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Abstract: Symmetry analysis has been applied to solve many differential equations, although deter-
mining the symmetries can be computationally intensive compared to other solution methods. In this
work, we study some operators which keep the set of solutions invariant. We discuss the existence of
solutions for two initial value problems of a delay quadratic functional integro-differential equation
of arbitrary (fractional) orders and its corresponding integer orders equation. The existence of the
maximal and the minimal solutions is proved. The sufficient condition for the uniqueness of the
solutions is given. The continuous dependence of the unique solution on some data is studied. The
continuation of the arbitrary (fractional) orders problem to the integer order problem is investigated.

Keywords: quadratic functional integral equation; existence of solutions; maximal and minimal
solutions; continuous dependence; continuation properties

1. Introduction

Differential and integral equations of fractional order have been investigated in many
literature studies and monographs [1-7].

Quadratic integral equations have achieved high attention because of their useful
application and problems concerning the real world. These types of equations have been
studied by many authors and in different classes, see [8-20]. Each of these monographs
contains existence results, but their main objectives were to present special methods or tech-
niques and results concerning various existences for certain quadratic integral equations.

In [21], an infinite system of singular integral equations was discussed. In [22], some
integro-differential equations of fractional orders involving Carathéodory nonlinearities
were studied. In [18], the existence of at least a positive nondecreasing solution for an initial
value problem of a quadratic integro-differential equation by applying the technique of
measure of noncompactness was established.

Recently, the existence results for fractional order quadratic functional integro-differential
equation were studied and some attractivity results were obtained [23].

Consider the two initial value problems of the delay quadratic functional integro-
differential equation of arbitrary (fractional) orders

%&C = f(t, D"‘x(t).'/o.(p(t) g(s,x(s))ds), ae. t € (0,1] 1)

and its corresponding integer orders equation

d d o(t)
ditc - f<t'¢;tc'/o g(s,x(s))ds), t e (0,1] @
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with the initial data
x(0) = xo, (3)

where D* is the Caputo fractional derivative of order a € (0,1).

Here we are concerned with the initial value problem of the delay quadratic functional
integro-differential equation of arbitrary (fractional) orders (1) and (3) and its corresponding
integer orders Equations (2) and (3). The existence of solutions is proved. The maximal and
the minimal solutions are studied. Next, the sufficient condition for the uniqueness of the
solution is given. The continuous dependence of the unique solution on the initial data xo,
the function g and on the delay function ¢ are studied.

Finally, the necessary condition for the continuation as « — 1 of the problem (1)
with (3) to the initial value problem of the integer-orders Equations (2) and (3) is studied.

2. Existence of Solution
Let I = [0,1] and suppose the following conditions:
(i) ¢:I— 1 ¢(t) <tiscontinuous and increasing.
(i) f:IxR — Rismeasurableint € [ for any x € R and continuous in x € R for all

t € I. Moreover, there exist a bounded measurable function v : I — R and a positive
constant bq such that

£(0)| < (0] +bifx] < £+l £ = suplo(®).

(iii) g : I x R — Ris measurable in t € I for any x € R and continuous in x € R for all
t € I. Moreover, there exists a bounded measurable function m : I — R and a positive
constant b, such that

|g(t, )| < [m(t)] +ba|x| < a+balx|, a=suplm(t)].

tel
(iv) There exists a positive root r, of the algebraic equation
bibyrg b1a + biby| x| f*
T(2—a)l(1+a) T(2—a) "t T gy =0 @)

Lemma 1. Problem (1) with (3) is equivalent to the integral equation
x(t) = xo + I"y(t) ®)

where y is the solution of the integral equation

E(f—g) % s) _ a1
y(t) :/0 (l,t(li)a)f(s,y(s)./oq)( g(@,xo+/09 %y(ﬂdt)d@)d& (6)

Proof. Let x be a solution of (1) with (3). Operating by I 1=a on both sides of the Equation (1);
we can obtain

dx t

(t)
D*x(t) = 11_"‘E = I f(t, D"‘x(t)./o(l) Q(s,x(s))ds).

