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Abstract: A side skirt is a planar rooted tree T, T 6= P2, where the root of T is a vertex of degree at
least two, and all other vertices except the leaves are of degree at least three. A reduced Halin graph
or a skirted graph is a plane graph G = T ∪ P, where T is a side skirt, and P is a path connecting
the leaves of T in the order determined by the embedding of T. The structure of reduced Halin or
skirted graphs contains both symmetry and asymmetry. For n ≥ 2 and Pn = v1v2v3 · · · vn as a path
of length n− 1, we call the Cartesian product of a graph G and a path Pn, the n-generalized prism
over a graph G. We have known that the n-generalized prism over a skirted graph is Hamiltonian.
To support the Bondy’s metaconjecture from 1971, we show that the n-generalized prism over
a skirted graph is pancyclic.

Keywords: rooted tree; reduced Halin graph; skirted graph; prism; Cartesian product; pancyclicity

1. Introduction

The topological structure of an interconnection network or other network can be
represented by a graph. The processors can be shown as vertices or nodes, and the com-
munication links between processors can be expressed by edges connecting two vertices
together. The study of the structural properties of a network is beneficial for parallel or
distributed systems. The problem of finding cycles of various lengths in networks or graphs
receives much attention from researchers because this is a key measurement for evaluating
the suitability of the network’s structure for its applications and more information, see [1].

Pancyclicity in graph theory refers to the problem of finding cycles of all lengths
from three to its order. It was first investigated in the context of tournaments by Harary
and Moser [2], Moon [3] and Alspach [4]. Bondy [5] was the first one who introduced
and extended the concept of pancyclicity from directed graphs to undirected graphs.
In 1971, Bondy [6] posed a metaconjecture which states that almost any nontrivial condition
on a graph that implies that the graph is Hamiltonian also implies that the graph is
pancyclic (there may be a simple family of exceptional graphs). There are a number of
works that correspond to this metaconjecture. For instance, in 1960, Ore [7] introduced
the degree sum condition which states that “for each pair of non-adjacent vertices u, v in G,
d(u) + d(v) ≥ n(G)” and showed that if G is a graph satisfying the degree sum condition,
then G is Hamiltonian. Bondy [5] showed that if G is a graph satisfying the degree sum
condition, then G is pancyclic or G = Kn/2,n/2. Moreover, in terms of degree sequence
of a graph, Chvátal [8] showed that if G is a graph of order n ≥ 3 with vertex degree
sequence d1 ≤ d2 ≤ d3 ≤ · · · ≤ dn and dk ≤ k < n/2 implies dn−k ≥ n − k, then G
is Hamiltonian. Schmeichel and Hakimi [9] showed that if G satisfies such a condition
introduced by Chvátal [8], then G is either pancyclic or bipartite. Recently, the concept of
pancyclicity was also extended to hypergraphs, for examples, see [10,11].

Meanwhile, for the prism over a graph G, there are some Hamiltonian and pancyclicity
results. For examples, Paulraja [12] proved in 1993 that if G is a 3-connected 3-regular
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graph, then the prism G�P2 is Hamiltonian. In 2001, Goddard [13] showed that if G is
a 3-connected 3-regular graph that contains a triangle, then the prism G�P2 is pancyclic.
In 2009, Čada et al. [14] showed that if G is a connected almost claw-free graph and n ≥ 4
is an even integer, then G�Pn is Hamiltonian. They also showed that if G is a 1-pendent
cactus with ∆(G) ≤ 1

2 (n + 2) and n ≥ 4 is an even integer, then G�Pn is vertex even
pancyclic, i.e., each vertex of G�Pn is contained in a cycle of each even length.

From our previous study [15], we have proven that the n-generalized prism over any
skirted graph is Hamiltonian. Then, to satisfy the metaconjecture, we are interested to
answer this question: Is the n-generalized prism over any skirted graph pancyclic? To find
the answer, we started by investigating the n-generalized prism over three specific types of
skirted graphs. These three types were introduced by Bondy and Lovász [16] in 1985. They
studied the pancyclicity of a Halin graph. To show that a Halin graph is

almost pancyclic, they restricted the problem to a reduced Halin graph and then
showed that a reduced Halin graph H is almost pancyclic, i.e., it contains cycles of each
length from three through the order of H, except, possibly, for one even value. Moreover,
if it contains no cycle of even length m, then it contains a subgraph which is also a reduced
Halin graph or a skirted graph of order 2m− 1 of type I, II or III. Note that skirted graphs of
these three types contain symmetric structure. However, the technique that we use to prove
pancyclicity of the n-generalized prism over three such specific types of skirted graphs
cannot be extended to conclude pancyclicity of the n-generalized prism over any skirted
graphs that contain both symmetric and asymmetric structures. In this article, we conduct
a novel technique modified from the idea of vertex pacyclicity of lexicographic product
over graphs presented in [17] to prove that the n-generalized prism over any skirted graphs
is pancyclic.

To study pancyclicity of the n-generalized prism over any skirted graphs, we present
some definitions and preliminary knowledge in Section 2. In Section 3, we prove that
the n-generalized prism over a triangle is pancyclic. In Section 4, we prove pancyclicity of
the n-generalized prism over a skirted graph. Finally, conclusions and discussion about
our future study are provided in Section 5.

2. Preliminaries

We consider a finite undirected simple graph. Several terminologies of graph theory
presented in this article follow from West’s textbook [18]. The length of a path or a cycle is
the number of its edges. A path of length n− 1 is denoted by Pn. An (s, t)-path of a graph
G is a path in G from s to t, denoted by P(s, t). Then, P(t, s) denotes the reversed path
of P(s, t). A path in G is a spanning path if it contains all vertices of G. A cycle of G is
a Hamiltonian cycle if it contains all vertices of G. A graph G is said to be Hamiltonian
if it contains a Hamiltonian cycle. A graph G of order n is said to be pancyclic if it contains
a cycle of each length l for 3 ≤ l ≤ n. A tree is a connected graph with no cycles. A rooted
tree is a tree with one vertex a chosen as its root. For each vertex u of a rooted tree with root
a, let P(u) be the unique (a, u) path. The parent of u is its neighbor on P(u), the children of
u are its other neighbors, the descendents of u are the vertices v of the rooted tree such that
P(v) contains u, the leaves are vertices of the rooted tree having no children and the internal
vertices are vertices of the rooted tree having children.

