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Abstract: Military, space, and high-speed civilian applications will continue contributing to the
renewed interest in compressible, high-speed turbulent boundary layers. To further complicate
matters, these flows present complex computational challenges ranging from the pre-processing to
the execution and subsequent post-processing of large-scale numerical simulations. Exploring more
complex geometries at higher Reynolds numbers will demand scalable post-processing. Modern
times have brought application developers and scientists the advent of increasingly more diversi-
fied and heterogeneous computing hardware, which significantly complicates the development of
performance-portable applications. To address these challenges, we propose Aquila, a distributed,
out-of-core, performance-portable post-processing library for large-scale simulations. It is designed
to alleviate the burden of domain experts writing applications targeted at heterogeneous, high-
performance computers with strong scaling performance. We provide two implementations, in
C++ and Python; and demonstrate their strong scaling performance and ability to reach 60% of
peak memory bandwidth and 98% of the peak filesystem bandwidth while operating out of core.
We also present our approach to optimizing two-point correlations by exploiting symmetry in the
Fourier space. A key distinction in the proposed design is the inclusion of an out-of-core data
pre-fetcher to give the illusion of in-memory availability of files yielding up to 46% improvement
in program runtime. Furthermore, we demonstrate a parallel efficiency greater than 70% for highly
threaded workloads.

Keywords: CFD post-processing; Kokkos; distributed memory; shared memory; scalability; out-of-
core processing

1. Introduction

Computational fluid dynamics (CFD) has become an important tool for understanding
ubiquitous phenomena, such as compressible high-speed turbulent boundary layers, which
are critical for efficient high-speed flight. However, the fundamental understanding of
such flows, from preparing and running these simulations to ultimately gathering valuable
insights from the vast amounts of data generated, presents unique computational chal-
lenges. For example, a modest 4D simulation (3D space + time) can generate 12 billion data
points with simple geometry. On the other hand, we capture smaller-scale motion at higher
Reynolds numbers. We account for strong surface curvature effects in complex geometries
that can generate 2 trillion data points (16 terabytes of raw data). Soon, we aim to simulate
flow at even more complex geometries by increasing Reynolds numbers (i.e., large-scale
systems) which will continue to exponentially raise the need for efficient post-processing
utilities to extract valuable scientific insights from these simulations.

Complicating factors for the post-processing of these large-scale, numerical simula-
tions are the continuously growing number of diversified computing infrastructure [1,2]
and heterogeneous processors [3]. This adds more challenges to the development of
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portable scientific applications [4]. Recent and upcoming supercomputers have nodes with
multiple CPU sockets with many cores across each (not to be confused with the literal
“many-core” micro-architecture advocated by Intel in the past), and potentially accelerators,
such as FPGAs, GPUs, and other custom ASICS connected to each socket over standard
PCIe, or another proprietary interconnect. The wide variety of computational acceler-
ators and connection technologies introduces complex NUMA effects and compounds
the available programming models [5]. Achieving peak performance and strong scaling
requires careful attention to micro-architectural differences between computing devices
which inevitably introduce additional complexities. With the growing sizes of numerical
simulations, copying the whole dataset into the main processor memory pool could be
impractical or impossible in most cases where terabytes of data are managed. To tackle
this problem, one could consider out-of-core computing [6–9]; computing on data stored in
slower media such as hard drives and moving these to and from main memory as needed
by the application. Some approaches have been proposed in the past, such as DIY2 by
Morozov and Peterka [10] which could operate on in-core and out-of-core datasets similarly
by abstracting away the movement of data via an MPI layer. The interfaces outlined by
the authors are flexible and relatively simple to use, but DIY2 experiences a degradation
in strong scaling performance when operating from in-flash data. This leads to a drop in
parallel efficiency to 64% (comparing performance at 128 processes to a baseline of 32 pro-
cesses). This loss of strong scaling performance contrasts with its execution for in-memory
data, which achieves 91% parallel efficiency. Further complicating matters, the application
runtime grows by 1.59–2.27× when operating from non-volatile memory drives. Given
the continuously growing size of datasets generated by the CFD community, this situation
poses challenges. In addition, with increasing scientific requirements, the time available
for analysis is often kept constant. Brezany et al. [6] promoted the highly optimized file
read/write to enable out-of-core computing and contrasted other approaches, including
virtual memory, which is often unavailable in supercomputers. Tuned file IO could po-
tentially reduce runtime by 4–20× [11] compared to relegating data loads and memory
swaps to the OS (the virtual memory approach). The proposed runtime also reinforced this
latter fact, and language support by Brezany et al. [7], which was crucial to the MPI IO
predecessor PASSION [12].

Based on these growing nuances, application developers should use portable ab-
stractions when writing scientific software to allow programmer productivity and good
performance regardless of available hardware resources on the current rise of the het-
erogeneous compute node. Many such abstractions have been developed, with varying
levels of performance, ease of use, and vendor acceptance. Some of these abstractions
include SYCL [13], RAJA [14], OpenMP [15], OpenACC [16], Legion [17], Kokkos [18],
and many others omitted. Both OpenACC and OpenMP follow a compiler-pragma-based
approach, whereas Legion, RAJA, SYCL, and Kokkos are built on top of C++ abstrac-
tions [19]. The OpenMP standard is widely implemented and supported among compiler
vendors for its generic and unobtrusive interface that allows incremental porting of appli-
cations. This being said, directive-based approaches live outside the type system, limiting
compiler optimizations and visibility across layers of abstractions. On the contrary, Ope-
nACC has not experienced such widespread adoption and is confined chiefly to PGI
compilers and Nvidia devices. With regards to the C++ abstractions, SYCL has gathered
significant interest recently. Mainly due to Intel announcing it would base its oneAPI [20]
initiative on a superset of SYCL with plans to standardize the extensions. In addition,
AMD has invested significantly in the SYCL initiative through its hipSYCL implementation.
Codeplay [21] recently announced support for Nvidia devices via an experimental PTX
generator in addition to its support for AMD and other CPU targets. That being said, SYCL
is a verbose approach that ends up tying any application to the availability of an SYCL
implementation that depends on vendor support. Rather than requiring vendor-specific
support, Kokkos [18] (and similarly RAJA [14]) take advantage of the rich abstractions
achievable in C++ via templates and other composable abstraction mechanisms. This
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enables a platform-agnostic platform that only requires recompiling for a given platform.
What is more, Kokkos provides an abstraction over memory accesses and layouts [18],
crucial to ensuring performance portability across CPUs and GPUs.

