H is usually considered as a formal series expansion at most
linear in the two variables:

H(G, G′) = h0 + h1G + h2G′, h0, h1, h2 = const. (11)

The generalized Kudryashov method corresponds to the case h0 6= 0, h1 6= 0, h2 = 0.
There are other choices, too. For example, if we consider the opposite situation, h0 = h1 = 0
and h2 6= 0, we obtain from (10) an expression of the following form:

u(ξ) =
m

∑
i=0

Pi(G)
(
G′
)i. (12)

The generalized and improved G′/G method [30,31] corresponds to (12) with the
following choices:

Pi(G) =
πi

Gi ≡ πiG−i; πi = const., i = {−m, · · · , 0, · · ·m}. (13)

The approach from [35] corresponds to (12) with Pi = aiG−i + bi+1G−i+1, while the
(w/g) method is recovered for P = 1/G and H = w(G), with an adequate choice for the
auxiliary equation. The representation used in [36] is also included in (9), but it does not
accept the condensed form (12). It imposes anH(G, G′) of the following form:
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H(G, G′) = G′

√√√√σ

(
1 +

1
µ

(
G′

G

)2
)

. (14)

The functional expansion method deals with solutions in the form of (12), where Pi(G)
are arbitrary functionals that have to be determined. This is performed by applying a
balancing procedure for determining m, followed by vanishing the coefficients for different
powers in G′. At the end, we obtain a system of NODEs in the functionals Pi(G) and its

derivatives, Ṗi ≡ dPi
dG , P̈i ≡ d2Pi

dG2 , etc. If this system can be directly solved, we obtain very
general solutions of the form in (12). However, it seems that direct solving is not always
straightforward, so we need ways out to particular solutions. Such a way, as was proposed
in [32], consists of looking for solutions given as expansions in G that can be represented as
rationales with a polynomial numerator, N (G), and denominator, D(G):

Pi(G) =
Ni(G)

Di(G)
=

n(Ni)

∑
α=0

πiαGα

n(Di)

∑
β=0

ωiβGβ

. (15)

This choice, with the functionals {Pi, i = 0, 1, · · · , m} as ratios of polynomials, gives an
answer to the previous formulated question on how to generalize the Kudryashov method
for second order auxiliary equations, with (15) being quite similar to (4), Kudryashov’s
choice. In (15), n(Ni) and n(Di) are the degrees of Ni(G) and Di(G), respectively. The pa-
rameters {πiα, ωiβ} are constants that have to be determined in order to be able to write
down the effective solutions u(ξ). To determine these degrees, we need, as we will see,
a supplementary balancing procedure, taking into account the “degree” attached to Pi(G):

n(Pi) ≡ n(Ni)− n(Di). (16)

In principle, these degrees can be positive, negative or zero but, considering this
supplementary balancing, we will obtain negative values only.

2.2. The Balancing Procedure

An important step in applying the functional expansion method is related, as in almost
all expansion methods, to the balancing procedures, which allow the limit of the expansions
to be found. As we already mentioned, the functional expansion method supposes two
different expansions: one in terms of various powers of the derivatives G′(ξ), and one in
the chosen form of the functionals Pi(G). This fact automatically leads to two balancing
procedures: the first one allows the maximal value of m in (12) to be found, while the
second one leads to the possible forms of the functionals Pi(G) and allows their degrees to
be determined, n(Pi), as defined by (16). When n(Pi) are known, n(Ni) and n(Di) can be
fixed, when the representation in (15) is considered.

Speaking about balancing, an important issue to also be considered is the mathemat-
ical form of the equation to be solved. To illustrate how effectively all these balancing
procedures are working, let us consider that the ODE (3) to be solved has the following
general form:

A(u)u′′ + B(u)u′2 + E(u) = 0. (17)

This class of NODEs leads to many important nonlinear 2D equations. One of the
examples, which was intensively tackled in this work, is the Dodd–Bullogh–Mikhailov
equation. In this case, the attached NODE has the following form:

−Vuu′′ + Vu′2 + u3 + 1 = 0. (18)
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Other important equations lead to NODEs corresponding to B(u) = 0. Such equa-
tions are as follows:

• the KdV equation

δu′′ +
1
2

u2 −Vu + k = 0; (19)

• the cubic nonlinear Schrödinger equation

u′′ + u3 − (β + α2)u = 0; (20)

• the nonlinear Klein–Gordon equation

k2(ω2 − 1)u′′ + βu3 + αu = 0; (21)

• the ZKBBM equation

− bPu′′ − au2 − (1 + P)u + k = 0. (22)

The previously mentioned equations could have more general nonlinear terms. For ex-
ample, in the Klein–Gordon equation considered in quantum field theory, other nonlineari-
ties can appear [37–40].