Let D*x(t) = y(t); we obtain

x(t) = xo + I*y(t)
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and

E(f—g) (s) _ a1
y(t) :/o gi}lné)f(s,y(s)./o(/J g(G,x0+/09 wr(?)y(r)dr)d(?)ds.

Let y € C(I) be a solution of (6); then
o(t) s (s —@)r1
#(0) =30+ 1900 = s+ 114y, [ gts e [T E T oo

x4+ /O " f(s, D*x(s). /0 ") (0, x(6))d6)ds
and

A5 — (1, D). /OM g(s,x(s))ds), ae. te(0,1]

with x(0) =xp O
Now, we have the following existences theorem.

Theorem 1. Let the assumptions (i)—(iv) be satisfied; then problem (1) with (3) has at least one
solution x € C(I).

Proof. Let Q,, be the closed ball

1 % blbzi’i
F(Z_ﬂé) (f +b]ﬂr“+b1b2|xo|ra+ r(l—f—ﬂ()

Qn={yeC):llyll <ra}, ra = )

and the operator F

_ o)\« . (s) o a—1
Fy(t) = /Ot (rtﬂi)a)f(s,y(s)./otp g(G,x0+/09 wr(z))y(lr)d*r)de)ds.

Now, let y € Qy,; then

Fy()| = (t(_s)“:f< (s)./0¢ 9x0+/ F(“)) )dr)d())ds
< /t (t( S)a; (f +Byly(s). /04) g(9,xo+/0 Wy(f)df)dm)ds
< [ (vl ool + 2 Yas
< r(zl "+ buare + bibalolre + rlzllbf‘;)) =14

and
Bl S gy U+ bana 4 bl + 2 i,

This proves that F : Q,, — Qy, and the class of functions {Fy} is uniformly bounded
on Qy,.
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Now, lety € Q,, and t1,t; € I, such thatt, > t; and | t; — £ |< §; then

2 —g)% (s) _ \a—1
[ (s [ 0,00+ [ Oy
il —s)™" ¢(s) 0 (0—1)*1
_ /0 rl(l_“)f(s,y(S).-/O g(e,XO-l-/O wy(’r)d’f)d9>d5

/0 (;2(5) )af( y(s). /(:P (6, X0+/ F(tx y )dT)dQ)dS

tz tz_s 9 T)IX 1
+ tl e < 9x0+/ BTl )dT)dG)ds

t _ a—1
— Hhoe)t (s,y g(6, xo +/ (6 FT) y(t )dr)d())ds
_

|[Fy(t2) — Fy(t1)]

0 I(1—«) (a)

bo(tp —s)™® 1 —s) x blbzrﬁ
/0 1_.(1 —0() 1_.(1 ) (f + byary +b1b2|3€0|1’,x

I'(l1+ua)

)ds

blbzra
I(1+a)

+ /tZM(f*—Fb ary + bibo|xo|7a + )ds
f 1—-(1_0() 147w 102407

blbzrg
I'(l1+a)

f (tZ — S)’X _ (tl _ S)“ i
/0 |F(1 —a)(ty —s)*(t2 —s)" (" + brara + byba|xo|re +

+ /tZI (f2 = s)" |(f* + brary + biba|xo|ra +
tl r(l—tx)(tz—s)“ 147w 1921207

This means that the class of functions {Fy} is equicontinuous on Q;, and by the
Arzela—Ascoli Theorem [13], the operator F is relatively compact.
Now, let {y,»} C Qy,, and y, — y; then

—s) ¢« (s) — 7)1
Fult) = [ f e (s [ s [ LD manian )as

)ds

biborg
I'(l+a)

)ds.