To address the requirements of post-processing large-scale computational fluid dy-
namics simulations in a heterogeneous high-performance computing system, we have
proposed a scalable, performant, portable, and distributed library capable of handling
the post-processing of large-scale simulations [22]. This is achieved while relieving the
domain expert from the burden of low-level computational details of vital importance to
achieving high-performance and strong scaling [22]. This is achieved through a modern
and opinionated abstraction system that hides unnecessary complexity from the scientific
application developer. The current approach builds over two significant abstractions:
modular operations and a distributed flow field. Previous work has shown that these
abstractions can be platform-independent [22]. In this work, we demonstrate that these
can be language-independent by implementing these in Python in addition to the existing
C++ implementation targeting different parallel programming models. While current
efforts are targeting the implementation of GPU capabilities in Aquila (which would
be published elsewhere), the present manuscript is focused on CPU performance stud-
ies. We demonstrate that scalability can be achieved independent of implementation
details as long as certain specific concepts are always present in the implementation.
For instance, asynchronous pre-fetch and concurrent operation scheduling are crucial for
strong scaling, parallel efficiency, and quick turnover. The C++ implementation leverages
Kokkos and MPI, whereas the Python implementation may target multiple NumPy com-
patible libraries. The C++ distributed flow field can leverage any distributed computing
library wrapped around the Aquila Communicator interface, and it targets Kokkos as its
performance portability layer. Kokkos enables transparent execution and performance
portability on GPUs, CPUs, and other compute devices from multiple hardware vendors
while abstracting away the distributed memory layer. It also permits the adoption of
nearly any distributed-memory communication library. That said, MPI [23] is the only
currently supported backend as of the time of writing. The proposed library approach is
portable and can scale down from large supercomputers to small clusters to workstations
to laptops with no changes to the source code. It also supports running in a pure, shared
memory context without MPI. The Python implementation leverages the widely adopted
NumPy array interface to enable a generic interface that can accept CuPy, NumPy, Dask,
and other compatible interfaces. Distributed communication is handled via MPI. Thus,
we present a generic interface for both the C++ and Python implementations, leveraging
the strengths and addressing the weaknesses of both languages. In the present work, we
outline a general language-independent group of principles and ideas and implement
these in two vastly different languages, C++ and Python, to highlight the language in-
dependence of these guidelines. A noteworthy difference in our design is the scalable
inclusion of asynchronous, out-of-core post-processing pipelines with data pre-fetch to
give the illusion of in-memory availability of said data. We highlight the strong scaling
performance of our proposed solution while operating on out-of-core datasets, enabled
primarily through optimized, scalable, and asynchronous file-based IO. Additionally,
we show scaling results on porting a post-processing analysis from a usability and per-
formance point of view. We also expect an essential impact of the present contribution
beyond the CFD community, since the bottom line of the proposed approach is “dealing
efficiently and speedily with a huge amount of numerical data”, and big data problems
can be found everywhere.

2. Design Rationale and Implementation Details
2.1. Design Rationale

We propose four main, language-independent design principles:
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• Provide as much information as possible at “compiling time”. In interpreted languages,
this can be achieved via dynamic planning that adjusts underlying libraries analogous
to the FFTW planning and runtime adaptive scheme [24–30].

• The underlying mesh is mostly structured. Certain operations on partially struc-
tured meshes or hybrids can be supported if the node connectivity is known. For in-
stance, many Eulerian, time-averaged quantities can be trivially extended to unstruc-
tured meshes even without connectivity information. If turbulence statistics involves
flow gradients, numerical integration, fluxes, etc., the connectivity information must
be included.

• A minimal amount of temporal data was kept in the main memory. This enables
scaling to larger datasets (larger simulation time).

• File formats are bound to change and have evolved significantly throughout the years.

Each of these principles has steered our development from core areas to user-facing
interfaces. As with many high-performance libraries, we focus on maximizing parallel
slack to enable concurrent and independent execution paths with minimal synchronization
points. This philosophy enables strong scaling and inspires the asynchronous operation
inclusion model in the Python implementation. It also serves as the basis for the guideline
that operations that may run in parallel should be allowed. This drives the independent
processing of flow fields as all operations can be done embarrassingly parallel to the final
reduction operations. In the C++ version, we followed a more traditional approach by
incorporating domain decomposition in a distributed memory programming model and
enabling parallel operations to execute concurrently in a threaded pipeline. We approach
domain decomposition through a shared memory approach to maximize resource sharing
and utilization in the Python implementation. As we will see, sharing a thread pool for
pre-fetch, processing, and coordination operations enables efficient resource utilization in
an out-of-core context.

We will discuss three implementations in the present work, a C++ implementation,
and two Python implementations. The C++ implementation leverages Kokkos to abstract
data memory layouts and offers the potential of GPU targeting without major code changes.
The data pre-fetcher is implemented using the pipeline provided by Threading Building
Blocks (TBB) [31]. We also integrate processing stages as pipeline stages to enable con-
currency and out-of-order, asynchronous execution. In Python, we implement a hybrid
parallel decomposition strategy allowing independent processing of flow fields by workers
(implemented using MPI [32–34]) and leverage parallelism in operations via concurrent
futures patched with TBB [35], NumPy [36], and Numba [37]. This enables operations that
would not scale as well across distributed memory, such as Fast Fourier Transform (FFT)
and complex stencil operations. These operations are more efficient in a shared memory
context. Further, as new operations are introduced, they are submitted as asynchronous
operations (futures) into one of several pools initialized by the TBB pool. Worker threads
then execute these operations, and a thread may steal work from other threads as needed.
Each operation may also be parallelized internally and leverage the same pool as the tasks.
This approach scales the available parallel slack as more operations are implemented,
which leads to better resource utilization. The operations are submitted to a TBB thread
pool, so the available hardware resources are not oversubscribed, and irregular work is
automatically load-balanced without a central dealer.

Our library also provides a set of algorithms and standard post-processing utilities
that offload work to the underlying Kokkos and Distributed Volume internals, providing
proper CFD post-processing operations, including time-averaged flow calculation, Root
Mean Square (RMS), cross-correlations, two-point correlations, and power spectra of fluc-
tuations. Standard, stencil-like communication patterns are also supported, enabling the
straightforward implementation of volumetric gradients, opening the door for additional
functionalities. The algorithms leverage the Kokkos API and can be executed on CPUs and
GPUs by simply recompiling the application with a different Kokkos backend.



Symmetry 2022, 14, 823 5 of 28

As a final note, compiling code on supercomputers is often “free”, as some of the
guidelines behind the design principles suggest. Free doe not mean a lack of data centers
or the cost of energy consumption, but a computing unit that researchers can use. In
addition, compiling a small post-processing run is often dwarfed in time by the actual
runtime of the code. However, the compiler produces the best binaries when given
most of the critical information. These include array dimensions, loop boundaries, array
alignment and padding, memory access patterns, and interactions between components.
Therefore, this method needs to be compiled with a post-processing application, in-
cluding processing the dimensions of the volume. Of course, this leads to potential
annoyance. However, getting good performance on complex architectures is worth a
few extra seconds on the command line. This process also configures Kokkos to run on a
specific backend. When link-time optimization is enabled, the compiler can optimize
object files to provide the best performance at the cost of increased compilation time.
As part of this data-driven combination, the user also defines the distribution layout of
the volume, which can be divided along with the flow direction of the fluid flow and the
wall-normal. This allows index constants to be precomputed, reducing runtime pressure
from the CPU backend.

Another key difference is its forward-looking approach to storage needs. The size
of the dataset keeps increasing, and the storage within the node is more or less constant.
So, assume that only 1 or 2 timesteps are in memory or read at any given time. This
can cause problems when scaling on supercomputers due to the high latency of parallel
file systems. Our plan of attack draws inspiration from the latency hiding philosophy
in GPUs to address this. Traditional Graphics Processing Units often exhibit very high
latencies in data fetching and overcome this by oversubscribing the hardware and allowing
multiple execution contexts to be in flight simultaneously. This contrasts with CPUs which
incorporate complex machinery to avoid pipeline stalls and reduce latency as much as
possible for a single thread of execution. To achieve latency hiding, we include a parallel
pipeline from the Threading Building Blocks (TBB) multithreading library. It is analogous
to the approach followed by GPUs and CPUs, although neither serves as a perfect analogy.
The pipeline maintains a compile-time-defined number of concurrent flow fields at any
pipeline stage, thus allowing resources to be invested where they are needed the most and
tolerating latencies induced at network-bound stages. Therefore, it is designed to execute
significant amounts of work per file read to hide the latency of reading these over a network
link. This is analogous to the way GPUs hide outstanding loads and other high-latency
operations by hiding these with work [38].