To keep the discussions as general as possible, we consider that in (17) A(u), B(u)
and E(u) are polynomials of the following form:

A(u) =
nA

∑
α=−nA

aαuα, B(u) =
nB

∑
β=−nB

bβuβ, E(u) =
nE

∑
δ=−nB

eδuδ. (23)

We start by discussing the last aspect mentioned: a balancing procedure imposed by
the form of the equation to be solved. We suppose the functions in (23) are known, that is
the limit of each expansion, nA, nB and nE, are known. By introducing (12) in (17) a system
of nonlinear ordinary differential equations for the functionals {Pi(G), i = 0, 1, · · · , m} is
generated by equating the coefficients of the terms with the same powers in G′ to zero.
This is called the determining system and is used for finding the degrees attached to the
functionals, following (16).

In the first step, we see what values could have the summation limit m appearing
in (12), as function of the parameters nA, nB and nE. They can be obtained through a first
balancing procedure among the term with the highest derivative and the terms with the
biggest order of nonlinearity. The maximal order of derivation in G′ is generated by the
first term from (17). It has the following form:

anA P̈mPnA
m G′m(nA+1)+2, (24)

where P̈m = d2Pm/dG2, PnA
m = (Pm)nA . Depending on the degrees of the polynomials B(u)

and E(u), the terms that generate the highest nonlinearity are as follows:

bnB Ṗ2
mPnB

m G′m(nB+2)+2, (25)

enE PnE
m G′mnE . (26)

If, for example, nE > nB, the first balancing has to be made between (24) and (26). It
allows us to find the summation limit m in (12), leading to m(nA + 1) + 2 = mnE:

m =
2

nE − nA − 1
. (27)

Imposing m ∈ N, we conclude that m can take two integer values only: either m = 2
(then nE − nA = 2) or m = 1 (for nE − nA = 3). The case nE − nA = 1 asks for special
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consideration, which is not the object of analysis in the current paper. Such a situation
appears in the Chafee–Infante model:

u′′ + Vu′ − λ(u3 − u) = 0.

Let us go further by trying to get the conditions the functionals {Pi, i ≤ m} have
to satisfy, for an already fixed m. For this purpose, the equation in Pm, the functional
of the maximum degree with m given by (27), contains only two terms and it has the
following form:

P̈m + αP
m+2

m
m = 0. (28)

We introduced the notation α =
enE
anA

, the ratio of the coefficients appearing in front
of the maximal order terms in the expansions from (23). This is a constant with a known
value for a given model.

Let us take Pm(G) as a rational polynomial expression, having the form (15). The com-
patibility requirement for (28) allows, by applying a second balancing procedure, the degree
n(Pm), attached to Pm by (16), to be effectively determined. More precisely, it leads to a
relation among the already known m and the degree n(Pm):

n(Pm) ≡ n(Nm)−n(Dm) = −m. (29)

Considering the case described by (27) with m = 2, which will be tackled below, as m
is positive, we deduce that n(Pm) has to be negative.

Until now, m and the functional Pm have been determined. The other functionals
{Pi, i < m} appearing in the solution (12) can be determined considering the other equations
of the determining system that were generated when (12) was introduced in (17). Similar
reasonings as before lead to negative values for all the functionals’ degrees:

n(Pi) ≡ n(Ni)−n(Di) ≤ 0, for i = 0, ...m. (30)

This will be proven in the next section, using one of the equations identified as
belonging to (17) as an example.

Remark 1. Despite the decomposition in (15) being quite similar to that used in [27], the rela-
tion (29) leads our approach to n(N ) <n(D), while [27] shows the opposite: the numerators have
higher degrees than the denominators.

