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Abstract: In this manuscript, a new approach to study the fractionalized Oldroyd-B fluid flow based
on the fundamental symmetry is described by critically examining the Prabhakar fractional derivative
near an infinitely vertical plate, wall slip condition on temperature along with Newtonian heating
effects and constant concentration. The phenomenon has been described in forms of partial differ-
ential equations along with heat and mass transportation effect taken into account. The Prabhakar
fractional operator which was recently introduced is used in this work together with generalized
Fick’s and Fourier’s law. The fractional model is transfromed into a non-dimentional form by using
some suitable quantities and the symmetry of fluid flow is analyzed. The non-dimensional developed
fractional model for momentum, thermal and diffusion equations based on Prabhakar fractional
operator has been solved analytically via Laplace transformation method and calculated solutions
expressed in terms of Mittag-Leffler special functions. Graphical demonstrations are made to char-
acterize the physical behavior of different parameters and significance of such system parameters
over the momentum, concentration and energy profiles. Moreover, to validate our current results,
some limiting models such as fractional and classical fluid models for Maxwell and Newtonian are
recovered, in the presence of with/without slip boundary wall conditions. Further, it is observed
from the graphs the velocity curves for classical fluid models are relatively higher than fractional fluid
models. A comparative analysis between fractional and classical models depicts that the Prabhakar
fractional model explains the memory effects more adequately.

Keywords: Prabhakar fractional operator; Laplace transformation; wall slip conditions; Newtonian
heating; Mittag-Leffler kernel; physical parameters

1. Introduction

The fluid is a certain type of matter which continuously deformed when a negligible
amount of force is applied externally. Fluid has no specific shape, it partitioned mainly
into two types such as non-Newtonian and Newtonian fluids. The Newtonian and non-
Newtonian fluids have different geometries and characteristics, but non-Newtonian fluids
are more attractive for scientists and researchers as compared to Newtonian fluids. In engi-
neering and sciences, non-Newtonian fluids have a variety of applications in the modern
era and they play a vital role in industrial sectors such as biological materials, magneto
hydrodynamic flows, greases, polymer melts, clay coatings, extrusion of molten plastic,
blood flow, pharmaceutical, emulsions, polymer processing, food processing industries,
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crude oil and gas well drilling and complex mixtures. Due to the numerous applications
of non-Newtonian fluids, they have been classified into three categories such as rate type
fluids, differential type fluids and integral type fluids. Some common fluid models that
describe the computational properties and physical behavior of non-Newtonian fluids
are Jeffery model, second grade and third grade fluid models, Oldroyd-B fluid model,
Casson model, power law model and Maxwell model [1–4]. Among them, Oldroyd-B fluid
model attracted special attention, which is a simple subclass of rate type of non-Newtonian
fluids that express the elastic and viscous behaviors appropriately, and analytical solu-
tions for such fluid can be derived symmetrically by employing the different techniques.
The Oldroyd-B fluid has the potential to express the flow history and also it exhibits the
relaxation and retardation phenomenon. Fetecau et al. [5] has explored the impulsive
movement of the plate to analyze the Oldroyd-B fluid model. Fetecau et al. [6] elaborated
new analytical solutions and a pertinent stress field for the constantly moving plate to
examine the unsteady Oldroyd-B fluid. Oldroyd-B fluid flow behavior, which occurs due to
translatery motion over the surface along with subsistence of dominance cohesive forces, is
inspected by Shakeel et al. [7]. Magneto-hydrodynamics (MHD) of electrically conducting
fluids have applications in engineering, chemical engineering, geophysical environments,
solar physics and the performance motion leads to symmetrical aspects in both the structure
and the physical process. Gul et al. [8] explained the impact of MHD thin film movement of
Oldroyd-B fluid in presence of oscillating belt. Hussain et al. [9] performed an analysis of
the MHD flow and heat transfer of ferro fluid in a channel with non-symmetrical cavities.
They investigated and addressed the thermal transport properties of ferro fluid in the non-
symmetric cavity in the channel with the magnetic field enforced on it. Some interesting
facts regarding Oldroyd-B fluid are described in the studies [10–12]. The non-Newtonian
fluids can not be defined in a single model, but Newtonian fluid that can be described in a
single constitutive model. Similarly, fractional derivative operators are used to describe the
better rheology of considered fluids because classical calculus is unable to predict the real
behavior of the fluids.