Let G and H be two graphs. The Cartesian product of graphs G and H, denoted by
G�H, is defined as a graph with the vertex set V(G)×V(H) and an edge {(u1, v1), (u2, v2)}
presents in the Cartesian product whenever u1 = u2 and v1v2 ∈ E(H) or symmetrically
v1 = v2 and u1u2 ∈ E(G). For n ≥ 2 and Pn = v1v2v3 · · · vn, we call a graph G�Pn, the n-
generalized prism over a graph G. The 2-generalized prism over a graph G is called the prism
over a graph G. For convenience, the n-generalized prism over a graph G is referred to
a family of the n-generalized prism over a graph G for all n ≥ 2. If u ∈ V(G), then, for ease,
we refer to the vertex u in the s-th copy of G�Pn as u(s) instead of (u, vs).
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In a graph G and its subgraph H = (V(H), E(H)), the contraction of H is the replace-
ment of H by a single vertex whose incident edges are the edges other than edges in E(H)
that are incident to some vertices in V(H).

A Halin graph [16] is a plane graph H = T ∪ C, where T is a planar tree with no
vertices of degree two and at least one vertex of degree at least three, and C is a cycle
connecting the leaves of T in the cyclic order determined by the embedding of T.

Let x be a vertex of C and a be the neighbor of x in T. Then, the graph G = H − x
is called a reduced Halin graph with root a. Clearly, G = T′ ∪ P, where T′ = T − x and
P = C − x. Note that T′ has no vertex of degree two except possibly the vertex a. For
technical reasons, Bondy and Lovász [16] regarded that a single vertex is also a reduced
Halin graph.

In this study, we are interested in the pancyclicity of the Cartesian product of a reduced
Halin graph or a skirted graph G and a path Pn for n ≥ 2. We can see that the Cartesian
product is pancyclic only if the order of G is at least 2. Here, we recall that a skirted graph
is isomorphic to a reduced Halin graph defined by Bondy and Lovász [16]. However,
we exclude the case of a single vertex.

Before giving a definition of a skirted graph, let us introduce a definition of a side skirt
as follows.

A side skirt is a planar rooted tree T, T 6= P2, where the root of T is a vertex of degree
at least two, and all other vertices, except the leaves, are of degree at least three.

Now, a skirted graph is a plane graph G = T ∪ P, where T is a side skirt, and P is a path
connecting the leaves of T in the order determined by the embedding of T (see Figure 1).

Figure 1. A skirted graph.

Let G = T ∪ P be a skirted graph, a be the root of T and u0, uα be the endpoints of P.
Then, the graph G is called a skirted graph with root a and is denoted by G(a, u0, uα). We
notice that if u is a vertex of a side skirt T, then u and its descendents induce a skirted
subgraph of G.

Since our skirted graphs are isomorphic to reduced Halin graphs defined by Bondy
and Lovász [16], we obtain the following theorem and lemma from their study.

Theorem 1 ([16]). A skirted graph is Hamiltonian.

In order to mention about the Lemma 1 of [16], let us introduce some notations
as follows. For any skirted graph G(a, b, c) = T ∪ P, we denote the path P of length
α by u0u1u2 · · · uα, and the (a, c)-path of length β and the (a, b)-path of length γ in T
by y0y1y2 · · · yβ and x0x1x2 · · · xγ, respectively. Thus, y0 = x0 = a, u0 = xγ = b,
and uα = yβ = c (see Figure 2).
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Figure 2. Paths u0u1u2 · · · uα, (a, c)-path and (a, b)-path of G(a, b, c).

Lemma 1 ([16]). Let G = G(a, b, c) be a reduced Halin graph or a skirted graph of order m. Then,
G contains:

(i) an (a, c)-path of each length l for α + γ ≤ l ≤ m− 1;
(ii) a (b, c)-path of each length l for α ≤ l ≤ m− 1.

Remark 1. We obtain that

(i) Lemma 1(i) gives an (a, b)-path of each length l for α + β ≤ l ≤ m− 1 by the symmetry of
G(a, b, c);

(ii) To track down the path from each skirted subgraph of G(a, b, c), a (b, c)-path of length m− 2
(without the root a) can be obtained by Lemma 1(ii).

From our previous study [15], we have proven the following theorem.

Theorem 2 ([15]). The n-generalized prism over any skirted graphs is Hamiltonian.

Now, we notice that a skirted graph G = T ∪ P contains a cycle of length three and
one of the edges of such cycle belongs to the path P as follows.

Lemma 2. A skirted graph G = T ∪ P contains a cycle of length three, and exactly one edge of
the cycle belongs to the path P.

Proof. To prove this statement, we let P = u0u1u2 · · · uα. Consider the side skirt T. Since T
is a finite rooted tree, there exists an internal vertex u such that all of its children are leaves
of T. Since the degree of u is at least three (can be two if u is the root of T), u has at least
two children. Let U be the set of all children of u. Thus, U ⊆ V(P) and |U| ≥ 2. Let ui ∈ U
and i be the minimum index of vertices in U. Since u has at least two children and a skirted
graph is a plane graph, ui+1 ∈ U. Thus, {u, ui, ui+1} induces a cycle of length three in G.
Moreover, this cycle has one edge uiui+1 and belongs to the path P.

In general, a triangle in graph theory usually means a cycle of length three. However,
in this research, we define a triangle as follows.

Definition 1. (i) Let G(a, u0, uα) = T ∪ P be a skirted graph with P = u0u1u2 · · · uα. For
i, j ∈ {0, 1, 2, . . . , α} and i < j, an induced subgraph C(u, ui, uj) of G(a, u0, uα) is said to be
a triangle in G(a, u0, uα) if u is an internal vertex of T such that all children of u are leaves
of T and ui is the first vertex and uj is the last vertex in P in which ui and uj are children of
u. Moreover, since a skirted graph G(a, u0, uα) is a plane graph, vertices between ui and uj
in the path P, ui+1, ui+2, ui+3, . . . , uj−1, are all children of u;
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(ii) From the triangle C(u, ui, uj), if i + 1 = j, then C(u, ui, uj) is called a single-triangle.
Otherwise, C(u, ui, uj) is called a multi-triangle (see Figure 3).