and
o\« ¢(s) _ a—1
) = s (st [ s [ desi

Applying the Lebesgue dominated convergence theorem [13], then from our assump-
tions we get

- [ (t(_s)“;f< Vo) /fsg(e,xw [ e )as = ryo,

This means that Fy,(t) — Fy(t). Hence the operator F is continuous. Now, by the
Schauder fixed point theorem [13] there exists at least one fixed point y € Q,, C C(I) of
the integral Equation (6). Consequently there exists at least one solution x € C(I) of the
problem (1) with (3). O
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2.1. Maximal and Minimal Solutions
Lemma 2. Let the assumptions of Theorem 1 be satisfied. Assume that x, y are two continuous

functions on I satisfying

x(t) < /O(t(Ii)“;f< (s)./0¢ Gxo—i—/ _Z )dr)lw)
v = [ (v, [ a0 [ ;&)y(r)dr)de)ds

where one of them is strict. Let the functions f and g be monotonically nondecreasing; then
x(t) < y(t), t>0. (7)

Proof. Let the conclusion (7) be not true; then there exists 1 such that
x(t1) =y(t1), t1 >0and x(t) <y(t) 0<t<t.
From the monotonicity of f and g, we get

1 —g) % (s) 6 — 1)1
x(t) < /Ot %f(s,x(s)./f g(@,xo—i—/o mx(r)dr)d(?)ds
't —g) % (s) 0 (p_ +\a—1
< [ (s [ s [T e ) as
= y(t).
Hence x(t1) < y(t;). This contradicts the fact that x(t;) = y(t1); then x(t) < y(t),
tel. O

Theorem 2. Let the assumptions of Theorem 1 be satisfied. If f and g are monotonic nondecreasing
functions, then the problem (1) with (3) has maximal and minimal solutions.

Proof. Firstly, we prove the existence of the maximal solution of Equation (6).
Let € > 0; then

ve(t) = e+/ot%f(s,ye(s)./o¢ 9x0+/ )dr)d())d ®)

It is easy to show that Equation (8) has a solution y. € C(I).
Now, let €1, e, > O such that0 < ey < €1 < €; then

Ye(t) = e+ / a) (s,yel(S)- /0 . g(8,x0 + / © r(?; 1yel(T)dT)d9)ds
> €2+/ t_s)“;f(sfyel(s)~/o¢ (6, x0+/ © I,(Z))a 1y€1(r)dr)d6>ds

and from Lemma 2, we obtain
Ye,(t) <ye,(t), t €L

Now, the family {ye(t)} is uniformly bounded as follows:

t(F_ o)« (s _ \a—1
el < e+ | [EISr (s [ st000+ [ LD vetoin)as

< e4ry =1y
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Also, the family {y¢(t)} is equicontinuous as follows:

2 — o (s) _ a1
et —we)l = et [ B (oo [ gm0+ [T manian)as

— e MR (st [ st [ (9;(’;))‘"_1y€(r)dr)d9>ds

o (ta—s)*—(t —s)" . b1bor?

< 01y

S o ITA - 0n —si s U huare + bibalxolra o g )ds
t2 (tz — S)“ " b1b27§¢

+ t1 F(l—&()(tz—s)“‘(f +b1ai’a+b1b2|3€0|7’a+r(1+a) )dS

Then {ye(t)} is equicontinuous and uniformly bounded on I; then {y.} is relatively
compact by the Arzela—Ascoli theorem [13]; then there exists a decreasing sequence €, such
thate, — 0, n — oo and nlgrolo Ve, (t) exists uniformly on I; let lim,c0 Ye, (f) = q(t).