Remark 2. It is important to note that (29) and (30) fix only the difference between the two degrees
n(Ni) and n(Di). It is clear that there are many solutions that can be considered and that there are
many possible choices of the type in (15) for the same functional Pi(G). For m = 1, (30) imposes
n(Pi) = −1, which can be achieved considering, for example, n(Ni) =1 and n(Di) =2, but also
n(Ni) =2 and n(Di) =3.

3. The Example of the Dodd–Boullogh–Mikhailov Equation

To see explicitly how the previous assertions functioned we considered a specific
model of 2D NPDEs, leading, when the wave variable (2) was introduced, to a particular
case of (23), namely to (18); this is the Dodd–Bullough–Mikhailov (DBM) equation, with
the following form:

wxt + ew + e−2w = 0. (31)

With the change in variable u(x, t) = ew(x,t) the previous equation takes the following
form:

u2(ln u)xt + u3 + 1 = 0. (32)

This is an important equation, with many applications in hydrodynamics and quantum
field theory. Various types of periodic, hyperbolic or rational solutions, of traveling wave
or of soliton types, were pointed out, using methods such as the tanh method [41], the exp-
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function method [42] or the G′/G method [43,44]. Here the equation is investigated using
the functional expansion method and, as we will see, this approach allows the recovery of
all the mentioned solutions, and, moreover, enables new solutions, larger that the G′/G
solutions, for example, to be found.

As we already mentioned, the first step of the functional expansion method consists of
the reduction of (32) to an ODE using the wave variable (2). This reduction leads to (18),
that can be re-written as follows:

V(uu′′ − u′2) = u3 + 1. (33)

3.1. The Determining System for the Functionals

Let us look for solutions of the DBM equation of the form (12). We use the expression
in (33) and we apply the first balancing procedure for determining the number of terms to
be considered in the expansion. Taking into account the term with a second order derivative
and third order nonlinearity, the balancing leads to m = 2, so the sought DBM solution has
the following form:

u(ξ) = P0(G) + P1(G) · G′ + P2(G) · (G′)2. (34)

Finding the DBM solutions allows P0, P1, P2 to be found as functionals depending on
the solutions G(ξ) of an auxiliary equation. We choose here, as an auxiliary equation, a
general second order differential equation:

G′′ + λG′ + µG + ρ = 0. (35)

From (33)–(35), equating the coefficients of the different powers of G′ to zero, we obtain
by hand, but also using Wolfram Mathematica, a determining system of seven ordinary
differential equations for P0, P1, P2:

−VP2
..
P2 + V

.
P

2
2 + P3

2 = 0, (36)

−V
..

P1P2 + 2V
.
P1

.
P2 −V

..
P2P1 + λV

.
P2P2 + 3P1P2

2 = 0, (37)

−V
..

P2P0 −V
..

P0P2+2V
.
P0

.
P2+µV

.
P2P2G−λV

.
P1P2 −V

..
P1P1 + V

.
P

2
1

+3λVP1
.
P2 + 2µVP2

2 + 3P2
1 P2 + 3P2

2 P0 + ρV
.
P2P2 = 0, (38)

−V
..

P0P1 − 3λV
.
P0P2 + 2V

.
P0

.
P1 −V

..
P1P0 + 5λV

.
P2P0

+λV
.

P1P1 + 3µV
.

P2P1G− µV
.

P1P2G + 6P0P1P2 + P3
1 −Vλ2P1P2

+3µVP1P2 + 2λµVP2
2 G + 2λρVP2

2 − ρVP2
.
P1 + 3ρVP1

.
P2 = 0, (39)

−V
..

P0P0 − µV
.
P0P2G + V

.
P

2
0 − λV

.
P0P1 + 5µV

.
P2P0G

+3λV
.

P1P0 + µV
.