Figure 3. C(v1, u3, u4) and C(v3, u6, u8) are a single triangle and a multi-triangle in G(a, u0, u8),
respectively, while C(a, u0, u2) is neither a single triangle nor a multi-triangle.

Observation 1. From Definition 1, a triangle C(u, ui, uj) of G(a, u0, uα) is also a skirted graph
T′ ∪ P′ containing the side skirt T′ with root u and the path P′ = uiui+1ui+2 · · · uj. Note that u
has degree at least two because i < j.

We obtain from Lemma 2 that a skirted graph G contains a cycle C of length three.
Let x, y, z be vertices of C in which x is an internal vertex. If another leaf neighbor of x
is adjacent to either y or z, then we can extend C to be a multi-triangle. Otherwise, C is
a single triangle. Therefore, a skirted graph contains a triangle.

Theorem 3. Let G(a, u0, uα) = T ∪ P be a skirted graph with P = u0u1u2 · · · uα. If G′ is
a simple graph obtained from a skirted graph G(a, u0, uα) by contracting a triangle C(u, ui, uj) of
G(a, u0, uα) where u 6= a. Then, G′ is a skirted graph.

Proof. Let G(a, u0, uα) = T∪P be a skirted graph and C(u, ui, uj) be a triangle in G(a, u0, uα)
for some 0 ≤ i ≤ α− 1 and i < j. Let G′ be a simple graph obtained from G(a, u0, uα) by
contracting C(u, ui, uj) and u∗ be the vertex of G′ represented by the triangle C(u, ui, uj),
i.e., all vertices u, ui, ui+1, ui+2, . . . , uj are contracted into one vertex u∗. Since u 6= a, G′ is
not a trivial graph.

Consider the side skirt T of G(a, u0, uα). It can be seen that we obtain T′ from T
by deleting all children of u and then turn the internal vertex u to be a leaf u∗ of T′.
The contraction does not affect the degree of other vertices in G(a, u0, uα). Thus, T′ is
a side skirt. Now, we consider the path P of G(a, u0, uα). The contraction turns the path
P = u0u1u2 . . . uα into the path P′ = u0u1 . . . ui−1u∗uj+1 . . . uα in G′. Since the contraction
does not affect the degree of other vertices outside the triangle, all leaves of T except
ui, ui+1, ui+2, . . . , uj are still the leaves of T′. Thus, all vertices of P′ are all leaves of T′.
Since G′ is a union T′ ∪ P′, G′ is a skirted graph.

Note that G′ = G′(a, u0, uα) if i, j /∈ {0, α}, G′ = G′(a, u∗, uα) if i = 0 (in this case,
j 6= α) and G′ = G′(a, u0, u∗) if j = α (in this case, i 6= 0). However, to prove Theorem 3,
we do not care about the endpoints of the path P′ in G′. Thus, we just wrote G′.

From Theorem 3, we already know that if G′ is a simple graph obtained from a skirted
graph G(a, u0, uα) by contracting a triangle C(u, ui, uj) of G(a, u0, uα) where u 6= a, then, G′

is a skirted graph. Next, we investigate the case that u = a. By the definition of a triangle,
we obtain that i = 0 and j = α. Thus, in this case, the skirted graph G(a, u0, uα) is a triangle.
In the next section, we prove the pancyclicity results for the n-generalized prism over
a triangle.
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3. Pancyclicity of the n-Generalized Prism over a Triangle

To show that the n-generalized prism over a triangle is pancyclic, we need the follow-
ing lemmas.

Lemma 3. Let C = C(u, u0, uα) be a triangle of order α + 2. Then, C contains:

(i) a (u, uα)-path of each length l for 1 ≤ l ≤ α + 1;
(ii) a (u0, uα)-path of lengths α and α + 1.

Proof. Let C = C(u, u0, uα) = T ∪ P be a triangle of order α + 2 and P = u0u1u2 · · · uα. We
prove this statement by the mathematical induction on α. If α = 1, then C is a cycle of
length three. It contains (i) a (u, u1)-path of lengths one and two and (ii) a (u0, u1)-path of
lengths one and two. Now, we suppose that the statement holds for all triangles of order
less than α + 2 where α > 1.

Let C′ = (T − uα) ∪ (P− uα). Then, C′ = C(u, u0, uα−1) is a triangle subgraph of C.
By the induction hypothesis, we obtain that C(u, u0, uα−1) contains (i) a (u, uα−1)-path of
each length l for 1 ≤ l ≤ α and (ii) a (u0, uα−1)-path of lengths α− 1 and α.

Since uα is adjacent to u in C, C contains a (u, uα)-path of length one. Since uα is
adjacent to uα−1 in C, we can extend a (u, uα−1)-path of length l to a (u, uα)-path of length
l + 1. Thus, C contains (i) a (u, uα)-path of each length l for 1 ≤ l ≤ α + 1 and (ii) a (u0, uα)-
path of lengths α and α + 1.

Remark 2. We obtain that

(i) Lemma 3(i) gives a (u, u0)-path of each length l for 1 ≤ l ≤ α + 1 by the symmetry of
C(u, u0, uα);

(ii) P = u0u1u2 . . . uα is a (u0, uα)-path of length α (without the vertex u) in C(u, u0, uα).

The following lemma is an immediate observation about the pancyclicity of the prism
over a triangle.

Lemma 4. The prism over a triangle is pancyclic.

Proof. Let α ≥ 1 and C = C(u, u0, uα) be a triangle of length α + 2. For 1 ≤ s ≤ 2, the s-th
copy of C contains a (u(s), u(s)

α )-path of each length l for 1 ≤ l ≤ α + 1 by Lemma 3(i).
We link each (u(1), u(1)

α )-path and (u(2), u(2)
α )-path (maybe of different sizes) together with

edges u(1)u(2) and u(1)
α u(2)

α . We obtain a cycle of each length l for 4 ≤ l ≤ 2α + 4. Since C
contains a cycle of length 3, C�P2 is pancyclic.

By using Lemma 4 as a basic step, we can use the mathematical induction to establish
the following result.

Theorem 4. The n-generalized prism over a triangle is pancyclic.

