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Abstract: In the field of data science and data mining, the problem associated with clustering features
and determining its optimum number is still under research consideration. This paper presents a
new 2D clustering algorithm based on a mathematical topological theory that uses a pseudometric
space and takes into account the local and global topological properties of the data to be clustered.
Taking into account cluster symmetry property, from a metric and mathematical-topological point of
view, the analysis was carried out only in the positive region, reducing the number of calculations in
the clustering process. The new clustering theory is inspired by the thermodynamics principle of
energy. Thus, both topologies are recursively taken into account. The proposed model is based on
the interaction of particles defined through measuring homogeneous-energy criterion. Based on the
energy concept, both general and local topologies are taken into account for clustering. The effect of
the integration of a new element into the cluster on homogeneous-energy criterion is analyzed. If the
new element does not alter the homogeneous-energy of a group, then it is added; otherwise, a new
cluster is created. The mathematical-topological theory and the results of its application on public
benchmark datasets are presented.

Keywords: clustering; mathematical topology; data clustering; pseudometric; grouping; synthetic
datasets

1. Introduction

Clustering and its classification has increased significantly due to a large amount
of digital information available on the internet, especially on social media. The task of
grouping information that contains common characteristics or meaning and its subsequent
classification is a cornerstone in areas such as data sciences, data mining, and pattern
recognition. Despite the important advancement that has been done in the algorithms of
clustering and its classifications, it is still under the attention of researchers.

Clustering algorithms are based on their clustering paradigm, and the amount and
dimension of the data to be handled. There are several review papers reported in the
literature. Saxena et al. [1] have classified them into two main groups, i.e., hierarchical
and partitional algorithms. The hierarchical algorithms are further subdivided into ag-
glomerative and divisive algorithms, while partitional algorithms are subdivided into
density-based, distance-based, and model-based algorithms.

Another review paper is presented by Dong et al. [2], where the main attention was
paid to analyzing the clustering algorithms from supervised and unsupervised perspective.
Nevertheless, the most widely accepted classification is that of [3] in which the authors have
divided the algorithm into Partitional, Hierarchical, Density-Based, Grid-Based, Spectral,
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Gravitational, Neural Network-Based, and Evolutionary-Based. We consider the similar
classification given in detail in Section 2.

In this research paper, a new 2D clustering algorithm is presented. The proposal is
based on the energy and homogeneity of topological theory. Taking into account cluster
symmetry property, from metric and mathematical-topological point of view, the analysis is
done only in positive region, reducing the number of calculations in the clustering process.
The proposal works according to the homogeneous-energy effect that is calculated when a
cluster receives a new element. If the new element does not alter the local homogeneous
energy of the cluster, then it is added to the cluster. Otherwise, a new cluster will be
generated. The algorithm will terminate when all elements are assigned to a single cluster.

Our novel approach was developed to work in two-dimensional space, and it was
tested and validated using the bi-dimensional Shape databases widely used in the data
clustering literature from the Machine Learning group of School of Computing, University
of Eastern Finland [4]. The Shape dataset was chosen because of its levels of complexity,
spherically separable point distribution (R15, D31), embedded classes (Jain, flame, and com-
pound), and complex distributions (spiral and pathbased). The previous data distributions
are difficult to be correctly clustered by a single clustering algorithm, which is achieved in
our proposed methodology.

The rest of the paper is organized as follows. In Section 2, state of the art is pre-
sented. The proposal is presented in Section 3. Topology-based theory is given in Section 4.
Section 5 presents the methodology. Experimental results and discussion are given in
Section 6. Finally, conclusions and perspectives are given in Section 7.

2. State of the Art

Clustering is an unsupervised learning method that classifies unlabeled data objects
into several groups based on the similarities among them. The main characteristic of
clustering is that prior knowledge of the data is not required. Extensive use of clustering
algorithms is made in areas of data science and data mining, where the objective is to group
the information that has common characteristics, as well as to define the optimal number
of groups. Figure 1 shows the common clustering algorithms: Partitional, Hierarchical,
Density-Based, Grid-Based, Spectral, Gravitational, Neural Network-Based, and Evolution-
ary Clustering [3]. There is another clustering technique based on semantic definition [5],
but it has a disadvantage that it works for the supervised clustering only.
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Figure 1. Taxonomy of clustering techniques.