The fractional calculus, which is engaged in differential and integral operators for non
integer orders, is an old branch of mathematics like conceptional calculus but currently it
has been growing immensely on account of enormous significance in engineering and sci-
ence. Since various daily life, real phenomena of physical problems cannot be modeled by
using the traditional calculus operators due to which researchers interested in searching the
generalized operators that help to anticipate the preceding processes state. The fractional
calculus having various fractional operators used to fractionalize the differential equations,
with excellent applicable tools that are massively applied to modele the real phenomena
that appear in fluid flow problems, chemistry, dynamical processes, physics, oscillation,
electricity, diffusion, mechanics, relaxation, reaction, engineering processes and many other
disciplines. In literature, many fractionalized fluid flow models are studied that are based
on several fractional operators that are relative to singular kernels like Riemann-Liouville
and Marchaud Caputo fractional integrals and derivatives, due to the singular kernels that
have some drawbacks such as having faced difficulties in the modeling process. Some
researches classified a new type of fractional operators as having non-singular kernels
such as Atangana-Baleanu, Yang Abdel Cattani fractional operators, Prabhakar fractional
derivative, Caputo-Fabrizio fractional operators and few others [13–17], having exponen-
tial kernels and some of them involve Rabotnov exponential function and Mittag-Leffler
functions. These operators are represented in the current and future state of the system.
The fundamental laws of nature and the problems specially related to thermal transport
phenomena have been generalized successfully with the applications of fractional deriva-
tive operators. Riaz et al. [18] applied a new approach of fractional operator to obtained the
results in the form of special functions for the flow of MHD Maxwell fluid under ramped
boundary conditions to describe the transport phenomena with the application of power
law kernel analysis. Giusti et al. [19] explained a linear visco-elastic model by using a non-
singular kernel operator known as Prabhakar fractional derivative. Solution in the form
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of generalized Mittag-Leffler kernel derived for natural convection flow of the Prabhakar
fractional MHD Maxwell fluid model under Newtonian heating impacts was investigated
by Rehman et al. [20]. Rehman et al. [21] considered a non-singularized Jeffery fluid model
and obtained exact solutions under ramped conditions for velocity and concentration with
Newtonian heating the symmetry of the fluid flow is analyzed. Some respective studies
related to fractional derivative operators and heat/mass transport phenomenon having
singular/non-singular kernels are discussed in detail; see for instance [22–24].

Xiao-Hong Zhang et al. [25] recently demonstrated the generalized fractional Prabhakar-
type Maxwell fluid flow model, but ignored the diffusive flux and effect of mass diffusion,
computed solution via technique of Laplace transformation. In the literature no article
is available regarding the generalized fractional Prabhakar-type Oldroyd-B fluid model.
To fill this gap in the literarure the constitutive model is developed for the given flow regime
in terms of PDEs. The classical model is transformed into a fractional model by employing
the novel definition of Prabhakar fractional operator together with generalized Fick’s and
Fourier’s law, after that the exact results for velocity, mass and heat equations, in terms of
special function namely Mittag-Leffler functions are established, and comparative analysis
is conducted. The non-dimensional developed fractional model for momentum, thermal
and diffusion equations based on the Prabhakar fractional derivative operator has been
solved analytically via Laplace transformation method. Graphical demonstrations are
made to characterize the physical behavior of different parameters and significance of such
system parameters over the momentum, concentration and energy profiles. Moreover,
to validate our current results, some limiting models such as fractional and classical fluid
models for Maxwell and Newtonian are recovered, in the presence of with/without slip
boundary wall conditions.