Proof. Let α ≥ 1 and C = C(u, u0, uα) be a triangle of order α + 2 and Pn be a path of order
n ≥ 2. We prove that C�Pn is pancyclic by the mathematical induction on n. The basic step
is already taken by Lemma 4. For n ≥ 3, suppose that C�Pn−1 is pancyclic. Since C�Pn−1
is a subgraph of C�Pn, C�Pn contains a cycle of each length l for 3 ≤ l ≤ (α + 2)(n− 1).
We shall find a cycle of each length l for (α + 2)(n− 1) + 1 ≤ l ≤ (α + 2)n.

To show that C�Pn contains a cycle of such lengths, we give the following paths and
link them together with edges joining each copy of C.

• The first copy and the last copy of C contain paths P(u(1), u(1)
α ) and P(u(n), u(n)

α ),
respectively, of each length l for 1 ≤ l ≤ α + 1 by Lemma 3(i). Also, for the last copy
of C, a path P(u(n), u(n)

0 ) of each length l for 1 ≤ l ≤ α + 1 exists by the symmetry of
C in Remark 2(i);
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• The remaining n− 2 copies of G contain the path P(u(s)
0 , u(s)

α ) of length α (without
the root u(s)) for 2 ≤ s ≤ n− 1, which exists by Remark 2(ii);

• The path P(u(n), u(1)) = u(n)u(n−1)u(n−2) · · · u(1) of length n − 1 is a path in C�Pn
from the last copy to the first copy of C.

Now, we link each path (maybe of different sizes) by edge u(s)
α u(s+1)

α when s is odd and
by edge u(s)

0 u(s+1)
0 when s is even. We obtain a cycle of each length l for (α + 2)n− 2α ≤

l ≤ (α + 2)n. Since (α + 2)n− 2α ≤ (α + 2)(n− 1) + 1 for all n ≥ 3, C�Pn contains a cycle
of each length l for (α + 2)(n− 1) + 1 ≤ l ≤ (α + 2)n. Therefore, C�Pn is pancyclic.

4. Pancyclicity of the n-Generalized Prism over a Skirted Graph

To show that the n-generalized prism over a skirted graph is pancyclic, we first
establish the preliminary results of even cycles in the n-generalized prism over a skirted
graph. Note that since a skirted graph is traceable, we investigate the n-generalized prism
over a path instead of the n-generalized prism over a skirted graph as follows.

4.1. Even Cycles in the n-Generalized Prism over a Path

Let n ≥ 2 be an even integer and m ≥ 2, we need the following lemma to prove that
Pm�Pn contains a cycle of each even length l where l is an even integer ranging from 4 to mn.

Lemma 5. Suppose that m ≥ 2. Then, the prism over Pm contains a cycle of each length l where l
is an even integer ranging from 4 to 2m. Moreover, if Pm = v1v2v3 · · · vm, then the edges v(1)1 v(1)2

and v(2)1 v(2)2 of the first copy and the second copy of Pm�P2, respectively, are contained in a cycle of
each even length l for 4 ≤ l ≤ 2m.

Proof. Let Pm = v1v2v3 · · · vm. We define a sequence of m− 1 cycles in Pm�P2 as follows.

v(1)2 v(1)1 v(2)1 v(2)2 v(1)2 ,

v(1)3 v(1)2 v(1)1 v(2)1 v(2)2 v(2)3 v(1)3 ,

v(1)4 v(1)3 v(1)2 v(1)1 v(2)1 v(2)2 v(2)3 v(2)4 v(1)4 ,

· · · ,

v(1)m v(1)m−1v(1)m−2v(1)m−3 · · · v
(1)
2 v(1)1 v(2)1 v(2)2 · · · v

(2)
m−2v(2)m−1v(2)m v(1)m .

The length of each cycle in the sequence increases as an arithmetic sequence with
the common difference two. Then, the last cycle

v(1)m v(1)m−1v(1)m−2v(1)m−3 · · · v
(1)
2 v(1)1 v(2)1 v(2)2 · · · v

(2)
m−2v(2)m−1v(2)m v(1)m

of this sequence has length 2m. Since the first cycle v(1)2 v(1)1 v(2)1 v(2)2 v(1)2 is a cycle of length

4, the lengths of the cycles are even integers ranging from 4 to 2m. Moreover, v(1)1 v(1)2 and

v(2)1 v(2)2 are edges contained in all even cycles.

Observation 2. For n ≥ 2 is an even integer and m ≥ 2, if Pm = v1v2v3 · · · vm, then the edges
v(1)1 v(1)2 and v(n)1 v(n)2 of the first copy and the last copy of Pm�Pn, respectively, are contained
in a cycle of length mn (see Figure 4).
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Figure 4. The dashed line represents a spanning cycle of length mn containing edges v(1)1 v(1)2 and

v(n)1 v(n)2 .

By using Lemma 5 as a basic step, we can use mathematical induction to establish
the following result.

Lemma 6. Suppose that n ≥ 2 is an even integer, and m ≥ 2. Then, the n-generalized prism over
Pm contains a cycle of each length l, where l is an even integer ranging from four to mn. Moreover,
if Pm = v1v2v3 · · · vm, then the edge v(1)1 v(1)2 of the first copy of Pm�Pn is contained in a cycle of
each even length l for 4 ≤ l ≤ mn.

Proof. Let Pm = v1v2v3 · · · vm, where m ≥ 2, and n = 2k for some positive integer k.
We prove by the mathematical induction on k. The basic step is already done by Lemma 5.
For k ≥ 2, suppose that Pm�P2(k−1) contains a cycle of each even length l, where l is
an even integer ranging from 4 to 2m(k− 1). We shall find an even cycle of each length l
for 2m(k− 1) + 2 ≤ l ≤ 2mk.

Here, let us regard Pm�P2(k−1) as a subgraph of Pm�P2k induced by the set of all
vertices of the first 2(k− 1) copies of Pm. By Observation 2, there is a cycle C∗ of length
2m(k− 1) in Pm�P2(k−1) containing the edges v(1)1 v(1)2 and v(2k−2)

1 v(2k−2)
2 .