Now, form the continuity of f, ¢ and the Lebesgue dominated convergence theo-
rem [13]; we have

—s) " (s) _ \a—1
/Ot (lf(li)oc)f (s,yen (S)./O(P g(6,x0 + /09 wf(?)yen (T)dr)de) ds —
F(t—s)™® s) _ -1
/0 (rt(li)“)f(sfq(S)-/f( g(9,xo+/09 wr(?)‘J(T)dT)dG)ds

q(t) = lim ye,(t)

n—o0

= /0 m,f(&q(s)_/f 9 X0+/ oc T)dT)dG)ds

which implies that g(t) is a solution of Equation (6).
Finally, let us prove that q(t) is the maximal solution of Equation (6). To do this, let
y(t) be any solution of Equation (6); then

e €+/ 1_“ <,ye(s)./0¢ 9x0+/ I"(tx (T)dr)d9>ds
- /()Mf(&]/(s)./(p 9x0+/ =

Applying Lemma 2, we get

)dr)de) ds

y(t) <uye(t), tel

From the uniqueness of the maximal solution, it is clear that y¢(t) — ¢(t) uniformly
on I as € — 0; thus g is the maximal solution of Equation (6).

By a similar way we can prove the existence of the minimal solution. Consequently
there exist maximal and minimal solutions of problem (1) with (3). O

2.2. Uniqueness of the Solution
Now, consider the following assumptions:
(ii)* f, g: I x R — R are measurable in t € I Vx € R and satisfy

lf(t,x)— f(t,y) <bilx—y|, tel, x,y€R. )

g(t,x) —g(t,y)| <bafx—y|, t€l x,y €R
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ly2(t)

—y1(t)]

From the assumption (ii)* we have

[f(& )| < |f(£0)] + b1 x|

and
lf(t,x)| < f*+bilx|, where f*=sup|f(t,0)|.
tel

Moreover, we get
gt x)| < |g(£,0)] + bz x|

and

lg(t,x)| < a+bylx|, where a=sup|f(t0)]
tel

So, we can prove the following Lemma.
Lemma 3. The assumption (ii)* implies assumptions (ii) and (iii).
Theorem 3. Let assumptions (i), (ii)* and (iv) be satisfied. If

2b1bory bia + bib|xo
Ir2—a)l(1+a) r2—a)

<1, (10)

then the solution of problems (1) and (3) is unique.

Proof. From Lemma 3 the assumptions of Theorem 1 are satisfied and the solution of
integral Equation (6) exists. Let 11, y2 be two solutions of integral Equation (6); then

./(;t g(;i);;xf<s,}/2(5)./0¢ (0,x0 + / F(zx ya(T )dT)dQ)ds
_ / (t(— s) ;f<s yl(s)-/(]¢(5)g(9’x0+/() Wy( )dr)de)ds
)

o

< o [ (o [ s+ [ e
[ s+ [ O ke )

< b “(‘S “<|2 |/ 9x0+/€(9;(z))al|y2(r)|dr)d6
=l [ s+ [ e

O [ s [ e

e [ s+ [ "r(?;1|y1<r>|d7>d9)ds

<o [ (el [ [T O D ) - v

b
v~ e+ ool + (21'_{1”)>)ds

b bory
<t (e vl + e =G+ bl + ) )
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Hence,

2b1byry bia + b1b2|x0|
_ — <0.
Iy y1”<1 (F(Z—a)r(l+oc) T T2 -0 )) <0

Then the solution of Equation (6) is unique. Consequently, the solution of problem (1)
with (3) is unique. O

2.3. Continuous Dependence
2.3.1. Continuous Dependence on the Initial Data xg

Theorem 4. Let the assumptions of Theorem 3 be satisfied; then the unique solution of problem (1)
with (3) depends continuously on the parameter x.