The fourth design principle is related to many file formats and their constant
evolution. As with hardware heterogeneity (or, some would affirm, even more critical),
the amount of file formats available to application developers is far too large even to
keep up. Furthermore, many software packages, libraries, and scientific domains have
vastly differing IO backends, making choosing an IO format as necessary as the language
in which an application is programmed. The proposed methodology provides a modular
interface for IO for distributed memory communication to address this fact. Depending
on the need, any given file format can be supported if it implements a Writer or Reader,
which is a customization point between Aquila and any other file format. For instance,
data stored in a NetCDF file can be read by an application writing to HDF5 or vice versa.
This format-resiliency to IO requirements enables flexible interfaces sharing a common,
high-performance computational core. These components are presented in a simplified
schematic in Figure 1 (taken from [22]; reprinted by permission of the American Institute
of Aeronautics and Astronautics, Inc.).
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Figure 1. High-Level Overview of the Core Design of Aquila. (taken from [22]; reprinted by
permission of the American Institute of Aeronautics and Astronautics, Inc.)

2.2. Implementation Details

The Python implementation supports Python 3.8 and above. Due to the design, it
was upgraded to support higher standards and more recent Python versions. The C++
implementation requires C++14 (it was initially developed to support C++17, but was
later downgraded due to lack of support in some supercomputers) with extensive use
of compile-time operations. Kokkos is extensively used to implement volume stripes
and algorithms by allocating arrays through Kokkos and expressing functions using the
Kokkos programming model. By ensuring separation of concerns, backend enhance-
ments propagate gains to higher levels of abstractions. For instance, improvements
to the low-level operations result in progress across all algorithms that leverage these.
For example, modifications to elementwise operations propagate to all algorithms that
require elementwise operations without any changes to the source code.

We promote vectorization at these by providing the compiler with power-of-two
loop bounds and compile-time-known memory layout. To facilitate disjoint memory
spaces in accelerators with discrete memory pools or program addressable multi-tiered
memory, we implement a memory state flagging scheme that tags memory as dirty
when a mirror allocation is accessed from a different device. Before accessing mem-
ory, this flag is checked, cleaning the memory if necessary by transparently copying
the memory across devices. The mirror allocation matches the host memory layout
(including padding), enabling transferring memory without intermediate buffers. Care
is taken to minimize expensive transfers, and these are often limited to data assignment
operations at file read/write. These transfers are denoted as indispensable transfers
since the implementation of Reader/Writer currently involves an intermediate buffer.
(This is not strictly necessary, given column-major layouts are used for GPUs, we favored
a row-major read/write buffer. The overhead is minimal as these operations can be
performed asynchronously.)

The most communication-intensive operation is the two-point correlation (TPC),
which requires “pencil” communication (a pencil is defined for this job as a single
“row” of data). It can be inferred from the last statement that it introduces additional
parallelism by allowing multiple groups of ranks to work independently on a single
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timestep of the simulation, avoiding synchronizing many processes. We use parallelism
at the distributed, thread, and instruction levels. Any scientific application that expects
proper scaling and good performance must use parallelism at the appropriate level
by allowing the user to specify the number of stripes. At runtime, the user provides
multiple stripes as the number of ranks, which this code uses internally to provide
independent sets of ranks for independent progress. When time reduction is required,
the groups must be synchronized at the end of the pipeline. Suppose a pipeline contains
multiple post-processing algorithm requests. Each “reduce” is issued as an asynchronous
“reduce”, allowing better overlap of computation and communication if the underlying
distributed runtime supports it. This is a common theme across many aspects of this
code implementation, and we try to provide as many opportunities for optimization
and concurrency as possible. This allows Aquila to take advantage of many options
that domain experts should not know but must exploit to achieve good scalability and
optimal performance for a given hardware/software stack.

2.3. File Formats and Supported Operations

This section describes our support for different file formats and how additional
formats can be supported with relative ease. Furthermore, we will also discuss some
of the supported families of operations and limitations imposed by design decisions
in the C++ and Python implementations. We define an opinionated internal format
for all arrays and “readers” that convert from native file format data layouts to this
internal format. We support writing to VTK and HDF5 as current output formats,
with the HDF5 writing backend expressing arrays following the interior layout for
efficiency. Consequently, a reader can have any arbitrary implementation if it generates
an array that adheres to the internal file format. We currently support reading from
VTK (implemented to support OpenFOAM), HDF5, and ASCII file formats. Although a
reader can execute arbitrary code, the results are optimal when the reader is kept to a
bare minimum and avoids any locking due to the asynchronous nature of the pre-fetcher.
This becomes particularly important in the Python implementation, where leveraging
function calls that release the Global Interpreter Lock [39] is highly beneficial.

Currently, the C++ and Python implementations have diverged in terms of the
supported operations, but it could be said that the Python implementation supports
a super-set of the C++ operations. The C++ implementation (denoted as Aquila V1,
although the two versions have minor changes) supported basic post-processing routines,
including cross-correlations, mean flow calculations, fluctuations, RMS, and two-point
correlations. We present two Python implementations (Aquila V2 and Aquila V2.1) with
two notable changes between V2 and V2.1. First, the two-point correlation operation was
updated from V1 to V2.1. V1 implemented a custom dot product-based TPC, leveraging
a custom small vector dot product written using AVX2 intrinsics. We updated this
implementation to leverage MKL-batched matrix-matrix operations. This increased the
arithmetic intensity, better utilized the available memory bandwidth, and increased the
available parallelism. For V2.1, the two-point correlation was re-written to leverage FFTs
from FFTW [24–30] if available with an Eigen fallback [40], and we also implemented
an asynchronous operation submission engine (we denote this engine as the Aquila
Futures Interface [AFI]). The AFI is implemented using Python futures and a TBB
pool. The AFI combines these two results in a decentralized execution pool capable
of handling the unbalanced parallelism and the combination of nested task and data
parallelism from the asynchronous task pool. Furthermore, this architecture simplifies
the inclusion of user-defined calculations that may leverage Aquila’s core computational
engine and abstractions as first-class citizens. It is also worth noting that although we
present a set of available functionalities, the library includes (either directly or allows
for straightforward implementation) a large number of flow parameters including those
dependent on gradients, integrals, and other higher-order statistics.
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Optimizing 3D Two-Point Correlations, the Heart of Aquila’s Coherent Structure
Detection Approach

The naive implementation for a two-point correlation requires O(Nt ∗ Nx ∗ Ny ∗
N2

z ) floating point operations with Nz calls to a rotate algorithm (shifting elements
in the volume along z). One notable improvement can be achieved if at least one
coordinate exhibits homogeneity (for instance, wall-bounded flows are often modeled
with periodical boundary conditions on at least one dimension, although the algorithm is
generally applicable to any volumetric physical quantity with at least one homogeneous
dimension) by leveraging the convolution theorem [41,42] which translates the problem
from the physical to the Fourier domain. Focusing on the gains along the homogeneous
dimension and given the input is a real input, we can exploit the natural symmetry in the
Fourier domain (complex conjugate symmetry) and preserve the data size even when
considering complex values since only 1/2 of the frequencies are considered. Further,
the FFT’s complexity is proportional to O(log2 N). Given only half the frequencies
are considered, this yields a complexity of O(log2 Nz/2) and a storage requirement
of Nz (complex numbers occupy twice the memory footprint of a real scalar). This
also reduced the number of complex operations involved since only Nz/2 complex
multiplications are required. Consequently, the spanwise complexity is reduced from
O(N2

z ) to O
(

Nz
2 log2

(
Nz
2

))
. By preserving the data size and reducing data movement,

we have thus increased the arithmetic intensity making the TPC calculation much more
efficient in modern computing hardware such as CPUs with wide vectors and GPUs.
The overall complexity can be assumed to be O

(
Nt ∗ Nx ∗ Ny ∗ Nz

2 log2

(
Nz
2

))
(although

the 1/2 factors should not appear in big-O notation, we included these to highlight
important savings attained by exploiting symmetry in the Fourier domain).