Now, we consider the last two copies of Pm. The vertices of these two copies induce
a subgraph Pm�P2 of Pm�P2k. By Lemma 5, an edge v(2k−1)

1 v(2k−1)
2 is contained in a cycle

of each even length l for 4 ≤ l ≤ 2m in Pm�P2k. Since v(2k−2)
1 v(2k−1)

1 and v(2k−2)
2 v(2k−1)

2 are

edges of Pm�P2k, we delete edges v(2k−2)
1 v(2k−2)

2 and v(2k−1)
1 v(2k−1)

2 and then join v(2k−1)
1 to

v(2k−2)
1 and v(2k−1)

2 to v(2k−2)
2 , respectively. Then, C∗ can be extended to a cycle of each even

length l for 2m(k− 1) + 2 ≤ l ≤ 2mk.
Moreover, since the cycle C∗ contains edge v(1)1 v(1)2 and the extension of C∗ does not

affect the edge v(1)1 v(1)2 , it is contained in a cycle of each even length l for 4 ≤ l ≤ mn.

By Lemma 6, Pm�Pn contains an even cycle of each length l for 4 ≤ l ≤ mn when n
is even. Next, to investigate the case that n is odd, we first examine the case that n = 3
as follows.
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Lemma 7. Suppose that m ≥ 2. Then, the three-generalized prism over Pm contains a cycle of each
length l, where l is an even integer ranging from 4 to 3m. Moreover, if Pm = v1v2v3 · · · vm, then
the edge v(1)1 v(1)2 of the first copy of Pm�P3 is contained in:

(i) a cycle of each even length l for 4 ≤ l ≤ 3m if m is even;
(ii) a cycle of each even length l for 4 ≤ l ≤ 3m− 1 if m is odd.

Proof. Let m ≥ 2 and Pm = v1v2v3 · · · vm. Here, let us regard Pm�P2 as a subgraph
of Pm�P3 induced by vertices of the first two copies of Pm. By Lemma 5 and Pm�P2 is
a subgraph of Pm�P3, Pm�P3 contains a cycle of each length l, where l is an even integer
ranging from 4 to 2m and the edge v(1)1 v(1)2 of the first copy of Pm�Pn is contained in a cycle
of each length l, where l is an even integer ranging from 4 to 2m. We shall find even cycles
of each length l for 2m + 2 ≤ l ≤ 3m. By Lemma 5, Pm�P2 contains a cycle

C∗ = v(1)m v(1)m−1v(1)m−2v(1)m−3 · · · v
(1)
2 v(1)1 v(2)1 v(2)2 · · · v

(2)
m−2v(2)m−1v(2)m v(1)m

of length 2m in which it contains v(1)1 v(1)2 .
Now, we consider the second and the third copies of Pm. For an odd integer j such

that 1 ≤ j ≤ m− 1, there is a path Pj = v(2)j v(3)j v(3)j+1v(2)j+1 of length 3 in Pm�P3.

Since v(3)j and v(3)j+1 have not been contained in C∗ for all odd integers j, we replace

each edge v(2)j v(2)j+1 with each path Pj. Then, C∗ can be extended to a cycle of each even
length l for 2m + 2 ≤ l ≤ 3m. Since this extension does not change anything in the first
copy of Pm, the extended cycle still contains the edge v(1)1 v(1)2 .

Moreover, we can see that (i) if m is even, then v(1)1 v(1)2 is contained in a cycle of each

even length l for 4 ≤ l ≤ 3m (3m is even); (ii) if m is odd, then v(1)1 v(1)2 is contained in a cycle
of each even length l for 4 ≤ l ≤ 3m− 1 (3m is odd).

Figure 5 shows examples of cycles of length 18 and 20 in P6�P3 and P7�P3, respectively.

Figure 5. (a) The dashed line represents a cycle of length 18 in P6�P3; (b) The dashed line represents
a cycle of length 20 in P7�P3.

Remark 3. From the proof of Lemma 7, we obtain the cycles of length 3m when m is even and
3m− 1 when m is odd. We notice that, apart from edge v(1)1 v(1)2 , these two cycles also contain edges

v(3)1 v(3)2 and v(2)2 v(2)3 when m ≥ 3.

4.2. Our Main Results

To show that the n-generalized prism over any skirted graphs is pancyclic, we start by
providing some observations and investigating the pancyclicity of the prism over a skirted
graph. The pancyclicity of the three-generalized prism over a skirted graph is as follows.
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Observation 3. Let m ≥ 3, α ≥ 2, t ≤ m and G(a, u0, uα) = T ∪ P be a skirted graph of order
m with P = u0u1u2 · · · uα and C = C(u, ui, uj) be a triangle of order t in G(a, u0, uα) such that
u 6= a. Let G′ be a skirted graph of order m− (t− 1) obtained from a skirted graph G(a, u0, uα) by
contracting the triangle C and u∗ be the vertex of G′ represented the triangle C. By Theorem 1, G′ is
Hamiltonian. Let C′ = u∗v1v2v3 · · · vm−tu∗ be a spanning cycle in G′. Then, there is a spanning
path P′ = u∗v1v2v3 · · · vm−t in G′.

Since u∗ is the vertex of G′ represented by the triangle C and v1 is adjacent to u∗, v1 is adjacent
to either u, ui or uj in G(a, u0, uα). Let G = G(a, u0, uα).

• If v1uj ∈ E(G), then P(ui, vm−t) = uiui+1ui+2 · · · ujv1v2 · · · vm−t is a path of length m− 2
(without the vertex u) in G;

• If v1ui ∈ E(G), then P(uj, vm−t) = ujuj−1uj−2 · · · uiv1v2 · · · vm−t is a path of length
m− 2 (without the vertex u) in G;

• If v1u ∈ E(G), then P(uj, vm−t) = ujuj−1uj−2 · · · ui+2ui+1uv1v2 · · · vm−t is a path of
length m− 2 (without the vertex ui) in G.

Theorem 5. The prism over any skirted graphs is pancyclic.

Proof. First, we consider a single skirted graph. Let G = G(a, u0, uα) = T ∪ P be a skirted
graph of order m with P = u0u1u2 · · · uα. Let C = C(u, ui, uj) be a triangle of order t
in G(a, u0, uα), where t ≤ m. If u = a, then G itself is a triangle. By Theorem 4, the prism
over G is pancyclic. Now, we assume that u 6= a.