The main works related to clustering algorithms are presented in [6–14]. Clustering
algorithms are classified into Partitional Clustering, Hierarchical Clustering, Density-based Clus-
tering, Spectral Clustering, Gravitational Clustering, Evolutionary Clustering. Their advantages
and disadvantages are summarized in Table 1. Although there is a wide range of clustering
algorithms available, none of the aforementioned clustering algorithm is self-sufficient for
all types of clustering problems. Published clustering methodologies have been conceived
for each type of database to be clustered. The reported algorithms do not take into account
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the topology of the data, neither local nor global, which confines them to work with local
densities or general distance criteria. This proposal defines a homogeneous-energy measure
that takes into account the local and global topological properties of the data to be clustered
(see Sections 3 and 4).

Table 1. Clustering algorithms with its merits and demerits.

Clustering Algorithm Works Advantages Disadvantages

Partitional [14–24]
? Suitable for large datasets.

? Easy and simple implementation.

? Not appropriate for non-hyperspherical
clusters.
? Optimization problem (non-guaranteed
minimum value).
? Sensitive to noise and cluster initialization.

Hierarchical [25–30]
? Suitable for small databases.
? Visual facility to define number of groups.
? Graphic interaction.

? Trouble finding the optimal number of
groups automatically.
? Less robust to noise.

Density-Based [6,31–36]

? Suitable for uninformed cluster shape.
? Suitable for databases following a given
density function.
? Automatically finds the number of clusters.

? Computationally heavy.
? Main disadvantage is defining a priori
density function.

Grid-Based [37–42] ? Quick handling time.
? Automatic data quantity management.

? User defined number of cells.
? Clustering dependent on divided cells.

Spectral [43–48]
? Better representation in the
frequency domain.
? Preserving time-frequency correspondence.

? Experience to analyze in the
frequency domain.
? Representation in the complex plane.
? Computationally heavy.

Gravitational [49–54]
? Suitable for small databases.
? Suitable for hyper-spherical separation.
? Suitable for small datasets.

? Optimization problem (non-guaranteed
minimum value).
? Computationally heavy.

Neural Network-Based [55–60]
? Suitable for large datasets.
? Automatically finds the number of clusters.
? Suitable for uninformed cluster shape.

? Optimization problem (non-guaranteed
minimum value).
? Computationally heavy.

Our proposal is an attempt to overcome the main limitations of typical clustering
algorithms. With the topological model based on mathematical pseudometric, unlike
partitional and gravitational algorithms, we no longer have the need to establish prior
knowledge of the data. Thus, it is not necessary to define any density-based function, and
the use of working only with the hyper-spherical separation functions is avoided. Therefore,
based on the Algebra of sets, due to not occupying excessive memory as the density-based,
spectral, and gravitational algorithms do, the calculations and results are obtained faster.
This research paper aims to compare the clustering and synthetic benchmark datasets.

3. Proposal

There are many clustering algorithms focused on grouping elements according to their
feature distribution. As presented in the above section, there are clustering algorithms. i.e.,
Partitional, Hierarchical, Density-Based, and so on, that solve a particular clustering problem.
Our proposal takes into account the topology of both local and global dataset, which makes
it more general and be able to cluster any type of data. The measure of similarity between
the elements to cluster is defined via a pseudometric, and the clustering criteria is based on
an affinity function and a homogeneous-energy state. An affinity function measures how close
one element is to another. While a homogeneous-energy function determines, for a closed
system, the equilibrium locally, as well as globally. Local and global homogeneous-energies
are reduced to a minimum value in equilibrium. Therefore, if we associate the elements
with a homogeneous-energy function, which is obtained in principle with the affinity
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function, a group of elements will be formed by common elements if they are kept below
their homogeneous-energy level.