This scaling behavior is much more favorable and, even after accounting for in-
creased FLOP count in complex arithmetic, could lead to a 20× increase in performance
for the largest case considered in the present work. If we did not exploit the symmetry
present in the Fourier domain, we would double the intermediate data size and would
cap the theoretical speedup to 9× even assuming infinite bandwidth. This highlights
the power of algorithm selection, incorporating domain-specific knowledge and proper
numerical implementation so as to reduce the computational cost.

The general algorithm for the real-to-complex, FFT-based, two-point correlation
can be derived by noting that for any real input, f (x), the Fourier transform, F (χ),
is symmetric (i.e., F (χ) = F (−χ)). Thus, we can get away with using a real input,
avoiding an intermediate buffer to cast the data to a complex data type, and outputting
only half of the Fourier transform. The two-point correlation, R, is then expressed as,

R(x) = F−1[F (χ)F ∗(χ)]

where F ∗(χ) is the complex conjugate of the Fourier transform and F−1 is the inverse
Fourier transform. Note, that when taking the Fourier transform we only preserve the
positive and zeroth terms since the negative frequencies are assumed to be symmetric
with respect to the origin. This enables the complex buffer to be of equal size to the
real buffer while reducing the amount of data moved and ensuring a higher arithmetic
intensity while operating in the frequency domain. In summary, we have transformed
a spatial correlation with an element-wise frequency multiplication. If the problem
lacks a homogeneous dimension, a straightforward fallback can be implemented which
computes the TPC in the physical domain. The main advantage of the Fourier space
against a well-implemented TPC calculation in the physical domain is performance
as we have alluded throughout the discussion. If a validated, high-performance FFT
library is available for a given system (which often is), the implementation is also much
more straightforward and less prone to mistakes since it contains fewer operations and
data movements.
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3. Performance Analysis
3.1. Computational Environment

Characterizing the portability and the performance portability of any piece of soft-
ware requires studying it under different loads, environments, and stressing different
areas in realistic manners. To this end, we chose 4 platforms ranging from an aging
platform to a state-of-the-art platform. The systems chosen have very different character-
istics in their compute elements, filesystems, and interconnects. Coupled to different
benchmarks, these four systems provide a realistic view on attainable performance for
our proposed post-processing approach. It is worth noting that although some of these
platforms have GPU resources, we have limited our study to general purpose CPUs to
reduce the number of variables and tuning parameters present.

3.1.1. Cray XE6m—Copper

We show the results of a run performed on the Copper Cray XE6m system. The nodes
in the XE6m featured dual-socket AMD Interlagos Opteron, each with 16 floating-point
modules and 32 integer cores. This micro-architecture oversubscribed floating point
units on a 2 to 1 ratio. Although this architecture is old, it provides a suitable test
environment for oversubscribed architectures. Still, challenges include oversubscribing
computing resources and limited access to storage servers, as Copper has only 1 Lustre
Metadata Target Servers (MDTs) and 20 Object Storage Targets (OSTs). Each compute
node has 60 GB of accessible RAM with a nominal clock speed of 2.3 GHz per core.
Nodes are interconnected via Cray Gemini interconnects, providing a 3D torus topology.
The results presented were run on compute nodes running Cray Linux with Cluster
Compatibility Mode (CCM) enabled. We test Aquila from a single node, up to 128 nodes
(maximum number of nodes per job in Copper, i.e., seven node doublings).

GCC 4.9 was the only available compiler that supported all required C++. Therefore,
we chose GCC over the Intel, PGI, or Cray compilers. However, Aquila has been tested
successfully on recent releases of the Cray, Intel, Clang, PGI, and GCC C++ compilers.
We use Cray MPI (version 7.1) on Copper, built atop MPICH 2. We employ the open-
source release for TBB, and we enable two timesteps executing concurrently per rank
(interpretable as a pre-fetch distance of 1).

3.1.2. Cray XC40/50—Onyx

We present a small set of results for the Cray XC40 system, Onyx, based on the Intel
Broadwell microarchitecture in the Dragonfly topology on Cray Aries. The compute
nodes are dual-sockets with 22 cores per socket. The compute node also has simultane-
ous multithreading enabled (branded as Intel Hyperthreading), and the two hardware
threads can switch contexts at the hardware level by duplicating register files and sharing
pipeline resources on the front-end and back-end. These nodes have 128 GB of RAM (121
GB accessible). A notable difference between Onyx and Copper is the significant increase
in available OST and MDT. Onyx features a 13 PB Lustre filesystem with 78 OSTs and 6
MDTs, a substantial increase over the 20 OSTs and single MDT that Copper offers.

In Onyx, we compile Aquila with the Intel C++ Compiler (version 19.0) and link
against the Cray MPI (version 7.7.8) library. We are using the Intel TBB distribution
that comes with the Intel compiler. All experiments are executed with CCM enabled.
We disable collective MPI-IO communication as we found that independent IO pro-
vided Aquila with more independent forward progress opportunities by alleviating
synchronization bottlenecks.

3.2. Stampede 2

For the Python V2 implementation, we also present a smaller sample using Stam-
pede 2 [43]. Stampede2 has two partitions with a total of 4200 “Intel Xeon Phi 7250”
(KNL) compute nodes and 1736 “Intel Xeon Platinum 8160” (SKX). An in-depth discus-
sion of these architectures is outside the scope of this work; however, ref. [43] provides
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more information on both CPU architectures. The nodes are interconnected through a
100 Gb/s Intel Omni-Path network with an oversubscription factor of 7:5 for the compute
nodes and full non-blocking connectivity for the I/O nodes. It is worth highlighting the
different features between the SKX and KNL nodes regarding storage: the integration of
the network interface card (NIC) within the CPU die for the KNL nodes, whereas the
SKX nodes communicate with the NIC through PCIe. The I/O subsystem for the scratch
storage is Lustre-based, with four meta-data servers and a total aggregate bandwidth
of 330 GB/s. The KNL nodes have 96 GBs of DDR4 plus 16 GBs of MCDRAM as the
last-level cache for the individual nodes. For applications consuming more than 16
GBs of memory, the available bandwidth available from main memory is 115.2 GB/s.
The Skylake-based nodes offer 119.21 GB/s per socket, which sums to 238.42 GB/s from
the main memory. Thus, for memory-bound applications with access patterns not tuned
for the MCDRAM cache of the KNL nodes, the higher-frequency and higher-memory
bandwidth of the SKX nodes should provide better performance. The on-die NIC of the
KNL nodes should translate to a more consistent scaling performance (note: consistent
scaling performance and not performance due to reasons mentioned above).

3.3. HPE Cray EX (Formerly Cray Shasta)—Narwhal

We tested the Python V2 and V2.1 implementations in an HPE Cray EX supercom-
puter (Narwhal). Public details on Shasta are scarce as of the time of writing; nonetheless,
details regarding the node architecture, CPU type, and interconnect are available. Nar-
whal has a peak compute rating (Rmax) of 12.8 petaflops. Each compute node for Shasta
has two AMD EPYC 7H12 liquid-cooled CPUs (128 cores and 256 threads) and 256 GB
of DDR4 memory, and there are a total of 2150 regular compute nodes. The maximum
allocation size is limited to 128 nodes. The compute nodes are interconnected via an
HPE Slingshot 200 Gbit/s network that directly connects the parallel file systems (PFS).
There are two Lustre parallel file systems. A more extensive capacity system is based on
spinning drivers, and a lower capacity system is based on NVME drives. Both Lustre file
systems have two MDTS. The NVME PFS has 20 OSTS and the spinning drive PFS has
80 OSTS, and the IOR benchmark reported a peak bandwidth of 635 GB/s at 256 nodes.
As will be discussed later, we measured a peak STREAM-like read (from disk)-write (to
memory) bandwidth from the NVME partition of 614.4 GB/s at 250 nodes (96% of the
total expected peak filesystem bandwidth), although the result might be biased due to
the inclusion of our data pre-fetcher; nonetheless, we did observe a slightly superlinear
scaling in the bandwidth from 1 to 100 nodes with a single node (read) bandwidth of
1.06 GB/s.