Proof. Let & > 0be given such that |xo — x§| < 6 and let x* be the solution of (1) with (3),
corresponding to initial value x;; then

() —x* ()] = |xo+I"y(t) —xp — I*y* (¢)]

< e Pl — vt ()] < o4 W=yl
< xo—xpl+ Mly(t) —y(B)] <6 TA+a)

But

/Ot (lf(li);;xf <5r1/(5)./0¢(5) 8(8, xo + /6 Wy(r)d’r)de) ds
a /ot (If(IS)uc;f(S'y*(s)'/O(p (0, x5 +/ (6 FZ); : (T)dr)de)ds

_ |/ " 0,55 + /9(9;(?) ()|dT)d9>d
< b /Ot(;@i)a)(nywz( [ o - aglae

(s) _ \a—1
+ /04> /Oe(err)ly(f) v (T)|dT)d0 + |y — v*||.(a + ba|xE] + ba[ly*|| ))ds

() I'(l+4+a)
by ly — vl ] \ byra
< - .
< o (b B Iy = vl bl + )
Hence,
" 2b1bory bia + b1b2|X6| b1byrad
— — <
ly =y |<1 Te—wrara t Te-0 ') STR-o
Then
blbzr,,,é
ok I(2—a)
Hy y || S 7( 2by byt +b1a+b1bz|x0|) = €1
I(2—a)l(1+a) I'(2—a)
and
* €1
_ < =e.
lx=x = ot gy =¢
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Theorem 5. Let the assumptions of Theorem 3 be satisfied; then the unique solution of problem (1)
with (3) depends continuously on the function g.

Proof. Let 6 > 0 be given such that |g(t, x(t)) —

t, x(t))] < J and let x* be the solution
of (1) with (3), corresponding to g* (¢, x(t)); then

g*(t

[x(t) —=x*()] = |xo+I"y(t) = xo — Iy (t)]
< -yl < 2l
But
B Et—s)™® P(s (60— T)”‘ 1
= /0 r(1_0‘)f<s,y(s)./o 2(6, xo+/ Ta) )dT)dG)ds
— /Ot Mf(s,y*(s)./oq) g*(@,x0+/ _ay*(r)dT)d9>ds
—g) % :x 1
< bl/ a2 (o [ exo+/ O (ol
- |/ S)g 9x0+/9( |*(T)\dr)d9ds
_ a—1
< bl/o e (| H/ 9xo+/0 vt

— QXQ‘F/

y*(7)|dr))de

¢(S)
+  Jy(s) =y (s)] (/ (0, xO+/ Iy (T)IdT)dG))d
E(t—s)® . ba|ly*||
< _ — .
< b ey e+ ly =y <a+bz|xo|+r(1+,x)>>ds
birad blHy Y H
<
S To-w) F Ta—w @1l (1—0—0c)>
bired  blly —v¥| bory biba|ly — y*lIra
< .
S To—w T Teow TR AT T ety
Hence,
* 2b1byry bya + b1by |X0‘ byryd
_ — <
ly =y ”(1 fe-wrara FTe-0 ) S Te-a
Then
b17a5
% I(2—a) o
||y—y H S _( 2b1byry + h1a+b1b2‘x0‘) =€
I(2—a)l(1+a) r(2—a)
and
* €1
— < —  =k€.
[x—x"|| < A+ €
O

2.3.2. Continuous Dependence on the Delay Function ¢

Theorem 6. Let the assumptions of Theorem 3 be satisfied; then the unique solution of problem (1)
with (3) depends continuously on the delay function ¢.
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Proof. Let § > 0 be given such that |¢(¢)
(3), corresponding to ¢*(t); then