P1P1G + 2µVP0P2 − 4λ2VP0P2 + µVP2
1 + λµVP1P2G +

−3µV
.
P0P2G− ρVP1

.
P1 + 5ρVP0

.
P2 + λρVP1P2 + 4µρVGP2

2

+2µ2VP2
2 G2 + 3P0P2

1 + 3P2
0 P2 + 2ρ2VP2

2 − 3ρVP2
.
P0 = 0, (40)

−µV
.
P0P1G + λV

.
P0P0 + 3µV

.
P1P0G + 3P2

0 P1 − 6λµVP0P2G

+V(µ− λ2)P0P1 + 2λµVP2
1 G + 2µ2VP1P2G2 −VλµP2

1 G− λρVP2
1

+6λρVP0P2 − 4ρµVGP1P2 − 2ρ2VP1P2 + ρVP1
.
P0 − 3ρVP0

.
P1 = 0, (41)

2P2
1 G2 − 2µ2VP0P2G2 −VλµP0P1G + µV

.
P0P0G + 1 + 2µρVP2

1 G

−λρVP0P1 + ρ2VP2
1 − 4µρVP0P2G− 2ρ2VP0P2 + ρVP0

.
P0 = 0. (42)

Remark 3. The last Equation (42) from the previous generating system can be rewritten as follows:

V(ρ + µG)2[−2P0P2 + P2
1 ] + V(ρ + µG)[

.
P0 − λP1]P0 + P3

0 + 1 = 0. (43)
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As shown below, this equation leads, in all the cases, to a constraint showing that the parameters
λ and µ from the auxiliary equation cannot take any values; they are related to each other and to the
wave velocity V. The same constraint also appears when G′/G solutions are considered.

Remark 4. A first attempt at directly solving the previous obtained system would probably lead to
the most general solution accepted by the DBM model. It is quite easy to verify, for example, that
the first Equation (36) accepts the following as a solution:

P2(G) =
1
2

C1th
(

1
2

√
VC1(G + C2)

V

)2

− 1
2

C1. (44)

For C1 = V and C2 = 0 the equation becomes

P2(G) = V
1− ch(G)

sh2G
= 2V

2− (eG + e−G)

(e−G − eG)2 . (45)

Using (45), (37) can be solved, obtaining the solution for P1:

P1(G) =
e2G(λVG2 + G + 1)− eG[λVG2 + (8λV + 1)G + (16λV + 5)]

(eG + 1)3 . (46)

Unfortunately, this approach of finding DBM solutions by directly solving the deter-
mining system (36)–(42) fails when trying to find P0 from the remaining Equations (38)–(42).
It seems that it is not possible, at least for the DBM model, to obtain general P0, P1 and
P2 that are compatible with the whole system. This is why another approach is needed
to find solutions, with the functionals chosen as in (15).

An important step is determining the limits n(Ni) and n(Di) in the expansions of
the numerator and the denominator of each {Pi, i = 0, 1, 2}. For this purpose the second
balancing procedure is used, applied this time to the determining Equations (36)–(42). Tak-
ing into account that for DBM we obtained m = 2, from (29) we obtain n(P2) = −m = −2.
Similarly, we conclude that the degrees attached to the functionals {Pi, i = 0, 1, 2} by (16)
have to be as follows:

n(P0) ≡ n0 ≡ n(N0)− n(D0) = 0,

n(P1) ≡ n1 ≡ n(N1)− n(D1) = −1, (47)

n(P2) ≡ n2 ≡ n(N2)− n(D2) = −2.

These are the only constraints, and, as we already mentioned (see Remark 2 in the
previous section), they can be achieved by many choices. For example, n2 = −2 means that
we may have the following in (15):

P2 =
π20 + π21G + π22G2 + · · ·+ π2NGN

ω20 + ω21G + ω22G2 + · · ·+ ω2(N+2)GN+2 . (48)

No restrictions on N, meaning it may be N = 1, asking for a third order denominator
or that it may be N = 0, imposes a quadratic denominator. The simplest choice in the
last case is P2 = π20

ω22G2 = k 1
G2 and it corresponds to what the G′/G-method is offers.

The relation (47) asks, in this case, for the following:

P0 =
π00 + π01G + π02G2 + · · ·+ π0NGN

ω00 + ω01G + ω02G2 + · · ·+ ω2NGN , (49)

P1 =
π10 + π11G + π12G2 + · · ·+ π1NGN

ω10 + ω11G + ω12G2 + · · ·+ ω1(N+1)GN+1 . (50)
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The limited constraints (47) offer a large freedom in the choice of the mathematical
form of the functionals P0, P1 and P2. Correspondingly, larger classes of DBM solutions may
be generated through the functional expansion method. As a proof, in the next subsection
we analyze three choices that are more general than those considered in the G′/G method.