3.4. Datasets

• The dataset used in Onyx and Copper consists of 627 flow fields of a High Reynolds
number, Mach 2.5 DNS over a ZPG flat plate [44]. Direct Numerical Simulation
(DNS) is a numerical approach that resolves all turbulence scales (in space and time)
in the energy spectrum of flow parameter fluctuations. Figure 2 depicts contours of
instantaneous density (top) and density gradient magnitude or type of Schlieren
image (bottom) in supersonic boundary layers at high Reynolds numbers. The fol-
lowing major conclusions can be drawn regarding turbulent high-speed flows: (i)
supersonic turbulent boundary layers exhibit similar features as incompressible
wall-bounded flows with bulges and valleys, and (ii) the inlet flow depicts real-
istic turbulent characteristics, which confirms the suitability of turbulent inflow
information. The uncompressed size of the dataset is approximately 1304 GB using
double precision and stored in HDF5. The structured mesh (parallelepiped compu-
tational domain) with hexahedral contains roughly 52 M nodes (990 × 250 × 210)
along with streamwise, wall-normal, and spanwise directions. We stored pressure,
temperature, and velocity components for each node.
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• The dataset employed in Stampede2 consists of 792 flow fields of the supersonic
concave-convex DNS [45]. The hybrid unstructured mesh consists of approximately
9.9 M cells and 8.5 M points, as seen in Figure 3a. Note the inclined source region of
pyramid elements (five faces) to capture better the compression waves generated
by the concave-curved wall. This inclination angle (≈35◦) was obtained by previ-
ously performing a 2D RANS analysis in concave walls [46]. The turbulent inflow
conditions were prescribed based on a Zero-Pressure Gradient (ZPG) case, or tur-
bulence precursor [47], Ref. [48] via DNS. The uncompressed size of the dataset
is approximately 150 GB using double precision and stored in HDF5. The mesh
contains roughly 5 M nodes (565 × 80 × 105 along the streamwise, wall-normal,
and spanwise direction, respectively) just in the structured part with hexahedra.
We visualize regions where Q > 0 colored by the instantaneous streamwise velocity
fluctuations, u′, normalized by the freestream velocity in Figure 3b based on the
Q-criterion. The rotational nature of the flow is enhanced due to the concave wall’s
adverse pressure gradient. Further, more complex structures such as hairpin-like
vortices can be seen throughout the ramp. In general, the legs of hairpin vortices
show negative values of u′, whereas the hairpin vortex’s heads exhibit positive
values of velocity fluctuations. Again, we stored pressure, temperature, and ve-
locity components for each node. The lower storage footprint for the Stampede2
benchmark is due to the available node hours.

• The datasets employed in Narwhal stress two areas of our proposed library. The first
dataset explores strong scaling for a relatively low operation count over a large
dataset (∼4160 GB), and the second dataset explores strong scaling for a higher op-
eration count (more intermediate structures and operations) over a smaller dataset
(∼380 GB). For the larger dataset, we compute 40 two-point correlations with
21 planes smoothing, which totals 840 intermediate TPCs with only 40 intermediate
structures and TPC function calls per flow field, five energy spectra, and 25 cross-
correlations on this dataset, which consists of 2001 flow fields of a High Reynolds
number ZPG boundary layer. For the smaller dataset, we compute 315 two-point
correlations with a nine plane smoothing, which totals 2835 intermediate two-point
correlations with 315 intermediate structures and TPC function calls per flow field,
five energy spectra, and 25 cross-correlations on this dataset which consists of a
larger sample of the Stampede 2 dataset (2001 flow fields). In addition, we intro-
duced a second dataset to explore the effects of the pre-fetcher on a similarly large
dataset (∼3380 GB) composed of 20 times more flow fields, with each flow field
being roughly ten times smaller (40,000 flow fields). This dataset is also from a Di-
rect Numerical Simulation (DNS), albeit at a lower Reynolds number [44]. With this
secondary dataset, we explored the impact of pre-fetching on data that would not
stress the compute elements as much as the High Reynolds dataset; thus, we turned
the weight towards a more latency-sensitive portion where reading times could bot-
tleneck the efficiency of the compute kernels. We performed 30 TPCs, 26,400 energy
spectra, and 25 cross-correlations for this secondary dataset.
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Figure 2. Instantaneous density (top) and density gradient magnitude or type of Schlieren image
(bottom) in supersonic boundary layers at high Reynolds numbers.

(a)

(b)

Figure 3. (a) Mesh configuration in the concave/convex curvature case for DNS predictions,
(b) Q-Criterion colored by streamwise velocity fluctuations, u′ .
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3.5. Benchmark

The compulsory out-of-core read requirement for the benchmark for Onyx and
Copper is 1254 reads (two reads per timestep). The first pass of the benchmark calculates
the mean flow, which requires one complete access to the entire dataset. The second stage
of the benchmark calculates the fluctuations, fluctuation RMS, the two-point correlation
for O(10) wall-normal coordinates, and the cross-correlation between 5 variable pairs.

The benchmark for Stampede 2 used a pre-computed mean flow field. Thus, each
flow field is read-only once, resulting in 792 compulsory reads. The benchmark computes
50 total 3D two-point correlations for each variable resulting in 250 whole-domain TPCs.
It also calculates 250 energy spectra at each location (not the entire domain), 12 cross-
correlations, and three auto-correlations. Contrary to the Onyx benchmark, which is
formulated using dot products, the two-point correlations are implemented in matrix
multiplications with a Toeplitz matrix.

3.6. Results in Copper

We present strong scaling data for two revisions of the Aquila C++ implementation
(denoted Old and New in the figures for clarity). Old scaling data show results where
vectorization was sub-optimal in some of the fundamental operations. We were unknow-
ingly paying a high abstraction penalty [49,50] in the tight loops consuming the majority
of the runtime (at the time, the 3D TPC). The Intel compiler could not optimize through
multiple layers of abstraction, starting on the higher-level distributed volume class down
to the Kokkos parallel loop abstractions. Noting that the generated x86 code was mostly
scalar and had a few SSE instructions, we rewrote the TPC kernel using AVX2 intrinsics
to assess the impact of the lack of vectorization (as mentioned in Section 2.3) and noted a
dramatic performance improvement.

The critical lesson is always to verify code generation; this is especially true when
higher level abstractions are invoked. The implementation became much more perfor-
mant, and we did not lose maintainability. Upon verifying this performance gain, we
unboxed the underlying data manually (i.e., get a raw pointer to the data on a confined
code section), called the kernel directly on the data, and returned the boxed result.
The pure Kokkos fallback path was still available when AVX was unavailable, or an
unoptimized platform was encountered. We also tuned the build scripts to lower the
vectorization threshold and allow more aggressive vectorization in other operations.
For the most recent version of Aquila, the previously described minor updates reduced
the abstraction penalty to the core implementation of these operations, which resulted in
significant gains in overall application runtime (up to 2× improvement in overall appli-
cation runtime, 2–5× reduction in runtime for mean flow calculation which is limited
mainly by the latency of individual operations) and 25% peak for the remainder of the
compute core which was already well-optimized and is more throughput-dependent
rather than latency-oriented. The observed speedups are within the realm of the expected
since scalar to AVX2 could yield a 4–8× depending on the precision being used, whereas
SSE to AVX could theoretically deliver a 2× improvement. This serves to underscore
the importance of leveraging all available parallelism and also the importance of sep-
arating low-level implementation for higher-level interfaces. For measuring low-level
runtime statistics such as the application’s cache behavior, we used CrayPAT (version
6.2.2). For calculating runtime execution, we use timers embedded in the application to
measure individual components.