2. Mathematical Model

Let us consider that an unsteady, in-compressible flow of magneto hydrodynamic
(MHD) Oldroyd-B-fluid near an infinitely long vertical flat plate together with slip condition
on temperature that is fixed in a porous medium. Initially, at t = 0, suppose that plate
and fluid are at rest, with the ambient temperature T∞ and the fixed concentration C∞.
After a short time, unlike the plate is static but the fluid starts to move with temperature
in the form T(0, t) − u0 f (t) = ω

∂T(0,t)
∂φ is stabilized, where u0 is a constant represents

the velocity dimension, also the plate at the same time having Tw and Cw (temperature
and concentration) which remain constant. It is presumed that temperature, velocity and
concentrations are considered here are functions of φ and t only. The geometry of the
Oldroyd-B fluid model is presented in Figure 1. Applying the Boussinesq’s approximation
with smaller Reynolds number, we obtained the principal governing equation for Oldroyd-
B fluid along with initial and boundary condition [26]:

The momentum equation(
1 + λ1

∂

∂t

)
∂u(φ, t)

∂t
= υ

(
1 + λ2

∂

∂t

)
∂2u(φ, t)

∂φ2 + g
(

1 + λ1
∂

∂t

)
β1(T(φ, t)− T∞)

+ g
(

1 + λ1
∂

∂t

)
β2(C(φ, t)− C∞). (1)

The energy balance equation

Cp
∂T(φ, t)

∂t
= −1

ρ

∂q(φ, t)
∂φ

. (2)

The Fourier’s thermal flux Law

q(φ, t) = −k
∂T(φ, t)

∂φ
. (3)
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Figure 1. Geometrical formation of the flow model.

The diffusion equation

∂C(φ, t)
∂t

= −∂χ(φ, t)
∂φ

. (4)

The Fick’s Law

χ(φ, t) = −Dm
∂C(φ, t)

∂φ
. (5)

with initial and boundary conditions are

u(φ, 0) = 0, T(φ, 0) = T∞, C(φ, 0) = C∞, φ ≥ 0,

u(0, t) = 0, T(0, t)−ω
∂T(φ, t)

∂φ
|φ=0 = u0 f (t), C(0, t) = Cw, t ≥ 0,

u(φ, t)→ 0, T(φ, t)→ T∞, C(φ, t)→ C∞ as φ→ ∞. (6)

Introducing the following set of non-dimensional variables,

t∗ =
u2

0t
υ

, φ∗ =
u0φ

υ
, u∗ =

u
u0

, C∗ =
C− C∞

Cw − C∞
, υ =

µ

ρ
, T∗ =

T − T∞

Tw − T∞
,

λ∗1 =
u2

0λ1

υ
, q∗ =

q
q0

, χ∗ =
χ

χ0
, q0 =

k(Tw − T∞)u0

υ
, χ0 =

Dm(Cw − C∞)u0

υ
,

λ∗2 =
u2

0λ2

υ
, Gr =

gβ1(Tw − T∞)

u3
0

, Gm =
gβ2(Cw − C∞)

u3
0

, Pr =
µCp

k
, Sc =

υ

Dm
, (7)

After dropping the asterisks ∗ notation, the non-dimensional form with initial/boundary
conditions are as follows:

(
1 + λ1

∂

∂t

)
∂u(φ, t)

∂t
=

(
1 + λ2

∂

∂t

)
∂2u(φ, t)

∂φ2 +

(
1 + λ1

∂

∂t

)
GrT(φ, t) +

(
1 + λ1

∂

∂t

)
GmC(φ, t), (8)
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∂T(φ, t)
∂t

= − 1
Pr

∂q(φ, t)
∂φ

, (9)

q(φ, t) = −∂T(φ, t)
∂φ

, (10)

∂C(φ, t)
∂t

= − 1
Sc

∂χ(φ, t)
∂φ

, (11)

χ(φ, t) = −∂C(φ, t)
∂φ

, (12)

Along with

u(φ, 0) = 0, T(φ, 0) = 0, C(φ, 0) = 0, f or φ ≥ 0, (13)

u(0, t) = 0, T(0, t) = ω
∂T(φ, t)

∂φ
|φ=0 + f (t), C(0, t) = 1, f or t ≥ 0, (14)

u(φ, t)→ 0, T(φ, t)→ 0, C(φ, t)→ 0 as φ→ ∞. (15)

Development Fractional model:

In the present work, a mathematical fractional model developed by using the Fick’s
and Fourier’s laws based on Prabhakar’s fractional operator having kernel three parameter
Mittag-Leffler function, are defined as:

q(φ, t) = −CDγ
α,β,℘

∂T(φ, t)
∂φ

, (16)

χ(φ, t) = −CDγ
α,β,℘

∂C(φ, t)
∂φ

, (17)

where CDγ
α,β,℘ denoted Prabhakar derivative operator, further details are given in [27].