Case I: The functionals {Pi, i = 0, 1, 2} have numerators of degree zero: n(N0) =
n(N1) = n(N2) = 0.

Case II: The functionals {Pi, i = 0, 1, 2} have numerators of degree one: n(N0) =
n(N1) = n(N2) = 1.

Case III: The functionals {Pi, i = 0, 1, 2} have quadratic and identical denominators:
n(D0) = n(D1) = n(D2) = 2.

Remark 5. Let us mention again that, in all the three cases, the simplest choice corresponds to
the following:

P0 ∼ const.; P1 ∼ 1/G; P2 ∼ 1/G2. (51)

The DBM solution (34) has exactly the form given by the G′/G-approaches:

u(ξ) = a0 + a1

(
G′

G

)
+ a2

(
G′

G

)2

. (52)

It is obvious that the choices (48)–(50) are more general.

3.2. Examples of DBM Solutions Generated through the Functional Expansion

We will now show how our proposed method effectively functioned, to see if more
general solutions, such as those arising in the G′/G method, could be generated. The pro-
cedure was quite simple and obvious: we introduced the chosen forms for the functionals
Pi in the determining system (36)–(42), taking into consideration the explicit form of the
auxiliary Equation (35). A set of algebraic equations arose, relating the parameters { ωij, πij}
from Pi with the wave velocity V from the main Equation (33) and with the parameters
{λ, µ, ρ} from the auxiliary equation. All the compatible solutions of this algebraic system
led to solutions for the functionals {Pi, i = 0, 1, 2}, and, implicitly, for the DBM Equation.

We have to keep in mind that the solution of (35) could be written as in [45]:

G(ξ) = − ρ

µ
+ C1 exp

1
2

ξ

(
−λ−

√
λ2 − 4µ

)
+ C2 exp

1
2

ξ

(
−λ +

√
λ2 − 4µ

)
. (53)

Depending on the relation between λ and µ, we have three different situations:

(i) If λ2 − 4µ < 0 we have the following:

G(ξ) = − ρ

µ
+ C1 exp

1
2

ξ

(
−λ− i

√
4µ− λ2

)
+ C2 exp

1
2

ξ

(
−λ + i

√
4µ− λ2

)
= − ρ

µ
+ 2Ae−

1
2 ξλ cos(

ξ
√

4µ− λ2

2
+ ϕ). (54)

Here, as well as in the forthcoming expression, we used the notations C1 = Ae−iϕ and
C2 = Aeiϕ, respectively.

(ii) If λ2 − 4µ > 0, the solution (53) could be written as

G(ξ) = − ρ

µ
+ C1 exp

1
2

ξ

(
−λ−

√
λ2 − 4µ

)
+ C2 exp

1
2

ξ(−λ +
√

λ2 − 4µ)

= − ρ

µ
+ 2Ae−

1
2 ξλch(

ξ
√

λ2 − 4µ

2
+ iϕ). (55)
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(iii) If λ2 − 4µ = 0 the solution (53) is:

G(ξ) = − ρ

µ
+ C1 exp

1
2
(−λξ) + C2 exp

1
2
(−λξ) = − ρ

µ
+ e−

λ
2 ξ(C1ξ + C2). (56)

3.2.1. Examples of Solutions in Case I

The functionals {Pi, i = 0, 1, 2} have numerators of degree zero: n(N0) = n(N1) =
n(N2) = 0. To observe the constraints (47), the denominators of the functionals have to
be n(D0) = 0; n(D1) = 1; n(D2) = 2. Choosing simplified notations for the coefficients
appearing in (48)–(50), we consider the following:

P0(G) = k0,

P1(G) =
k1

a + bG
, (57)

P2(G) =
k2

c + dG + eG2 .