— ¢*(t)| < 6 and let x* be the solution of (1) with

lx(t) —x*()| = |xo+ I"y(t) — xo — I"y*(t)|
< -yl < gl
But
t —5) (s) _ \a—1
-yl = | [ (e /f son+ [ 42D y(r)dr)de)ds
(t—s)™™ —7)* 1
S e [ s [T e
o a— 1
< bl/o P(li«x) (Iy(s)l-/0 3(6, xo+/ (6 T) ©)|d)do
)
- Iy*(s)I./(P 9,x0+/9( o) 7)|d7) d6>ds
< bl_/ot ﬁ( 2 )(n I / 9x0+/ ) lde)do
- / ©)|d7)d6)
(5 _ et
+ |y(s)—]/*(s)]./04J g(@,xo—i—/oe(er(z)) (7)|dt)de|ds
< o () st [ en
(s _ )t _
- /0¢ 8(9,xo+/09 (6 1“(1)) | *(T)|dr)d9+/0 g(0,x o+/ 0" 7)|d7)do
- /0"’ g(6,x 0+/ W 7)|d7)d0) + [y(s) — y* (s)].(a + ba|xo| + (21”_{!)))015
< b [ U (e [T () o
(s
o [l )|+ b o|+b2('f+< ))'>de+|y vl bl + 2L
S F(zbi 0() <b2|1-';¥1_+ya)|ra (Ll-i-b |X |+ (21||:_V|_ [|X|))|(P_¢*|7’a>
R [y~ |l
+ ||y—]/||(ﬂ+b2\x0|+r(21+a))
ly — y*[[bibara bara
= r(z-@r(ii@ (a4 balxol + r(12+ tx))l"(Z—uc)
w11, 14 + b1ba|xo] b1bary
+ lly =yl 1F(21024) . F(Z—;);(1+a) '
Hence,
. 2b1bot, bia + bibo|xo bory byrad
”V‘y”<1‘(r(z—al)r2(1+a) 1r(zi;)o)> : (Hbz'xOHF(12+vc))F(21—tx)’
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Then

bory byryd
(@ +balxo| + vy ) Ty

ly—y*ll < T o =€
o +b1bs] x|
1= (F(2focl)1g(rl+tx) + = r(zlfi) )
and
* €1
_ < 1
Hx X || — I‘(l‘I‘D{) €
O
Example 1. Consider the following initial value problem
dx £ 1 1 ¥ s 1
— = —+ -D2x(t). -+ = .t 1 11
=g gD [ Gt gxenas. te @] (1)
with initial data
x(0) =1. (12)

Then

(t) 3 ) B
f(t,D"‘x(t)./o(P <(s,x(s))ds) = ;—6 %Dfx(t)./o

gt () = £+ %x(t)and o) =tF tel B>1.

<?L + Ex(s))ds tel, B>1,

It is clear that all assumptions of Theorem 1 are verified, for t = 1 then

.1 1 1 1
f —%/ a—zl, bl_bz_i and (X—E.
From (4) we can deduce that r, satisfies the quadratic equation
(2 —a)(1+a)bybor2 + ((2 — a)bya + (2 — a)byby|xo| — D)ra + (2 —a)f* =0
and
272 - lr + 1
16* 16" 64
then ry, = 0.04 and r, = 0.74. Then the initial value problems (11) and (12) have at least
one solution.

3. Integer-Orders Problem

Consider now the initial value problems (2) and (3) under the assumptions (i), (iii)
and the following assumption:

(ii)** f : I x R — R is continuous and there exists an integrable function v : I — R and a
positive constant by such that

[f(X)] < Jo(B)] +brlx] < f* +byfx], f* =Su119|v(f)|~
te

(iv)* There exists a positive root r1 of the algebraic equation

bibyr + (bra + byba|xo| — 1)ry + f* = 0. (13)
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Lemmad4. Let the assumptions (i), (ii)** and (iii) be satisfied; then the continuation of Equation (1)
as « — 1 is Equation (2).

Proof. From Theorem 1 the solution y of integral Equation (6) exists and is continuous and
from Lemma 1 %x( t) exists and is continuous. Then from the properties of the fractional

derivative [7] we have D*x(t) — %x(t) as &« — 1. Then Equation (1)—»(2)asa — 1. [

Now, the following lemma can be proved.
Lemma 5. Problems (2) and (3) are equivalent to the integral equation

t
x(t) = xo +/0 y(s)ds (14)

where

o(t) s
)= £ (e [ om0+ [ yiero)as). as)
Now, we have the following existences theorem.