3. Solution of the Problem
3.1. Existence of Solution of Temperature Equation Using Prabhakar Derivative Operator

Employing Laplace transformation on Equations (9) and (16), to derived the tempera-
ture solution together with associated conditions defined in Equations (13)–(15), we have

PrξT̄(φ, ξ) = −∂q̄(φ, ξ)

∂φ
, (18)

and

q̄(φ, ξ) = −ξβ
(
1− ℘ξ−α

)γ ∂T̄(φ, ξ)

∂φ
, (19)

with

T̄(0, ξ)−ω
∂T̄(φ, ξ)

∂φ
|φ=0 = f̄ (ξ) and T̄(φ, ξ)→ 0 as φ→ ∞. (20)
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by definition, the Laplace transformation can be computed for the function ζ(φ, t) as,
ζ̄(φ, ξ) =

∫ ∞
0 ζ(φ, t)e−ξtdt and ξ is the transformed variable.

Using Equation (19) into Equation (18), we get

PrξT̄(φ, ξ) = ξβ
(
1− ℘ξ−α

)γ ∂2T̄(φ, ξ)

∂φ2 , (21)

∂2T̄(φ, ξ)

∂φ2 =
Prξ

ξβ(1− ℘ξ−α)γ T̄(φ, ξ), (22)

∂2T̄(φ, ξ)

∂φ2 − A(ξ)T̄(φ, ξ) = 0. (23)

The solution from above Equation (23) is written as:

T̄(φ, ξ) = e1eφ
√

A(ξ) + e2e−φ
√

A(ξ). (24)

using the temprature conditions as in Equation (20), the values of constants e1 and e2 are
computed, then we get

T̄(φ, ξ) =
f̄ (ξ)

1 + ω
√

A(ξ)
e−φ
√

A(ξ), (25)

where A(ξ) = Prξ

ξβ(1−℘ξ−α)γ using series representation of exponential function, expressed
Equation (25) in series equivalent form as:

T̄(φ, ξ) = f̄ (ξ)
∞

∑
m=0

(−1)m(ω
√

A(ξ))m
∞

∑
n=0

(−φ
√

A(ξ))n

n!
,

= f̄ (ξ)
∞

∑
m=0

(−ω
√

Pr)m

ξ(β−1)m
2 (1− ℘ξ−α)

γm
2

∞

∑
n=0

(−φ
√

Pr)n

n!ξ(β−1) n
2 (1− ℘ξ−α)

γn
2

, (26)

Taking Laplace inverse of Equation (26), then the temperature solution is written as:

T(φ, t) = f (t) ∗
∞

∑
m=0

(−ω)m(Pr)
m
2 t(β−1)m

2 −1E
γm
2

α,(β−1)m
2
(℘tα) ∗

∞

∑
n=0

(−φ)n

n!
(Pr)

n
2 t(β−1) n

2−1E
γn
2

α,(β−1) n
2
(℘tα). (27)

whereL−1
{

ξαγ−β

(ξα−℘)γ

}
= tβ−1Eγ

α,β(℘tα) and ‘∗’ is denoted the convolution product.

3.2. Existence of Solution of Diffusion Equation Using Prabhakar Derivative Operator

Employing the Laplace transformation on Equations (11) and (17) with associated
conditions defined in Equations (13)–(15), we have

ScξC̄(φ, ξ) = −∂χ̄(φ, ξ)

∂φ
, (28)

and

χ̄(φ, ξ) = −ξβ
(
1− ℘ξ−α

)γ ∂C̄(φ, ξ)

∂φ
, (29)
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with

C̄(0, ξ) =
1
ξ

and C̄(φ, ξ)→ 0 as φ→ ∞. (30)

using Equation (29) into Equation (28), we get

ScξC̄(φ, ξ) = ξβ
(
1− ℘ξ−α

)γ ∂2C̄(φ, ξ)