Let G′ be a skirted graph of order m − (t − 1) obtained from a skirted graph G
by contracting the triangle C and u∗ be the vertex of G′ represented by the triangle C.
By Theorem 1, G′ is Hamiltonian. Let C′ = u∗v1v2v3 · · · vm−tu∗ be a spanning cycle in G′.
Then, P′ = u∗v1v2v3 · · · vm−t is a spanning path in G′.

Since u∗ is the vertex of G′ represented by the triangle C and v1 is adjacent to u∗, v1 is
adjacent to either u, ui or uj. By Observation 3, without loss of generality, let v1 be adjacent
to uj. Then, P(ui, vm−t) = uiui+1ui+2 · · · ujv1v2 · · · vm−t is a path of length m− 2 (without
the vertex u) in G. Note that j = i + 1 if C is a single-triangle.

Now, consider prism over a skirted graph which contains the first and the second
copies of the same skirted graph. By Lemma 2, P(ui, vm−t)�P2 contains a cycle C∗ of
each even length l for 4 ≤ l ≤ 2(m − 1) in which it contains the edge u(1)

i u(1)
i+1. Since

P(ui, vm−t)�P2 is a subgraph of G�P2, the prism over G contains a cycle of each even
length l for 4 ≤ l ≤ 2(m− 1).

We shall find a cycle of each odd length l for 5 ≤ l ≤ 2m− 1. Since P = u(1)
i u(1)u(1)

i+1 is
a path of length two in the first copy of G�P2 and u(1) is not contained in C∗, we replace
edge u(1)

i u(1)
i+1 with the path P. Then, C∗ can be extended to a cycle of length l + 1. Since

4 ≤ l ≤ 2(m− 1), we obtain a cycle of each odd length l for 5 ≤ l ≤ 2m− 1.
Since G contains a cycle of length three, the prism over G also contains a cycle of

length three. By Theorem 2, the prism over G is Hamiltonian, i.e., it contains a cycle of
length 2m. Therefore, the prism over G is pancyclic.

Remark 4. From the proof of Theorem 5, the edge v(2)m−t−1v(2)m−t of the second copy of G�P2 is
contained in an odd cycle of length 2m− 1 (see Figure 6).

Next, we consider the pancyclicity of the three-generalized prism over a skirted graph.

Theorem 6. The three-generalized prism over a skirted graph is pancyclic.

Proof. First, we consider a single skirted graph. Let G = G(a, u0, uα) = T ∪ P be a skirted
graph of order m with P = u0u1u2 · · · uα. Let C = C(u, ui, uj) be a triangle of order t
in G(a, u0, uα), where t ≤ m. If u = a, then G itself is a triangle. By Theorem 4, G�P3 is
pancyclic. Now, we assume that u 6= a.
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Figure 6. The dashed line represents a cycle of length 2m− 1 in G�P2 containing edge v(2)m−t−1v(2)m−t,
where G is a skirted graph in Theorem 5.

Let G′ be a skirted graph of order m− (t− 1) obtained from a skirted graph G by con-
tracting the triangle C and u∗ be the vertex of G′ represented the triangle C. By Theorem 1,
G′ is Hamiltonian. Let C′ = u∗v1v2v3 · · · vm−tu∗ be a spanning cycle in G′. Then, we let
P′ = u∗v1v2v3 · · · vm−t be a spanning path in G′.

Since u∗ is the vertex of G′ represented by the triangle C and v1 is adjacent to u∗, v1 is
adjacent to either u, ui or uj. By Observation 3, without loss of generality, let v1 be adjacent
to uj. Then, P(ui, vm−t) = uiui+1ui+2 · · · ujv1v2 · · · vm−t is a path of length m− 2 (without
the vertex u) in G. Note that j = i + 1 if C is a single triangle.

Now, consider the three-generalized prism over a skirted graph which contains three
copies of the same skirted graph. Since P(ui, vm−t)�P3 is a subgraph of G�P3, we show
that G�P3 is pancyclic by applying Lemma 7. Then, we consider two cases as follows.

Case 1. Here m− 1 is even. By Lemma 7(i), P(ui, vm−t)�P3 contains a cycle of each
even length l for 4 ≤ l ≤ 3(m− 1) in which it contains the edge u(1)

i u(1)
i+1. Note that, for all

1 ≤ s ≤ 3, vertex u(s) has not been contained in P(ui, vm−t)�P3. To find an odd cycle,
we replace u(1)

i u(1)
i+1 of such cycles with a path u(1)

i u(1)u(1)
i+1 and then obtain a cycle of each

odd length l for 5 ≤ l ≤ 3(m − 1) + 1 = 3m − 2. Let C′ be the cycle of length 3m − 2
without the vertex u(3) (see Figure 7a). By Remark 3, C′ contains the edge u(3)

i u(3)
i+1. Then,

we replace u(3)
i u(3)

i+1 of C′ with a path u(3)
i u(3)u(3)

i+1 and then obtain a cycle of length 3m− 1.
Thus, we obtain that G�P3 contains a cycle of each length l for all 4 ≤ l ≤ 3m− 1.

Case 2. Here m− 1 is odd. By Lemma 7(ii), P(ui, vm−t)�P3 contains a cycle of each
even length l for 4 ≤ l ≤ 3(m− 1)− 1 in which it contains edge u(1)

i u(1)
i+1. Note that, for all

1 ≤ s ≤ 3, vertex u(s) has not been contained in P(ui, vm−t)�P3. To find an odd cycle,
we replace u(1)

i u(1)
i+1 of such cycles with a path u(1)

i u(1)u(1)
i+1 and then obtain a cycle of each

odd length l for 5 ≤ l ≤ 3(m− 1) = 3m− 3. Let C′ be the cycle of length 3m− 3 without
vertex u(2) (see Figure 7b). By Remark 3, C′ contains edge u(3)

i u(3)
i+1. Thus, we replace

u(3)
i u(3)

i+1 of C′ with a path u(3)
i u(3)u(3)

i+1 and then obtain a cycle of length 3m− 2. Therefore,
G�P3 contains a cycle of each length l for all 4 ≤ l ≤ 3m− 2.