We note that with the choice in (57), Equation (42) in the determining system leads to
the following constraint:

V3(λ2 − 4µ)3 + 27 = 0. (58)

Many DBM solutions can be generated with these choices. Some of them correspond
to the already-reported solutions, obtained through the G′/G-method. For example, one of
the solutions accepted by the determining system (36)–(42) is of the following form:

P0 =
2Vµ

3
; P1 = 0; P2 =

2V
G2 . (59)

This corresponds to the case ρ = 0, λ = 0, and it leads to the solution of (33) of the
following form:

u(ξ) =
2Vµ

3
+

2V
G2 . (60)

On the other hand, even observing the constraint in (58), non-standard solutions of
the determining system appear as follows, for example:

P0 =
1
3

V(λ2 + 2µ),

P1 =
2Vλµ

ρ + µG
,

P2 =
2Vµ2

(ρ + µG)2 . (61)

The corresponding solution of (33) becomes the following:

u(ξ) =
1
3

V(λ2 + 2µ) + 2Vλµ
G′

ρ + µG
+ 2Vµ2

(
G′

ρ + µG

)2

. (62)

Other solutions, apparently more complex than (62), are as follows:

P0 = k0,

P1 = 9
√

V
8ρV − 3G(2k0 − 1)

16ρ2V2 + 27G2 ,

P2 = −27V
(

8ρV − 3G(2k0 − 1)
16ρ2V2 + 27G2

)2

. (63)

Although, when (58) is imposed, these solutions take the form of (61).
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3.2.2. Examples of Solutions in the Case II

When the functionals {Pi, i = 0, 1, 2} have numerators of degree one, n(N0) = n(N1) =
n(N2) = 1, the constraint in (47) asks for n(D0) = 1; n(D1) = 2; n(D3) = 3. Again,
considering simplified notation for the coefficients in (48)–(50), we choose the following:

P0(G) =
πG + ω

ϕG + ν
,

P1(G) =
pG + r

hG2 + jG + n
, (64)

P2(G) =
aG + b

cG3 + dG2 + eG + f
.

We also consider here that ρ = 0. The algebraic equations generated by the determining
system (36)–(42) lead to the relations among the parameters {a, b, c, d, e, f , h, j, n, p, r, V, λ, µ}
and allow the functionals P0, P1 and P2 to be in a simpler form:

P0 =
V
3
(λ2 + 2µ), (65)

P1 = 2Vλµ · rρ− (r− 2jVλ)µG
rρ2 + 2VλµρjG− (r− 2jVλ)µ2G2 , (66)

P2 = 2Vµ2 · 2bρ− (b− 2dV)µG
2bρ3 + µρ2(3b + 2dV)G + dG2 − (b− 2dV)µ3G3 . (67)

Compatibility conditions impose, in this case too, the following supplementary constraint:

V3(λ2 − 4µ)3 + 27 = 0. (68)

Similarly to (58), it restricts the possible values of the parameters in the auxiliary
equation. As the velocity is a real quantity, and, as we have seen, the solutions of the
auxiliary equation ask λ2− 4µ to also be real (positive, negative or zero), we retain from (68)
the following situation:

λ2 − 4µ = − 3
V

. (69)

We note that only two situations, (54) and (55), can be fulfilled, considering adequate
values, positive or negative, for the velocity V. Correspondingly, we have to consider only
these two types of solutions, harmonic and hyperbolic, for the auxiliary equation. There
are no realistic velocities leading to λ2 − 4µ = 0.

Let us also note that for ρ = 0, the functionals (65)–(67) become the following:

P0(G) ≡ k =
V(λ2 + 2µ)

3
; P1(G) = 2λV

1
G

; P2(G) = 2V
1

G2 . (70)

The final DBM solution of Equation (33) becomes, in this case, the already-known
expressions provided by the G′/G approach:

u(ξ) =
V(λ2 + 2µ)

3
+ 2λV

G′

G
+ 2V

(
G′

G

)2

. (71)

Another remark is that, when (68) is observed, the expressions (66) and (67) take the
simple forms from (61) mentioned in Case I.