∂φ2 , (31)

∂2C̄(φ, ξ)

∂φ2 =
Scξ

ξβ(1− ℘ξ−α)γ C̄(φ, ξ), (32)

∂2C̄(φ, ξ)

∂φ2 − B(ξ)C̄(φ, ξ) = 0. (33)

The solution from above Equation (33) is written as:

C̄(φ, ξ) = e3eφ
√

B(ξ) + e4e−φ
√

B(ξ). (34)

using the concentration conditions as in Equation (30), the values of constants e3 and e4 are
computed, then we get

C̄(φ, ξ) =
1
ξ

e−φ
√

B(ξ), (35)

where B(ξ) = Scξ

ξβ(1−℘ξ−α)γ .
Using series representation of exponential function, expressed Equation (35) in series

equivalent form as:

C̄(φ, ξ) =
1
ξ

∞

∑
k=0

(−φ
√

B(ξ))k

k!
,

=
1
ξ

∞

∑
k=0

(−φ
√

Sc)k

k!ξ(β−1) k
2+1(1− ℘ξ−α)

γk
2

, (36)

Taking Laplace inverse transformation of Equation (36), then the concentration solution
is written as:

C(φ, t) =
∞

∑
k=0

(−φ)k

k!
(Sc)

k
2 t(β−1) k

2 E
γk
2

α,(β−1) k
2+1

(℘tα). (37)

3.3. Existence of Solution of Velocity Field Using Prabhakar Derivative Operator

Employing Laplace transformation on Equation (8) with associated conditions defined
in Equations (13)–(15), we have

(1 + λ1ξ)ξū(φ, ξ) = (1 + λ2ξ)
d2ū(φ, ξ)

dφ2 + (1 + λ1ξ)GrT̄(φ, ξ) + (1 + λ1ξ)GmC̄(φ, ξ), (38)

with

ū(0, ξ) = 0 and ū(φ, ξ)→ 0 as φ→ ∞. (39)
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Replacing the computed temprature and concentration solution, that is, the value of
T̄(φ, ξ) from Equation (25) and the value of C̄(φ, ξ) from Equation (35) into Equation (38),
then the solution of Equation (38) is written as:

ū(φ, ξ) = e5e
φ

√
ξ(1+λ1ξ)

1+λ2ξ + e6e
−φ

√
ξ(1+λ1ξ)

1+λ2ξ − (1 + λ1ξ)Gr f̄ (ξ)
1 + ω

√
A(ξ)

[
e−φ
√

A(ξ)

(1 + λ2ξ)A(ξ)− ξ(1 + λ1ξ)

]

− (1 + λ1ξ)Gm
ξ

[
e−φ
√

B(ξ)

(1 + λ2ξ)B(ξ)− ξ(1 + λ1ξ)

]
. (40)

using the velocity conditions as in Equation (39), the values of constants e5 and e6 are
computed, then we get:

ū(φ, ξ) =
(1 + λ1ξ)Gr f̄ (ξ)

1 + ω
√

A(ξ)

[
e−φ
√

A(ξ) − e−φ
√

V(ξ)

ξ(1 + λ1ξ)− (1 + λ2ξ)A(ξ)

]

+
(1 + λ1ξ)Gm

ξ

[
e−φ
√

B(ξ) − e−φ
√

V(ξ)

ξ(1 + λ1ξ)− (1 + λ2ξ)B(ξ)

]

=
Gr(1 + λ1ξ)

ξ(1 + λ1ξ)− (1 + λ2ξ)A(ξ)

[
f̄ (ξ)e−φ

√
A(ξ)

1 + ω
√

A(ξ)
− f̄ (ξ)e−φ

√
V(ξ)

1 + ω
√

A(ξ)

]

+
Gm(1 + λ1ξ)

ξ(1 + λ1ξ)− (1 + λ2ξ)B(ξ)

[
e−φ
√

B(ξ)

ξ
− e−φ

√
V(ξ)

ξ

]
(41)

where V(ξ) = ξ(1+λ1ξ)
1+λ2ξ .