At the beginning, r-representatives are selected (either randomly or sequentially),
considering all the elements of the database to form a subset of elements representing each
group. Subsequently, the affinity of the r-representatives to the rest of the elements in the
database is calculated. An element will be assigned to a group if its group homogeneous-
energy level is low or without changes. Otherwise, a new group and a new representative
will be generated.

The representatives will be a subset of a given group. A new element can be added to a
given group if it is an affinity between that new element and the group of representatives,
keeping its group homogeneous-energy level low or without changes.

If the homogeneous-energy in a given group is drastically altered or higher than the
level, then the new element is not related to this grouping, and as a consequence, the new
element is rejected. A new group is created in which the elements are labeled as “others”
because they do not have similar properties to each other.

With the proposal that considers homogeneous-energy, which takes into account the
local and global topologies, all the disadvantages indicated in Table 1 presented in Section 2
are overcome.

4. Theoretical Fundamentals of a Topological-Pseudometric-Based Clustering

In the context of mathematical topology, six definitions, a proposition, a theorem, and
an example are provided. Definition 1 refers to pseodometry. Definition 2 deals with set
theory, i.e., empty sets and subsets. Definition 3 deals with the definition of pseudometrics
as applied to both representative and database elements. Definition 4 refers to the energy
function. Definition 5 deals with pseudometrics around a topological neighborhood. Finally,
definition 6 measures the pseudometrics to the representatives and to the subsets of groups.
The example shows the energy variability having the same representative element, but
with different topologically distributed neighbors.

Definition 1. Let X be a non-empty set. The Cartesian product X×Y of sets X and Y is the set of
all ordered pairs (x, y) with x ∈ X and y ∈ Y.

A pseudometric space (X, d) is a set X together with a non-negative real-valued function
d : X× X → [0, ∞) (called a pseudometric function) such that, for every x, y, z ∈ X.

d(x, y) = d(y, x)

d(x, y) ≤ d(x, z) + d(z, y)

d(x, x) = 0.

(1)

Unlike a metric space, points in a pseudometric space need not to be distinguishable; that is,
one may have d(x, y) = 0 for distinct values x 6= y.

The pseudometric topology is induced by the open balls, with x ∈ X and r ≥ 0,

Br(x) = {x ∈ X : d(x, y) < r}, (2)

which forms basis for the topology.
A topological space is said to be a pseudo metrizable topological space if the space can be

given a pseudometric such that the pseudometric topology coincides with the given topology on the
space [61].

Definition 2. An exact cover C(X) of a set X is a family C(X) = {Ci|i ∈ I} of nonempty subsets
of X such that the following conditions are satisfied:

• For each i ∈ I, Ci ⊂ X.
• For i, j ∈ I and i 6= j implies Ci ∩ Cj = ∅.
•

⋃
i∈I Ci = X.
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Definition 3. Let (X, d) be a pseudometric space and A be a subset of X. If an element x∗ ∈ A
satisfies the condition:

∑
y∈A

d(x∗, y) ≤ ∑
y∈A

d(z, y), (3)

for every z ∈ A then x∗ is called representative of A. The set of representatives of A is denoted by
R(A).

The distance between point x ∈ X and a set A can be defined as:

d(A, x) = min{d(a, x) : x ∈ X, a ∈ R(A)}. (4)

Lemma 1. Let (X, d) be a pseudometric space. For each finite set A ∈ 2X , the set of representatives
R(A) is a non-empty set.

Proof. For the set A = {ai : i = 1, . . . , n}, considers,

Di =
1

|A| − 1 ∑
y∈A

d(ai, y), (5)

take D∗ = min{D(ai) : i = 1, . . . , n}. There is an i∗ such that D∗ = Di. For definition of ai∗

it follows,
∑

y∈A
d(ai∗ , y) ≤ ∑

y∈A
d(x, y). (6)

For each x ∈ A. This proves that ai∗ is a representative of A.