Aquila strives to maintain optimal serial performance. This leads to scaling potential
by reducing serial bottlenecks. Part of this effort focuses on algorithms that are suitable
for caching. CrayPAT reports about 96% L1D cache hits and 100% L2 cache hits every run.
This is due to the cache awareness of the TBB pipeline and the optimized loop layout
and memory allocation, which allows optimization of the CPU’s hardware pre-fetcher
and speculative execution engine. Calculating the average flow rate becomes a critical
path when the number of cores is significant, and it raises some research issues currently
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under investigation. On the one hand, the run-time ratio between the core and average
flow calculations should ideally be constant (and significantly less than 1). A single pass
through the data is indispensable for calculations requiring the mean flow, which we
refer to as the core compute or quantities of interest. Thus, this first pass through the
data is latency-bound as it is often limited by the IO fabric rather than the computational
limits of the processor. Even with an efficient pre-fetcher, it is likely that the processor
would have to wait for data to become ready since the mean flow essentially requires
one multiply-accumulate instruction per mesh node per variable. In theory, this essential
operation should scale very well with the number of nodes since more IO links become
available. Contrary to this, this ratio grows monotonically, which can be likely attributed
to several factors. These factors are reinforced by our results in Onyx to be discussed
later in this paper, including:

• The lack of sufficient work to hide the fetching latency. This is often the technique
used by massively parallel accelerators such as GPUs to hide the latency of memory
accesses with additional independent work that can be concurrently scheduled on
shared execution units.

• The flooding of the single Lustre MDT with requests. The Lustre filesystem has
separate servers for metadata and the actual data storage layer. Although not
inherent to Lustre, the metadata servers are often significantly outnumbered by the
storage servers. This is perfectly reasonable since many HPC parallel filesystems
expect large parallel workloads. However, this imbalance becomes notable to a user
when many MPI ranks attempt to open or query metadata details of a large number
of files simultaneously. The current Aquila design splits flow fields as independent
work units to expose a large amount of embarrassingly parallel slack. Although this
is often not an issue on many HPC systems, Copper had a single metadata server
which could have hampered the scaling significantly. We verified this by moving to
a system with multiple MDS and noted that this bottleneck was no longer present
(see the next sections for more details).

• The amount of network fetches being made to a relatively small amount of OSTs.
As previously outlined, the Lustre architecture separates the storage and serving
of metadata from the actual data. The Object Storage Server (OSS) is backed by
Object Storage Targets (OSTs) that contain the actual data in storage media (usually
hard drives). A small number of OSTs with hard drives and large IO traffic can
significantly degrade the performance since the spindles inside the drives have
to search for the reading location constantly. Hard drives are notoriously bad at
random IO, which is the pattern somewhat induced by many concurrent reads and
writes to an underprovisioned Lustre filesystem.

A bird’s eye view of the benchmark’s runtime is presented in Figure 4 to underscore
the overhead of calculating the mean flow at higher numbers of nodes. It shows three
distinct runtimes, including the mean flow’s calculation, other flow statistics, and an
overhead which we define as the simple difference between the sum of the core runtime
and the overall runtime. To enrich the visualization of these results, we also present the
proportion of the time invested in the mean flow to the time required to generate all
other flow statistics in Figure 5.

A notable improvement further reinforces the first of these observations in strong
scaling at higher core counts achieved by reducing single-threaded runtime. This, in turn,
reduces the latency and increases the overall throughput per unit time of individual
flow fields proportionally (see Figure 6). A more balanced storage system is required
to verify the remaining two observations. This being said, many parallel file systems
exhibit performance degradation under high metadata queries along with competing
reads.

The scaling performance for the second portion of the benchmark is considerably
better with nearly linear scaling throughout the test and slightly super-linear scaling
towards 128 nodes. We combine these results into a single plot to provide some context
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to the critical nature of the mean flow path at higher node counts and show the results
in Figure 7. Removing the mean flow calculation from the benchmark yields a runtime
remarkably similar to that presented in Figure 8.

Figure 4. Overall runtime in minutes for all tests. Overhead indicates difference between the total
runtime and the sum of the core components of the benchmark. (taken from [22]; reprinted by
permission of the American Institute of Aeronautics and Astronautics, Inc.).

Figure 5. Ratio of mean flow calculation to core compute runtime; the blue line denotes the
updated version of Aquila and the red line denotes the first iteration. (taken from [22]; reprinted
by permission of the American Institute of Aeronautics and Astronautics, Inc.).

A rudimentary solution for the issue caused by calculating the mean flow at very
large core counts could be simplified by pre-calculating the mean at lower node counts
and storing the result for use by a later job at higher node counts. Insufficient work
could be the culprit of many scaling issues.

The parallel efficiency of the core portion of the compute benchmark is over 80% in
all but a single outlier. The reason why the 32-node runs achieve under 80% efficiency
is not apparent. Nonetheless, the scaling efficiency recovers at higher node counts.
Leaving the anomaly in calculating the mean flow at higher node counts, Aquila exhibits
near-perfect strong scaling for its core components. This remains true while operating
out-of-core with data stored in hard drives and connected over the network. With the
growing size of numerical simulations, it is possible that even single timestep data could
not fit within a single node alongside other intermediate memory buffers. To this end,
out-of-core data are becoming worth considering when developing scientific applications
hoping to be resilient in the future.
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Figure 6. Runtime strong scaling for the mean flow calculation. (taken from [22]; reprinted by
permission of the American Institute of Aeronautics and Astronautics, Inc.).

Figure 7. Aggregated runtime results for the most recent version of Aquila. (taken from [22];
reprinted by permission of the American Institute of Aeronautics and Astronautics, Inc.).

Figure 8. Runtime strong scaling for the second portion of the benchmark calculation. (taken
from [22]; reprinted by permission of the American Institute of Aeronautics and Astronautics,
Inc.).
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3.7. Results in Onyx

We also verified the single-core performance of a more modern CPU architecture, In-
tel Broadwell, on the Onyx supercomputer, which alleviates some of Copper’s limitations
by increasing the number of available OSTs, MDTs and using the Dragonfly topology on
the Cray-Aries network. Preliminary data suggest that the current method can take full
advantage of modern hardware with a simple recompilation. For example, after Onyx
recompiled Aquila for Intel Broadwell, the runtime was reduced by 3.4× (peak), which
is likely a trend toward improving hardware in the rapidly evolving computing world.
On the most extensive run of Onyx, we also achieved a minimum run time of 2 minutes.

3.7.1. Distributed Performance

Onyx is a more balanced system, which is reflected in the results shown in this
section. Up to 1200 nodes (105,600 threads) maintain nearly 100% parallel efficiency.
At 2400 nodes (211,200 threads), it drops to around 80% in Figure 9. This is remarkable
considering the nature of Aquila’s out-of-core, pipelined asynchronous data pre-fetching.
As processing power and network performance grew, we introduced the concept of ref-
erence points to take advantage of homogeneity and quasi-homogeneity. Since periodic
boundary conditions are specified along the spanwise direction, spanwise uniformity can
be safely assumed. Additionally, Aquila allows you to set additional reference stations
at compile time. This can be used for local quasi-uniform flow at various points in the
flow direction. The previous numerical toolchain took more than two months to process
249 reference stations (excluding span stations). We ran a benchmark on Onyx and used
52,290 two-point correlations for each regular wall station. However, it represents an
atypical form of scaling research. We set the number of nodes to 600, increase the number
of reference stations, evaluate the impact on runtime, and display the results in Figure 10.
More computing work for each loaded file improves resource utilization by improving
hiding delays. The proposed approach thrives when the pre-fetcher and network perfor-
mance enable latency hiding, similarly to GPUs when swapping groups of threads to hide
fetching latency.