Theorem 7. Let assumptions (i), (ii)*, (ii)**, (iii) and (iv)* be satisfied; then problems (2) and
(3) have at least one solution x € Q,, € C(I).

Proof. Let Q, be the closed ball

Qn ={yeC):|lyl <n}, r1 = f*+biary + biba|xo|ry + biborg

and define the operator F by

Fy(t) —f<t,y(t)-/o¢(t)g(s,xo+/Osy(9)d9)d5)-

Now, let y € Q;,; then

(1) s
Fvol = [y [ st [ o))

#(t) s
< bl [ g+ [ y@)dos
< 4byllyll(a+ balxo| + ballyll)
< ff 4 biary + biba|xglry + bibor =1

and
IEyll < F*+bary + biby|xolry + bybor? = 7y

Now, lety € Q,, and define 6, (6) = sup {|f(t2,y(t)) — f(t1,y(t))]: ti,r €1, 1 <
veQr,

to, [to—t1] <6, [lyll <m}, 0200) = sup {|f(t,u)—f(to)|: t€L [u—o| <eul,|v] €
u,verl

[0,71]}; then from the uniform continuity of the function f : I x Q,;, — R, and our assump-
tions, we deduce that 6;(5), 62(5) — 0 as § — 0 independently of y € Qr,. Then we have
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|Fy(t2) — Fy(t)| =

IN

<

‘f(t%y(tz) / ) g(s, x0+/ 6)d0)ds)
f(tlfy(tl)-/ o 8(s, xo+/ 0)d6)ds)

‘f(tz,y(tz) / e s,xo+/ 0)d6)ds)
f(tlfl/(t2)-/ e 8(s, xo+/ 0)d6)ds)
F(t, (k). / " s, xo+ [ y(o)de)ds)
f(tlfy(tz)-/o e s,xo+/ 0)d6)ds)
b y(t)- / " xo+/ 6)d0)ds)
F(t (k). / e, xo+ [ y(o)de)ds)

$(t2)
00) +bara( [ m)lds + btz — 1) +bara(t2 — 1)) +02(0)

1

This means that the class of functions {Fy} is equicontinuous on Q,, and by the
Arzela—Ascoli theorem [13], the operator F is relatively compact. Now, let {y,} C Q;,, and

Yn — y; then

lim Fy,(t)

n—oo

= lim f(t Yn(t). /OW) g(s,x0 + /OS yn(Q)dG)ds).

n—oo

Applying the Lebesgue dominated convergence theorem [13], from our assumptions

we get

lim Fy,(t)

n—o0

- (t,}%yn(t)./()¢(t) g(s,x0 + /s lim yn(G)dG)ds>
= f(t,y(t). / " Q(s, x0+/ 6)do) ds) = Fy(t).

This means that Fy,(t) — Fy(t). Hence, the operator F is continuous.
Then by the Schauder fixed point theorem [13] there exists at least one fixed point
y € C(I) of Equation (15). Consequently, there exists at least one solution x € C(I) of

problems (2) and (3).

O

3.1. Maximal and Minimal Solutions

By the same way as Lemma 2 and Theorem 2, we can prove Lemma 6 and Theorem 8.

Lemma 6. Let the assumptions of Theorem 7 be satisfied. Assume that x, y are two continuous

functions on I satisfying

IN

f(t,x(t) / q(s, xo—i—/ 6)do) ds)
f(t,y(t)./o g(s, x0+/ 6)d6) ds>

v

where one of them is strict. Let the functions f and g be monotonically nondecreasing; then

x(t) < y(t), t>0.
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ly2(t) —y1(t)]

¢ (t) s
_ f(t,yl(t)./olpt g(s,x0+/0 y1(0)de)ds)

IN

IN

Theorem 8. Let the assumptions of Theorem 7 be satisfied. If f and g are monotonic nondecreasing
functions, then problems (2) and (3) have maximal and minimal solutions.