Definition 4. The energy function E : 2X → [0, ∞) can be defined as follows:

E(A) =
1

|A| − 1 ∑
x∈A

d(x∗, x), (7)

where x∗ ∈ E(A).
It should be noted that the energy E(A) of a set A is independent of the choice of the represen-

tatives of A. By definition, if x1 and x2 are representative of A, then, the following condition must
be satisfied:

1
|A| − 1 ∑

y∈A
d(x1, y) =

1
|A| − 1 ∑

y∈A
d(x2, y). (8)

A point p preserves the energy of A if E(A ∪ {p}) ≤ E(A).

Example 1. Energy variations can be represented by subsets elements, having the same representative.
Let the sets be X, Y, and Z in R2 with the Euclidean metric (see Figure 2). Elements are marked

with dots and its representative with a star. Elements are distributed in two concentric circles with
radii 1, and 2. Consider the subsets Y, and Z as removing a circle from X (see Figure 2 (Y) and
(Z)). In addition, it can be noted that the energy of set X, Y, and Z are 1.5, 2, and 1, respectively. It
can be remarked that energy changes under subsets. Thus, for this example Y ⊆ X does not imply
E(Y) ≤ E(X).
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X
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2

Y Z
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Figure 2. Subsets example of energy: X dots points distributed in two concentric circles with radii
1, and 2, and star is its representative. Y Subset subtracting internal circle, and Z Subset subtracting
external circle.

Definition 5. Let (X, d) be a pseudometric space and δ ≥ 0. An exact cover C(X) = {Ci : i ∈ I}
of X is called a δ-exact cover if E(Ci) ≤ δ for each i ∈ I.

Definition 6. Let (X, d) be a pseudometric space, A be a subset of X, R(A) be the set of rep-
resentatives of A, and λ = E(A). The set (see Equation (9)) given below is called a star cover
of A.

st(A, λ) =
⋃

x∗∈R(A)

Bλ(x∗). (9)

Proposition 1. Let (X, d) be a pseudometric space, A ∈ 2X, and R(A), E(A) be the set of
representatives, and energy of A, respectively. The star cover st(A, λ) with λ = E(A) satisfies
E(st(A, λ)) ≤ E(A).

Proof. Consider x∗ ∈ E(A) and p ∈ BE(A)(x∗) \A, then d(x∗, p) ≤ E(A). Let A1 = A ∪ {p}.

E(A1) =
1

|A1| − 1 ∑
y∈A1

d(x∗, y)

=
1
|A| ∑

y∈A
d(x∗, y) +

1
|A| ∑

p∈A
d(x∗, p)

≤ 1
|A| ∑

y∈A
d(x∗, y) +

1
|A|E(A)

=
|A| − 1

|A|(|A| − 1) ∑
y∈A

d(x∗, y) +
1
|A|E(A)

≤ |A| − 1
|A| E(A) +

1
|A|E(A) = E(A).

(10)

It can construct the succession {Aj : j = 1, . . . , n} which satisfied E(Am) ≤ E(An) for
n ≤ m and that Aj → st(A, λ). Therefore E(st(A, λ)) ≤ E(A).

Theorem 1. Let (X, d) be a pseudometric space, and δ ≥ 0. There exists an exact cover
C(X) = D ∪ {Ci : i ∈ I} of X where {Ci : i ∈ I} is δ exact cover of X \ D, and the element
D does not preserve the energy of Cj for each j ∈ I.

Proof. It will construct a family of sets {Fi}k
i=1 = {Dk ∪{C1, C2, . . . , Ck}}k

i=1 which satisfies
the following properties for each i, j = 1, . . . , n.

(i) Ci ∩ Cj = 0 ∀i 6= j

(ii) Dk ∩ Cj = 0 ∀j = 1, . . . , k

(iii) E(Ci) ≤ δ.