Figure 9. Parallel Efficiency vs. the Number of Total Hyperthreads. (taken from [22]; reprinted by
permission of the American Institute of Aeronautics and Astronautics, Inc.).
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Figure 10. Super-linear runtime scaling vs. TPC and cross-TPC reference locations at 600 nodes. (taken
from [22]; reprinted by permission of the American Institute of Aeronautics and Astronautics, Inc.).

Figure 11 shows Aquila’s scaling from just ten nodes to 2400 nodes with excellent
parallel efficiency (crucial to efficient resource utilization in large-scale computers). Fur-
thermore, small cases run efficiently, even on laptops (although results for these are not
presented). This is crucial for efficient use as we can post-process results where it is more
appropriate rather than turning everything into a nail once the hammer is available.

Figure 11. Strong Scaling from 10 nodes up to 2400 nodes. (taken from [22]; reprinted by permission
of the American Institute of Aeronautics and Astronautics, Inc.).

3.8. Influence of Memory Allocator

Further, we have also examined the application’s pliability by varying the memory
allocator. We tried this by substituting the compiler-default allocator invoked at runtime
by the Intel TBB Scalable Allocator, which improved cache behavior. We replaced the
allocator using the dynamic library pre-loading approach provided by TBB. We noticed a
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further reduction in the runtime of roughly 1–2%. The impact, although relatively small,
is measurable, and slight decreases add up over time. The effect would likely be more
significant at higher SMT modes in the future, where greater contention for the allocator is
much more likely.

3.9. Results in Stampede 2

Figures 12 and 13 show the strong scaling performance and parallel efficiency of
the Python implementation at the Stampede 2 cluster discussed in Section 3.2. Overall,
we observe super-linear scaling and efficiency. A simple explanation for this behavior
is the network load by full flow field reads. A typical NIC in a node has 2–4 ports, and
8–11 workers per node compete for these ports. By adding additional nodes, we tap into
the greater capabilities of the interconnect and IO connections. On average, the parallel
efficiency is around 115%.

Figure 12. Strong Scaling in Stampede2 for both node types against node types.

Figure 13. Parallel Efficiency in Stampede2 for both node types against node types.

3.10. Results in Narwhal

As was previously mentioned, we employed a larger dataset to assess strong scaling
over a reduced number of operations applied to a multi-terabyte dataset. The results for
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the larger dataset are presented in Figure 14. We see that including an asynchronous engine
for operation scheduling results in a 2–3× speedup over a linear scheduling engine where
each operation is parallel internally. This is due to better utilization of the 256 threads per
node. The smaller dataset was used to stress the total number of “in-flight” operations
and intermediate structures. The introduction of a thread pool with a dynamic work
partitioning as the one in TBB does yield a worsening of strong scaling at higher node
counts of roughly 20%. This has been confirmed over three trials. Recovering this strong
scaling is currently the subject of further research.

(a) (b)

Figure 14. Results for the larger dataset: (a) Strong Scaling for Large Dataset and (b) Speedup for
Large Dataset.

As scientific needs tend to grow over time, with additional statistics typically required
to enable richer analysis, the number of calculations grows. To simulate such scenarios,
we limited the size of the dataset to stress latency requirements and linearly varied the
number of two-point correlations from 7 per variable (5 flow variables) to 63 per variable.
The number of intermediate TPCs generated for smoothing grows linearly from 315 to
2835. The results are presented in Figure 15. The total compute time grows sub-linearly,
indicating that the computational requirements grow less aggressively as scientific needs
grow. The power-law presented in Figure 15b has an offset of 6.5 s and an exponent of
−1.07. The V2.1 implementation can also reach 64.4% of peak memory bandwidth on a
single node, which is remarkable for an out-of-core application.

(a) (b)

Figure 15. Results for the smaller dataset: (a) Scaling for Smaller Dataset vs Number of TPCs and (b)
Speedup for Large Dataset.
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3.11. Impact of the Asynchronous Pre-Fetcher

As part of our scaling study in Narwhal (see Section 3.3), we conducted a survey
replacing the pre-fetching operations in Aquila with a blocking call to the reading function.
This allowed for an “apples to apples” comparison and an impact on program runtime as
directly related to non-blocking, pre-fetched reads. We found the effect of the pre-fetcher to
be directly related to the size of the data. As previously mentioned, we included a secondary
dataset that would be more sensitive to read times in addition to the primary dataset that
included larger flow fields. For the higher Reynolds data (i.e., the larger dataset), using
non-blocking, pre-fetched reads reduced the program runtime by 21% (the calculation for
the mean flow was accelerated by 13% whereas the remainder of the calculations exhibited
a 23% reduction in runtime). The lower Reynolds dataset showed a 35% speedup using
the asynchronous pre-fetcher (similarly, 23% in the mean flow calculation runtime and
46% in the core portion of the benchmark). Thus, depending on the workflow, dataset size,
and the number of calculations required, the asynchronous, pre-fetch mechanism allows for
20–35% total runtime reduction with a reduction in more compute-intensive portions of the
benchmark nearing 50%. This gives the “illusion” of an in-memory dataset being operated
on by reducing drastically the idle time spent blocking on reads to a network-bound parallel
filesystem common to many large-scale clusters and supercomputers. This is in line with
the reported degradation of 29% for an optimized out-of-core application running off
flash vs. memory reported in Figure 6 of [10]. This being said, Morozov and Peterka [10]
reported a performance degradation for an optimized out-of-core application of up to 78%.
In summary, the speed-up observed in the present work can be directly explained by simply
allowing overlap of computation with an asynchronous data pre-fetcher; multi-terabyte
datasets can be handled without paying the total cost of reading fragments of data when
needed as this cost is effectively amortized.

3.12. General Remarks on Strong Scaling

In this section, details and comments on the excellent strong scaling obtained for
the shown benchmarks are supplied, which is due in part to our decomposition strategy.
Temporal decomposition turns most of the problem into an embarrassingly parallel problem
since each flow field can move through the pipeline independently, and synchronization
occurs only at the final reductions when time averaging occurs. A significant deterioration
in strong scaling occurs when favoring spatial decomposition over temporal decomposition.
This is a luxury affordable in this work since the simulation is completed and the library
has access to all of the temporal data and can schedule work across independent flow
fields. We allow each worker to operate independently without any synchronization
and introduce collective reduction operations afterward, thus maximizing the amount of
parallel slack. To provide context, temporal decomposition provides up to the number of
flow fields in temporal workers. After that, only spatial decomposition can be introduced
to allow for further scaling. Spatial decomposition is sometimes the only alternative
when a flow field or intermediate structures would not fit into the shared memory of a
process. To come to the point, a numerical post-processing problem can be transformed
into an embarrassingly parallel problem by favoring independent, temporal decomposition
with minimal synchronization among workers. This has yielded excellent strong scaling
performance in the present work and the studied problem domain.

4. Application Results

In this section, we show and discuss some results obtained using Aquila in the Onyx
benchmark dataset. Specifically, we show three-dimensional two-point correlations (TPC)
for the full supersonic High Reynolds number domain for the streamwise velocity fluc-
tuations at y+ = 5, 15, 50, and 100 in Figures 16–19, respectively. Here, the superscript
+ indicates inner units in turbulence by dividing the wall normal coordinate, y, into the
viscous length scale νw/uτ . Here, νw is the wall kinematic viscosity and uτ is the friction
velocity defined as

√
τw/ρ, where τw is the wall shear stress and ρ is the local fluid density.
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Note that we present iso-surfaces of the two-point correlation function. The wall-normal
coordinates y+ were strategically selected in order to analyze coherent structures in the
linear viscous layer (y+ = 5), buffer layer (y+ = 15), beginning and middle of the log region
(y+ = 50 and 100, respectively). The two-point correlation is emphasized and presented
due to its computational intensity. On typical analysis, the calculation of the two-point
correlation can account for 57–92% of the total runtime depending on the total number of
reference locations.