3.2. Uniqueness of the Solution
Theorem 9. Let assumptions (i), (ii)* and (iv)* be satisfied. If

2b1byry + bra + biba|xo| < 1, (16)
then the solution of problems (2) and (3) is unique.

Proof. Let y1,y, be two solutions of functional integral Equation (15); then

o). [ gtsn0+ [ va@a0)s)

P(t) s o(t) s
by ]/2(1‘)-/0 g(S,X0+/O y2(9)d9)d5—y1(f)-/0 g(S,onr/O y1(0)de)ds

by

o) [ (650 [ 20100~ gls.30+ [ wr(@)a0) s

#(t) s
=) [ sox+ [ n@d)
< bhibally2lllly2 — yall + b1lly2 — yall (@ + b2|xo| + baly1l])-

Hence,
lly2 — y1l|(1 = (2b1bary + byra + biby|xo])) < 0.

Then the solution of = functional integral Equation (15) is unique. Consequently, the
solution of problems (2) and (3) is unique. O

3.3. Continuous Dependence

Let @ — 1. By the same way as Theorems 4-6, we can prove that the unique solution
of problems (2) and (3) depends continuously on the parameter xg and on the functions

& 9

Remark 1. We notice that under the assumption (ii)* integral Equations (14) and (15) are the
continuation of the two integral Equations (5) and (6) as w — 1.

Remark 2. We notice that, under the assumption (ii)*, we can deduce the continuation of algebraic
Equations (4)—(13) as « — 1.

Remark 3. Under assumption (ii)*, we can deduce the continuation of assumption (16) is the
continuation of assumption (10) as o — 1.

Example 2. Consider the following initial value problem of the delay quadratic integro-differential
equation

dx £  ldx g

1
=06 Taar )y (4 Ex(s))ds. te (0,1]

with initial data

x(0) =1.
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Here,

dx o) B 1dx s 1
5 | g(s,x(s))ds)—%+§E./0 Sy Zx(s)ds tel, p>1,

4 2
t 1
gt x(t)) = + S x(s)andg(t) = th tel Bp>1.
It is clear that our assumptions of Theorem (7) are satisfied for t = 1; then f* = 91—6, a= %
and by = by, = % and r1 satisfies

bibor? + (bia + biba|xo| = 1)y + f* =0
1, 5 -0
Zrl—grl+%—0,
then r1 = 0.02. Therefore, by applying this to Theorem 7, the given initial value problem has a
unique solution.

4. Continuation Theorem

Now, for a € (0, 1] we can combine Theorems 1 and 7 in the following theorem.

Theorem 10. Let « € (0,1]. Let the assumptions (i), (ii)*, (iii)*, (iv) and (iv)* be satisfied; then
initial value problems (1) and (3) have a unique solution x € C(I).

Conclusions

Quadratic integro-differential equations have been discussed in many literature stud-
ies, for instance [18,21,22,24-26]. Many real problems have been modelled by Integro-
differential equations and have been studied in different classes. Various techniques have
been applied such as measure of noncompactness, Schauder’s fixed point theorem and
Banach contraction mapping.

In this paper, we have investigated the existences of the solutions of the initial value
problem of the delay quadratic functional integro-differential equation of fractional of
arbitrary (fractional) orders (1) with (3) and we have proved the existence of the maximal
and minimal solutions. Moreover, we have discussed the uniqueness and the continuous
dependence of the solution on xy, the function g and on the delay function ¢.

For the continuation of problem (1) with (3) to problems (2) and (3) as « — 1, we have
shown that the function f should satisfy the Lipschitz condition (9).

Finally, problem (1) with (3) can be studied for all values of & € (0, 1] when the function
f satisfies the Lipschitz condition (9). Moreover, some examples have been demonstrated
to verify the results.

We can also extend the results presented in this paper to more generalized fractional
differential equations.
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