(11)

Stand x1, x2 ∈ X. On the condition d(x1, x2) < δ then C1 = {x1, x2}. If not, define
D1 = {x1, x2}. On the other hand, taking n and m to be two integers, and without loss
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of generality, next condition d(xm, xn) < δ is fulfilled for m ≤ n. Let C1 = {xm, xn} and
D1 = {x1, x2, . . . , xm−1, xm+1,...,xn−1}, Subsequently, take C1 = st(C1, δ) and considering
F1 = D1 ∩ {C1}. Taking into account the proposition 1 then inequalities stand:

E(C1) = E(st(C1, δ)) ≤ E(C1) < δ, (12)

consequently, the condition C1 = st(C1, δ) is satisfied. It has been shown that properties (i),
and (ii) are completely satisfied.

5. Methodology

Proposed clustering methodology is shown in Figure 3. The main steps of the method-
ology are described below.

Synthetic datasets 

yes
no

no yes

Distance evaluation:
element to representatives

Choose 
the 

suitable 
cluster

Cluster homogeneity
evaluation 

Altered homogeneity?

Clustered datasets

Are all elements 
assigned?

New cluster
generation

New 
representative

Figure 3. General scheme of proposed methodology.

1. Dataset are read: First, datasets are read as ascii files, where the first column represents
the information on the x-axis, while the second column represents the information on
the y-axis.

2. The manhattan distance is calculated on the totality of the data: A measure amount of
all elements is defined by its manhattan distance, in this case, there is a two-dimension
manhattan distance.
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3. Local and general pseudometry is evaluated: Based on pseudometry defined in
Definitions 1–3, local and general topology are taken into account in order to measure
the cluster energy, defined in Definition 4.

4. The appropriate cluster is chosen: If the energy of the cluster is not affected by the
new element, then it is integrated to the cluster, otherwise, a new one is generated.

5. The homogeneous-energy of the clusters is evaluated: At this stage, each cluster
energy is calculated in order to update the cluster energy.

If all the elements are assigned to a cluster, then the algorithm ends.

5.1. Datasets

In order to test the proposed algorithm and its robustness in the automatic generation
of clusters, synthetic datasets of two-dimensional points were used. Datasets were taken
from Machine Learning group of School of Computing, University of Eastern Finland [4].
The dataset is shown in Figure 4 and its characteristics are given in Table 2. There were
8 datasets tested throughout the topological algorithm, that are: Aggregation, Compound,
Pathbase, Spiral, D31, R15, Jain, and Flame. The Shape dataset was chosen because of its levels
of complexity, spherically separable point distribution (R15, D31), embedded classes (Jain,
flame, and compound), and complex distributions (spiral and pathbased). The previous
data distributions are difficult to be correctly clustered by a single clustering algorithm. In
our topological-pseudometric-based clustering proposal, it is possible.

Table 2. Synthetic datasets for clustering task.

Dataset Classes Samples

Aggregation K = 7 N = 788
Compound K = 6 N = 399

Pathbase K = 3 N = 300
Spiral K = 3 N = 312
D31 K = 31 N = 3100
R15 K = 15 N = 600
Jain K = 2 N = 373

Flame K = 2 N = 240

5.2. Metric and Distance

Consider the set Γ of points (P). Points correspond to a synthetic dataset (see Figure 4).
According to Section 4, a pseudometric ρ is defined for two given points as follows:

ρ : Γ2 → R,

ρ(P1, P2) = d(P1, P2).
(13)

A pseudometric has been built in the space of the points. Thus, Theorem 1 will always
allow to create clusters. The Manhattan distance is used in all the tests.
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(a) Jain dataset. (b) R15 dataset. (c) D31 dataset.
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(d) Aggregation dataset. (e) Flame dataset. (f) Compound dataset.
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(g) Pathbased dataset. (h) Spiral dataset.

Figure 4. Original 2-Dimensional Shape datasets.