We shall find a cycle of length 3m− 1 in G�P3. Recall that C = C(u, ui, uj) is a triangle
of order t in G = G(a, u0, uα) such that u 6= a. To show that G�P3 contains a cycle of length
3m− 1, we give the following paths and link them together with edges joining each copy
of G.

• For the first copy of G, we consider subgraph G′. If j = α, then C(u, ui, uj) =
C(u, ui, uα). Note that ui 6= u0 since u 6= a. Then, G′ = G′(a, u0, u∗). Since G′ is
a skirted graph, by Lemma 1, G′ contains an (a, u∗)-path PG′(a, u∗) of length m− t.
Suppose that v′ is adjacent to u∗ in PG′(a, u∗). Then, v′ is adjacent to either u or ui in G.
We consider two cases as follows.

– If v′ is adjacent to u, then P(v′, uj) = v′uui+1ui+2 · · · uj is a path of length t− 1
(without the vertex ui);

– If v′ is adjacent to ui, then P(v′, uj) = v′uiui+1ui+2 · · · uj is a path of length t− 1
(without the vertex u).
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Therefore, we can extend the path PG′(a, u∗) of length m− t in G′ to be a path P(a, uα)
of length m− 2 in G by replacing the edge v′u∗ of G′ with the path P(v′, uj). Suppose
that j 6= α. Then, G′ = G′(a, u0, uα). Since G′(a, u0, uα) is a skirted graph, by Lemma 1,
G′ contains an (a, uα)-path PG′(a, uα) of length m− t. Since PG′(a, uα) is a spanning
path in G′, PG′(a, uα) contains the vertex u∗. Suppose that v′ and v′′ are adjacent to u∗

in PG′(a, uα). Then, each of v′ and v′′ is adjacent to either u, ui or uj in G. We consider
three cases as follows.

– If v′ui, ujv′′ ∈ E(G), then P(v′, v′′) = v′uiui+1ui+2 · · · ujv′′ is a path of length t
(without the vertex u);

– If v′u, ujv′′ ∈ E(G), then P(v′, v′′) = v′uui+1ui+2 · · · ujv′′ is a path of length t
(without the vertex ui);

– If v′u, uiv′′ ∈ E(G), then P(v′, v′′) = v′uuj−1uj−2 · · · ui+1uiv′′ is a path of length t
(without the vertex uj).

Therefore, we can extend the path PG′(a, uα) of length m− t in G′ to be a path P(a, uα)
of length m− 2 in G by replacing the path v′u∗v′′ in PG′(a, uα) with the path P(v′, v′′).
Thus, the first copy of G contains a path P(a(1), u(1)

α ) of length m− 2;
• By Remark 1(ii), the second copy of G contains a (u(2)

0 , u(2)
α )-path P(u(2)

0 , u(2)
α ) of length

m− 2 (without the root a(2));
• By Remark 1(i), the last copy of G contains an (a(3), u(3)

0 )-path P(a(3), u(3)
0 ) of length

m− 1;
• The path P∗ = a(3)a(2)a(1) of length 2 is a path in G�P3 from the last copy to the first

copy of G.

Figure 7. (a) The dashed line represents a cycle of length 3m− 2 in G�P3 when m− 1 is even; (b) The
dashed line represents a cycle of length 3m− 3 in G�P3 when m− 1 is odd.

Now, we link each path by edges u(1)
α u(2)

α and u(2)
0 u(1)

0 . The cycle of length 3m− 1 is

P(a(1), u(1)
α )P(u(2)

α , u(2)
0 )P(u(3)

0 , a(3))P∗.

Therefore, G�P3 contains a cycle of length 3m− 1.
From these two cases, we obtain that G�P3 contains a cycle of each length l for all

4 ≤ l ≤ 3m− 1. Since G is a skirted graph, by Lemma 2, G contains a cycle of length three.
By Theorem 2, G�P3 is Hamiltonian, i.e., it contains a cycle of length 3m. Therefore, G�P3
is pancyclic.

By the proof of Theorem 6, the pancyclicity of the three-generalized prism over
a skirted graph, we need to consider the special case. However, there is no special case
when we show that G�Pn is pancyclic for n ≥ 4. Therefore, we prove the following theorem
by considering n ≥ 4.
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Theorem 7. The n-generalized prism over any skirted graphs is pancyclic.

Proof. First, we consider a single skirted graph. Let G = G(a, u0, uα) = T ∪ P be a skirted
graph of order m with P = u0u1u2 · · · uα. Let Pn be a path of order n ≥ 2. If n = 2 or 3,
then we respectively obtain from Theorems 5 and 6 that G�Pn is pancyclic. Suppose now
that n ≥ 4.

Let C = C(u, ui, uj) be a triangle of order t in G(a, u0, uα), where t ≤ m. If u = a, then
G itself is a triangle. By Theorem 4, the n-generalized prism over G is pancyclic. Now,
we assume that u 6= a.

Let G′ be a skirted graph of order m − (t − 1) obtained from a skirted graph G
by contracting the triangle C and u∗ be the vertex of G′ represented by the triangle C.
By Theorem 1, G′ is Hamiltonian. Let C′ = u∗v1v2v3 · · · vm−tu∗ be a spanning cycle in G′.
Then, P′ = u∗v1v2v3 · · · vm−t is a spanning path in G′.

Since u∗ is the vertex of G′ represented by the triangle C and v1 is adjacent to u∗, v1 is
adjacent to either u, ui or uj. By Observation 3, without loss of generality, let v1 be adjacent
to uj. Then, P(ui, vm−t) = uiui+1ui+2 · · · ujv1v2 · · · vm−t is a path of length m− 2 (without
the vertex u) in G. Note that j = i + 1 if C is a single triangle.

Now, consider the n-generalized prism over a skirted graph which contains n copies
of the same skirted graph. Since uiu, uui+1 ∈ E(G), P′m = uiuui+1ui+2 · · · ujv1 · · · vm−t is
a path of length m − 1 in G, i.e., P′m is a spanning path in G. We can see that P′m�Pn is
a subgraph of G�Pn.