Figure 16. Two-Point Correlation for Streamwise Velocity Fluctuations at y+ = 5. (taken from [22];
reprinted by permission of the American Institute of Aeronautics and Astronautics, Inc.

Figure 17. Two-Point Correlation for Streamwise Velocity Fluctuations at y+ = 15. (taken from [22];
reprinted by permission of the American Institute of Aeronautics and Astronautics, Inc.
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Figure 18. Two-Point Correlation for Streamwise Velocity Fluctuations at y+ = 50. (taken from [22];
reprinted by permission of the American Institute of Aeronautics and Astronautics, Inc.

Figure 19. Two-Point Correlation for Streamwise Velocity Fluctuations at y+=100. (taken from [22];
reprinted by permission of the American Institute of Aeronautics and Astronautics, Inc.

The presented structures highlight the general nature of the Eulerian coherent struc-
tures as defined by the two-point correlation. In general, a coherent structure may be
defined as that parcel of fluid where flow fluctuations are highly correlated, playing a
pivotal role in the transport phenomena (mass, momentum, and energy) inside turbulent
boundary layers. By extracting a specific threshold (usually 0.1 to 0.15; 0.15 for this particu-
lar showcase) of the normalized TPC function, one can infer that coherent structures exhibit
an oblong “tilted” shape with long “tails”. The streamwise lengths of these turbulent
structures vary from 2δ′s in the near-wall region to 3.5δ′s in the log region, where δ is the
characteristic boundary layer thickness at the reference point or x/δ = 0. The influence
(i.e., tails) of a downstream coherent structure over the near-wall region can be used to
develop experimental turbulence characterization strategies since gathering velocity in-
formation near the wall under compressible flow conditions is often difficult at the very
least. We have also observed more significant, coherent transport regions farther away from
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the wall extending towards the wall, illustrating the kinetic energy transfer across scales.
Although not shown in the present manuscript, visualizing the two-point correlation also
aids in assessing the Reynolds analogy by comparing the streamwise velocity TPC and
the temperature TPC. Many other visual metaphors can be gathered by having a visual
depiction of coherent transport regions and assessing flow isotropy.

Given the scope of this manuscript, we limit the discussion of the application results
of coherent structure visualization via two-point correlation. However, we have presented
a brief discussion. Interested readers are referred to [44,45,51–53] for further details about
coherent turbulent structures discussions and other uses for the proposed post-processing
library. The coherent structures present in the outer layer of the boundary layer are
notably more prominent than those in regions closer to the wall (inner layer). From the
visualization, we can readily observe the qualitative characteristics of the momentum
transport. The visualizations include the viscous sub-layer, the buffer region, the log region,
and the outer region of the boundary layer.

5. Related Work

The CFD Vision 2030 Study [54] outlined the need for scalable pre-and post-processing
methodologies in addition to the actual simulation process as key to streamlining the
whole computational pipeline and gathering detailed insights from large-scale simulations.
Much effort has been poured into pre-processing by addressing high-performance mesh
refinement tools such as AMReX [55]; highly efficient data storage methods such as HDF5
and pNetCDF [56,57]; and other pre-processing aspects. However, post-processing of
large-scale simulations is often bounded by application-specific binary file formats, science
goals, and other factors that limit creating more generalized, modular tools to gather insight
from these numerical simulations.

At a high-level, computational fluid dynamics practitioners are faced with several
post-processing alternatives, each with varying levels of complexity, versatility, flexibility,
and customization options. Perhaps one of the best-known alternatives is ParaView [58].
ParaView is a fairly complex and comprehensive post-processing utility capable of visualiz-
ing large volumes of data in situ. However, ParaView is mostly focused on visualization and
applying filters to mainly unstructured data. Given its generality, making domain-specific
optimizations is generally impossible at the application level. This being said, Aquila does
not aim to be a visualization tool. It aims to reduce the burden of calculating parameters
inside a visualization toolkit and allows the visualization software to shine where it ought
to. Similar remarks can be made with respect to similarly popular visualization frameworks
that include FieldView [59], Tecplot 360 [60], and Ensight [61]. Nonetheless, all of these
popular software packages are focused on data visualization and not on enabling simple
and scalable calculations of complex quantities across enormous datasets and both CPUs
and GPUs.

On the other extreme, more general libraries focused on out-of-core computations lack
domain-specific optimizations and structuring that lead to the highly scalable performance
demonstrated in this work. For instance, we previously showed that work by Morozov
and Peterka [10] as a more general out-of-core computation library enabled expressiveness
but had a significant performance loss when operating off the flash as compared to an
in-memory baseline. Dask [62,63] is another popular out-of-core data processing library,
but implementing certain fine-grained operations using Dask is not straightforward. In
addition, Dask’s flexibility and generality make it attractive to many but hinder its full
potential for domain-specific tasks. For instance, Khoshlessan et al. evaluated the use of
Dask to post-process large-scale Molecular Dynamics simulations [64] and found intra-
node strong scaling to be good but degraded as soon as multiple nodes were in use due
to spurious occurrences of stragglers common in irregular, complex workloads. More
recently, Legate Numpy [65] was introduced as a potential drop-in replacement for the
famous [36] library with capabilities to automatically distribute work and data across
workers in a cluster, including CPUs and GPUs. Although Legate Numpy seems like a
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potential candidate to implement much of the functionality seen in Aquila, installing and
using it is not as straightforward and intuitive to practitioners used to the traditional MPI
workflow since the default distributed memory library for Aquila is MPI.

To the authors’ best knowledge, there is no published work addressing scalable CFD
post-processing tailored for unsteady three-dimensional numerical simulations with high
spatial/temporal resolution (for instance, in DNS of compressible turbulent boundary
layers). The proposed approach exploits domain-specific knowledge to optimize post-
processing algorithms and introduce a modular pipeline independent of file formats.
Furthermore, the proposed method leverages existing libraries standard to (or easily
installable at) most modern HPC deployments, such as MPI, HDF5, C++, and Python.

6. Conclusions

This manuscript presents an overview of an out-of-core, performance-portable, and dis-
tributed post-processing library for large-scale computational fluid dynamics. Given suffi-
cient work, we have included strong linear scaling results while operating on data stored
in hard drives. We have also discussed the importance of guaranteeing platform-agnostic
abstractions enabling applications to target existing heterogeneous computational environ-
ments and those to come. We have also shown that insufficient work could significantly
degrade performance in out-of-core applications due to increased difficulty in hiding la-
tency. We have also highlighted the benefits of providing additional information to the
compiler to facilitate vectorization.

Further, we demonstrated parallel efficiency above 70%, and our most recent imple-
mentation achieves 50–60% of peak CPU memory bandwidth and 98% of the achievable
filesystem bandwidth while operating out of the core. This strong scaling performance
is notable as other attempts at out-of-core compute typically do not scale. We have also
demonstrated the magnitude of the potential gains achievable by exploiting natural sym-
metry in a given domain in compute kernels. Among the main contributions outlined
in this work, we have demonstrated that replacing blocking reads with asynchronous
data pre-fetching can reduce runtime by up to 35% with some portions of the benchmark
experiencing speedups of 46%. In addition, our approach is domain-specific to some extent
which can be both a strength and a weakness compared to other out-of-core processing
libraries. Further, the relevance of combining task and data parallelism on modern compute
infrastructure was highlighted by a 3× performance improvement when enabling this
combination in the core compute pipeline.
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