5.3. Add the Object into the Suitable Cluster

Starting from the representatives in each cluster, the new homogeneous-energy measure
is calculated for each new element to be added to the cluster. The homogeneities are
calculated using theorem 1 and proposition 1 (see Section 4) for each representatives. Thus, the
new element is assigned to the cluster which is not affected in its homogeneous-energy.
Otherwise, a new cluster is created and the new element is taken as its representatives.
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6. Experimental Results

Experiments on the D-Dimension were conducted on shape dataset in order to test the
efficiency of the clusterings produced by our topological algorithm on a varied collection of
synthetic datasets (see Table 2). The goal in this set of experiments is to show how topologi-
cal clustering can be used to improve the quality and robustness of widely-used clustering
datasets benchmark. Eight synthetic datasets were used, from separate distributions and
compacted classes to spiral or circular distributions, which are extremely complex to cluster:
Aggregation, Compound, Pathbase, Spiral, D31, R15, Jain, and Flame. The eight datasets were
divided into three groups according to their distribution-shape and difficulty of grouping.
Clustering error is defined as [62]:

error =
incorrect clustering

Total o f cluster elements
× 100 (14)

• Easy: The proposed algorithm works very well for the Jain, D31, R15, and Aggregation
datasets (see Figure 5a–d). The clustering error is less than 2%. The clustering problem
is on Aggregation dataset (in the union of the classes of the right side; see Figure 5d).

• Medium: Results are good for Flame and Compound datasets (see Figure 5e,f). The
clustering error is less than 5%.

• Complex: For the third group, the results of the Pathbased and spiral datasets are good
(see Figure 5g,h). The clustering error is less than 10% just for Pathbase dataset. The
result for Spiral dataset is 0%.

The proposed algorithm was implemented in LabVIEW software, which is oriented
to work easily with hardware, obtaining accurate and fast measurements and results.
LabView allows to run algorithms from reading datasets from files, to the graphical display
of information.

The algorithm begins taking representatives randomly from the whole dataset. The
distances among representatives allow to define the parameter δ as intermediate values. The
δ value is set at 0.2% of the distance between two representatives. After setting the initial
parameters, the pseudometric grouping theorem is applied. Thus, there are k − groups
as a result. We impose the criteria that groups containing less than 10 percent of the
entire dataset are annulled, and the elements are re-integrated into the Q set. For the next
iterations, the delta value is increased by 0.2%. The algorithm ends when the Q set is empty.

Considering local and global topologies has allowed us to define a more robust
algorithm than those reported in the literature. Better results have been obtained in this
research work for different characteristics of the databases to be clustered.

The proposal overcomes the problems reported in existing algorithms and allows not
having the limitations of (1) a prior knowledge of the data and (2) using only spherical
separator functions. Another important advantage of this proposed algorithm is the use of
Algebra of sets which helps in obtaining the results faster and without excessive memory
consumption (as density-based, spectral, and gravitational algorithms do).
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(a) Jain dataset. (b) R15 dataset. (c) D31 dataset.

(d) Aggregation dataset. (e) Flame dataset. (f) Compound dataset.

(g) Pathbased dataset. (h) Spiral dataset.

Figure 5. Clustered 2-Dimensional Shape datasets.

7. Conclusions

The new 2D clustering algorithm based on a mathematical topological theory was
presented in this research paper. The proposed theory of a pseudometric-based clustering
model and its application in synthetic datasets worked as expected. Thus, this new method
based on topology theory has successfully worked for the clustering of easy and complex
datasets. The proposal also takes into account the local and global topological properties of
the data to be clustered in a definition of homogeneous-energy measurement.
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The proposal overcomes the problems reported in existing algorithms and without the
need for (1) a prior knowledge of the data and (2) using only spherical separator functions.
Another advantage of the proposal is that since the proposed algorithm is based on Algebra
of sets, the computational results are faster and without excessive memory consumption.

Because of the theoretical development, there is now a theorem (Theorem 1) that can
be applied in any space that defines a pseudometric.

Based on the results obtained, the clustering of n-dimensional databases will be
explored, as well as the application of the proposal to large databases.
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