Symmetry 2022, 14, 827 12 of 17

3.2.3. Examples of Solutions in Case III

Consider now the case when all the functionals Pi have identical quadratic denomina-
tors: n(D0) = n(D1) = n(D2) = 2. The relation in (47) imposes that n(N0) = 2; n(N1) = 1;
n(N2) = 0. We may choose P0, P1, P2 as having the following forms:

P0 =
β0 + β1G + β2G2

α0 + α1G + α2G2 ; P1 =
γ0 + γ1G

α0 + α1G + α2G2 ; P2 =
τ0

α0 + α1G + α2G2 . (72)

The procedure mentioned before leads, in this case too, to non-standard G′/G-solutions.
It is interesting that, again, Equation (42) is fulfilled if and only if the wave velocity is
related to λ and µ from (35) by a relation of the same form as in the two previous cases:
27 + V3(λ2 − 4µ)3 = 0. In fact (69) and Equation (72) now also take the following simpli-
fied forms:

P0 =
V(λ2 + 2µ)

3
; P1 =

2Vλµ

µG + ρ
; P2 =

2Vµ2

(µG + ρ)2 . (73)

Again, because of (69), we should consider only the harmonic and the hyperbolic
solutions of auxiliary Equation (35), that is (54), respectively (55). For example, for negative
velocities, we have λ2 − 4µ > 0, and for positive velocities, λ2 − 4µ < 0.

Below some comments on DBM solutions are giventhat were obtained through the
functional expansion method, in the three examples that were considered before; there
were some similarities that did not depend on the chosen form of the functionals P0, P1, P2.
Equation (42) generates, in all the cases, the following constraint:

27 + V3(λ2 − 4µ)3 = 0. (74)

In all the cases the general solutions obtained could be, at the end, reduced to the same
expressions:

P0 =
V(λ2 + 2µ)

3
; P1 =

2Vλµ

ρ + µG
; P2 =

2Vµ2

(ρ + Gµ)2 . (75)

Using the expressions in (34), they led to DBM solutions that were different from those
that the G′/G approach generated.

Apparently, the non-standard G′/G-solutions (75) are related to the factor ρ 6= 0 in (35).
It is important to note that such non-standard solutions appear even if ρ = 0. It is simple
to check, for example, the following two solutions for the determining system (36)–(42)
corresponding to ρ = 0:

P0 = 0; P1 =
8V2λ

4VG + 2Vδ− α
; P2 =

32V2

(4VG + 2Vδ− α)2 , with δ, α = const. (76)

P0 =
1
3

Vλ2; P1 =
4Vλ

2G + ε
; P2 =

8V
(2G + ε)2 , with ε = const. (77)

These are also different from what was obtained by the G′/G approach.

3.3. Recovering the Main Types of DBM Solutions

The DBM solutions obtained using functional expansion had the general form (34).
We effectively wrote down a few of these solutions, using the expressions (75)–(77) for the
functionals {Pi, i = 0, 1, 2}. It was interesting to note that, whatever expression was used, we
obtained quite similar DBM solutions. They depended on the wave velocities and all the
parameters appearing in (75)–(77) were captured in two other parameters that are denoted
below by C1 and C2, respectively. As already mentioned, only two cases arose and they
corresponded to the solutions of (55) and (54), respectively, of auxiliary Equation (35). We
prove here that these two cases, corresponding to negative and, respectively, positive wave
velocities, practically allowed the recovery of all the important types of DBM solutions.
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For negative velocities, V = − 3
λ2−4µ

< 0, the auxiliary equation admits the solution
of (55), and it leads to the DBM solution (C1 and C2 are integration constants):

u(x, t) = −1 +
6C1C2(cosh

√
3
|V| (x−Vt) + sinh

√
3
|V| (x−Vt))[

C1 + C2

(
cosh

√
3
|V| (x−Vt) + sinh

√
3
|V| (x−Vt)

)]2 . (78)

In Figure 1a this solution is represented for V = −1 and for any C1 = C2. It has the
form of a bright soliton, which is the type of solution already reported in the literature for
the DBM model. Its specific mathematical form is as follows:

u(x, t) =
1
2

(
1− 3 tanh2

√
3

4|V| (x−Vt)

)
. (79)

For V = −1 and any C1 = −C2, the solution is plotted in Figure 1b. It is the typical
dark soliton accepted by DBM and can be re-written as follows:

u(x, t) =
1
2

(
1− 3 coth2

√
3

4|V| (x−Vt)

)
. (80)

Figure 1. Plot of the solution u(x, t) (78), for V = −1: (a) C1 = C2 and (b) C1 = −C2.