Equation (41) is written in a more precise form

ū(φ, ξ) = Grū1(φ, ξ)
[
T̄(φ, ξ)− f̄ (ξ)ū2(φ, ξ)

]
+ Gmū3(φ, ξ)[C̄(φ, ξ)− ū4(φ, ξ)] (42)

computing velocity solution, using Laplace inverse transformation, the velocity field solu-
tion is finally obtained as:

u(φ, t) = Gru1(φ, t) ∗ [T(φ, t)− f (t) ∗ u2(φ, t)] + Gmu3(φ, t) ∗ [C(φ, t)− u4(φ, t)] (43)

where
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u1(φ, t) = L−1{ū1(φ, ξ)} = L−1
{

(1 + λ1ξ)

ξ(1 + λ1ξ)− (1 + λ2ξ)A(ξ)

}
,

= L−1

{
∞

∑
k=0

∞

∑
r=0

∞

∑
n=0

(Pr)k(−λ1)
nak−rbrΓ(k + 1)Γ(r + n)

r!n!Γ(k− r + 1)Γ(k)Γ(r)
1

ξ(βk−n+1)(1− ℘ξ−α)γk

}
,

=
∞

∑
k=0

∞

∑
r=0

∞

∑
n=0

(Pr)k(−λ1)
nak−rbrΓ(k + 1)Γ(r + n)

r!n!Γ(k− r + 1)Γ(k)Γ(r)
tβk−nEγk

α,βk−n+1(℘tα),

u2(φ, t) = L−1{ū2(φ, ξ)} = L−1


e
−φ

√
ξ(1+λ1ξ)

1+λ2ξ

1 + ω
√

A(ξ)

,

= L−1

{(
∞

∑
m=0

(−ω
√

Pr)m

ξ(β−1)m
2 (1− ℘ξ−α)

γm
2

)(
∞

∑
n=0

∞

∑
i=0

∞

∑
z=0

(−φ)n(−1)z(a)
n
2−ibiΓ( n

2 + 1)Γ( n
2 + z)

n!i!z!(λ1)
n
2 +zΓ( n

2 − i + 1)Γ( n
2 )

1
ξz

)}
,

=

(
∞

∑
m=0

(−ω)m(Pr)
m
2 t(β−1)m

2 −1E
γm
2

α,(β−1)m
2
(℘tα)

)

∗
(

∞

∑
n=0

∞

∑
i=0

∞

∑
z=0

(−φ)n(−1)z(a)
n
2−ibiΓ( n

2 + 1)Γ( n
2 + z)

n!i!z!(λ1)
n
2 +zΓ( n

2 − i + 1)Γ( n
2 )

tz−1

Γ(z)

)
,

u3(φ, t) = L−1{ū3(φ, ξ)} = L−1
{

(1 + λ1ξ)

ξ(1 + λ1ξ)− (1 + λ2ξ)B(ξ)

}
,

= L−1

{
∞

∑
k=0

∞

∑
r=0

∞

∑
n=0

(Sc)k(−λ1)
nak−rbrΓ(k + 1)Γ(r + n)

r!n!Γ(k− r + 1)Γ(k)Γ(r)
1

ξ(βk−n+1)(1− ℘ξ−α)γk

}
,

=
∞

∑
k=0

∞

∑
r=0

∞

∑
n=0

(Sc)k(−λ1)
nak−rbrΓ(k + 1)Γ(r + n)

r!n!Γ(k− r + 1)Γ(k)Γ(r)
tβk−nEγk

α,βk−n+1(℘tα),

u4(φ, t) = L−1{ū4(φ, ξ)} = L−1

1
ξ

e
−φ

√
ξ(1+λ1ξ)

1+λ2ξ

,

= L−1

{
∞

∑
n=0

∞

∑
i=0

∞

∑
z=0

(−φ)n(−1)z(a)
n
2−ibiΓ( n

2 + 1)Γ( n
2 + z)

n!i!z!(λ1)
n
2 +zΓ( n

2 − i + 1)Γ( n
2 )

1
ξz+1

}
,

=

(
∞

∑
n=0

∞

∑
i=0

∞

∑
z=0

(−φ)n(−1)z(a)
n
2−ibiΓ( n

2 + 1)Γ( n
2 + z)

n!i!z!(λ1)
n
2 +zΓ( n

2 − i + 1)Γ( n
2 )

tz

Γ(z + 1)

)
, (44)

where a = λ2
λ1

and b = 1− λ2
λ1

.