To show that G�Pn is pancyclic, we consider two cases as follows.
Case 1. Here n is even.
By Lemma 6, P′m�Pn contains a cycle of each even length l for 4 ≤ l ≤ nm. Since

P′m�Pn is a subgraph of G�Pn, G�Pn contains a cycle of each even length l for 4 ≤ l ≤ nm.
We shall find a cycle of each odd length in G�Pn by considering two disjoint-induced
subgraphs G�P2 and G�Pn−2 of G�Pn, where G�P2 is induced by the first two copies of
G and G�Pn−2 is induced by the last n− 2 copies of G.

First, we consider G�P2. By Theorem 5, G�P2 contains a cycle of each length l for
3 ≤ l ≤ 2m. Since G�P2 is a subgraph of G�Pn, we obtain that G�Pn contains a cycle of
each length l for 3 ≤ l ≤ 2m. Let C∗ be the cycle of length 2m− 1 in G�Pn containing edge
v(2)m−t−1v(2)m−t, which exists by Remark 4.

Next, we consider subgraph G�Pn−2 induced by the last n− 2 copies of G, in order
to show that G�Pn contains a cycle of each odd length l for 2m + 1 ≤ l ≤ nm− 1. Since
P′m�Pn−2 is a subgraph of G�Pn−2, we can consider cycles in P′m�Pn−2 instead of G�Pn−2.
Since n− 2 is even, by Lemma 6 and the reverse of the path P′m, the edge v(3)m−t−1v(3)m−t is
contained in a cycle of each length l, where l is an even integer ranging from 4 to m(n− 2)
in P′m�Pn−2. Since v(2)m−t−1v(3)m−t−1, v(2)m−tv

(3)
m−t, v(3)m−t−1v(3)m−t ∈ E(G�Pn), we delete the edge

v(2)m−t−1v(2)m−t of C∗ and then join v(2)m−t−1 to v(3)m−t−1 and v(2)m−t to v(3)m−t. Then, we can extend

C∗ to be a cycle of length 2m + 1. In addition, we delete the edge v(3)m−t−1v(3)m−t of each

cycle of each length l in P′m�Pn−2 and then join v(2)m−t−1 to v(3)m−t−1 and v(2)m−t to v(3)m−t. Then,
we can extend C∗ to be a cycle of each length l for 2m + 3 ≤ l ≤ nm− 1. Therefore, G�Pn
is pancyclic.

Case 2. Here n is odd. Since n− 3 ≥ 2 is even, by Case 1, G�Pn−3 contains a cycle
of each length l for 3 ≤ l ≤ m(n− 3). Thus, we consider two disjoint-induced subgraph
G�Pn−3 and G�P3 of G�Pn, where G�Pn−3 is induced by the first n− 3 copies of G and
G�P3 is induced by the last three copies of G.

We shall find a cycle of each remaining length l for m(n− 3) + 1 ≤ l ≤ mn. Recall that
G is a skirted graph of order m and P′m = uiuui+1ui+2 · · · ujv1 · · · vm−t is a spanning path
in G. Then, P′m�Pn is a subgraph of G�Pn. Let Codd be the cycle of odd length m(n− 3)− 1
in P′m�Pn−3 containing the edge v(n−3)

m−t v(n−3)
m−t−1 (see Figure 8a) and Ceven be the cycle of even

length m(n− 3) in P′m�Pn−3 containing the edge v(n−3)
m−t v(n−3)

m−t−1 (see Figure 8b).
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Figure 8. (a) The dashed line represents Codd of length m(n− 3)− 1; (b) The dashed line represents
Ceven of length m(n− 3).

Consider G�P3. Since P′m is a spanning path in G, we can apply Lemma 7 as follows.

• If m is even, then G�P3 contains a cycle of each even length l for 4 ≤ l ≤ 3m containing

edge v(n−2)
m−t v(n−2)

m−t−1 by Lemma 7(i). We delete the edge v(n−3)
m−t−1v(n−3)

m−t of Ceven and

the edge v(n−2)
m−t−1v(n−2)

m−t of each cycle of each length l in G�P3 and then join v(n−3)
m−t−1 to

v(n−2)
m−t−1 and v(n−3)

m−t to v(n−2)
m−t . Thus, we can extend Codd of length m(n− 3)− 1 to be

a cycle of each odd length l for m(n− 3) + 1 ≤ l ≤ mn− 1 and extend Ceven of length
m(n− 3) to be a cycle of each even length l for m(n− 3) + 2 ≤ l ≤ mn in a similar
way. Thus, G�Pn contains a cycle of each length l for m(n− 3) + 1 ≤ l ≤ mn.

• If m is odd, then G�P3 contains a cycle of each even length l for 4 ≤ l ≤ 3m − 1

containing edge v(n−2)
m−t v(n−2)

m−t−1 by Lemma 7(ii). We delete the edge v(n−3)
m−t−1v(n−3)

m−t of

Ceven and the edge v(n−2)
m−t−1v(n−2)

m−t of each cycle of each length l in G�P3 and then join

v(n−3)
m−t−1 to v(n−2)

m−t−1 and v(n−3)
m−t to v(n−2)

m−t . Thus, we can extend Codd of length m(n− 3)− 1
to be a cycle of each odd length l for m(n− 3) + 1 ≤ l ≤ mn− 2 and extend Ceven
of length m(n− 3) to be a cycle of each even length l for m(n− 3) + 2 ≤ l ≤ mn− 1
in a similar way. Since G�Pn is Hamiltonian, it contains a cycle of length mn. Thus,
G�Pn contains a cycle of each length l for m(n− 3) + 1 ≤ l ≤ mn.

Therefore, G�Pn is pancyclic.

5. Conclusions and Discussion

In this paper, we prove that the n-generalized prism over skirted graphs is pancyclic.
The result holds for any skirted graph, even though we have not known the exact con-
figuration of this family of graphs. Moreover, since the Cartesian product of a graph
over a path Pn is a subgraph of the Cartesian product of the graph over a cycle Cn and
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the Cartesian product of the graph over a complete graph Kn, the results can be concluded
in the similar way when Pn is replaced by Cn or Kn for n ≥ 3. However, we have not
investigated panconnectivity of the n-generalized prism over any skirted graph, which
is a stronger concept than pancyclicity. For a definition of panconnectivity, we can see,
for examples, [1,19,20]. Therefore, it is recommended that further studies can investigate
panconnectivity of the n-generalized prism over any skirted graph.
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