If we considered bigger values for the two constants, C1 and C2, the solution profile (78)
changed. It took the form of periodic peaks propagating in time and along the x-axis.
The peaks could have unbounded amplitudes and a periodicity depending on the effective
values of C1 and C2. This behaviour is illustrated by the two specific solutions plotted in
Figure 2. In principle, bigger values of the constants C1, C2 led to decreased wave periods
and amplitudes. We noticed that the amplitudes changed from ∼1030 in Figure 1b to ∼104

in Figure 2.

Figure 2. Plot of the solution u(x, t) (78), for chosen parameters V = −1: (a) C1 = 2, C2 = −7 and
(b) C1 = 50, C2 = −125.
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For positive velocities, V = − 3
λ2−4µ

> 0, the auxiliary equation admitted the solution
in (54). In this case the DBM solution took the following form:

u(x, t) = −1 +
3
2

C2
1 + C2

2(
C1 cos( 1

2

√
3
V (x−Vt)) + C2 sin( 1

2

√
3
V (x−Vt))

)2 . (81)

Considering V = 1, the solution (81) for C1 = 0, C2 = 1 is plotted in Figure 3a. It had
the form of many propagating periodic waves. For bigger values of the two constants,
C1 = 5, C2 = 7, the wave amplitudes and frequencies decreased, as can be seen in Figure 3.

Figure 3. Plot of the solution u(x, t) (81), for the chosen parameters V = 1: (a) C1 = 0, C2 = 1 and
(b) C1 = 5, C2 = 7.

For C1 and C2 with opposite signs, the solution had a similar shape: many waves
propagating along the axis. From Figure 4a,b, made for different values of C1, C2, we note
that there was not a high dependency on the values of these constants. This was quite
normal considering the mathematical form of the solution.

Figure 4. Plot of the solution u(x, t) (81), for the chosen parameters V = 1: (a) C1 = 100, C2 = −25
and (b) C1 = −10, C2 = 25.

4. Conclusions

This paper presented in detail how the functional expansion method proposed in [32]
functioned for a large and important class of equations that can be expressed as in (17).
Such nonlinear equations have important applications in various fields, such as optics
and plasma physics [46–48], for example. Our claim was that this approach for solving
NPDEs was more general than almost all the others based on the use of an auxiliary
equation. Two such approaches were specially considered: the Kudryashov method, which
is suitable when first order auxiliary equations are considered and the G′/G method, which
is the traditional approach in the case when the focus is on second order auxiliary equations.
Compared with previously published papers, the novelty this paper brings was related
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to the explicit presentation of the balancing procedure that, in the case of the functional
expansion method, required a double balance: the first one gave the maximal term in the
expansion of (12), and the second one was used for determining the functionals P0, P1, P2,
as is explained in Section 3.1. The application of the functional expansion to the DBM
model represented another novelty of this paper.

The method was based on expansions of the type in (10), or, more exactly, of the
type in (12). These were in fact the most general possible forms of solutions and they
included almost all the choices used in various approaches to the direct finding of exact
solutions for nonlinear differential equations. The method presented many advantages, one
of them being that it generalized other approaches to the direct solving of NPDEs. Here we
considered the Kudryashov and (G′/G) methods [28]. The choice of (15) is similar to what
Kudryashov method considers. Practically, the functional expansion approach extended
the Kudryashov approach to second order auxiliary equations, and it allowed more general
solutions, as in the (G′/G) approach, to be obtained. This was another important merit of
out method and it was illustrated for the DBM equation using the non-standard solutions
of type (75)–(77). Expressions containing the G′/G ratio appear now in the most natural
way, as particular sub-cases of more general solutions. It was true that the non-standard
form of solutions were limited to first order denominators; this introduced a limitation to
our method, at least for the DBM model.

Another important issue approached in the paper was related to the balancing pro-
cedures that were traditionally applied to limit the number of terms considered in the
expansions. It was pointed out that the functional expansion asks for two different balanc-
ing procedures: one following the powers of G′ and a second one following the powers of
G. The connection between the two, as well as the relation with the form of the equations,
were investigated for equations belonging to the class in (17). The outcome expressed
through (27) was quite important for investigating equations such as KdV, nonlinear
Schrödinger, Klein–Gordon, KMN [33] or Benjamin–Bona–Mahony. Limits of the method in
investigating special types of equations, such as Chaffe–Infante or Fisher, for example, were
also mentioned. How these limitations could be overcome using alternative approaches
will be tackled in future works.
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