3.3.1. Classical Oldroyd-B Fluid

To get the Ordinary Oldroyd-B, substituting β = γ = 0 in Equation (41), then in this
case, the velocity solution becomes

ū(φ, ξ) =
Gr(1 + λ1ξ)

ξ(1 + λ1ξ)− (1 + λ2ξ)Prξ

 f̄ (ξ)e−φ
√

Prξ

1 + ω
√

Prξ
− f̄ (ξ)e

−φ

√
ξ(1+λ1ξ)

1+λ2ξ

1 + ω
√

Prξ



+
Gm(1 + λ1ξ)

ξ(1 + λ1ξ)− (1 + λ2ξ)Scξ

 e−φ
√

Scξ

ξ
− e
−φ

√
ξ(1+λ1ξ)

1+λ2ξ

ξ

 (45)
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3.3.2. Fractionalized Maxwell Fluid

To get the fractionalized Maxwell fluid, substituting λ2 = 0 in Equation (41), then in
this case, the velocity solution becomes

ū(φ, ξ) =
Gr(1 + λ1ξ)

ξ(1 + λ1ξ)− A(ξ)

[
f̄ (ξ)e−φ

√
A(ξ)

1 + ω
√

A(ξ)
− f̄ (ξ)e−φ

√
ξ(1+λ1ξ)

1 + ω
√

A(ξ)

]

+
Gm(1 + λ1ξ)

ξ(1 + λ1ξ)− B(ξ)

[
e−φ
√

B(ξ)

ξ
− e−φ

√
ξ(1+λ1ξ)

ξ

]
(46)

3.3.3. Ordinary Maxwell Fluid

To get the solution for classical Maxwell fluid, substituting β = 0, γ = 0 and λ2 = 0 in
Equation (41), then in this case, the velocity solution becomes

ū(φ, ξ) =
Gr(1 + λ1ξ)

ξ(1 + λ1ξ)− Prξ

[
f̄ (ξ)e−φ

√
Prξ

1 + ω
√

Prξ
− f̄ (ξ)e−φ

√
ξ(1+λ1ξ)

1 + ω
√

Prξ

]

+
Gm(1 + λ1ξ)

ξ(1 + λ1ξ)− Scξ

[
e−φ
√

Scξ

ξ
− e−φ

√
ξ(1+λ1ξ)

ξ

]
(47)

3.3.4. Fractionalized Newtonian Fuid

For this case, taking λ1 = 0 in Equation (46), then for the fractional viscous fluid case,
the velocity solution becomes

ū(φ, ξ) =
Gr

ξ − A(ξ)

[
f̄ (ξ)e−φ

√
A(ξ)

1 + ω
√

A(ξ)
− f̄ (ξ)e−φ

√
ξ

1 + ω
√

A(ξ)

]
+

Gm
ξ − B(ξ)

[
e−φ
√

B(ξ)

ξ
− e−φ

√
ξ

ξ

]
(48)

3.3.5. Ordinary Newtonian Fluid

For this case, taking λ1 = 0 in Equation (47), then for the classical viscous fluid case,
the velocity solution becomes

ū(φ, ξ) =
Gr

ξ − Prξ

[
f̄ (ξ)e−φ

√
Prξ

1 + ω
√

Prξ
− f̄ (ξ)e−φ

√
ξ

1 + ω
√

Prξ

]
+

Gm
ξ − Scξ

[
e−φ
√

Scξ

ξ
− e−φ

√
ξ

ξ

]
(49)

The computed results in this manuscript as in Equations (46)–(49) are converted into
the Equations (26), (33), (35) and (37) given in article by X. H. Zhang et al. [25], by ignoring
the mass grashof number, i.e., Gm = 0. All these results show the good agreement of our
current calculated results with the published work.

4. Results with Discussion

In this paper, the time-fractional natural convective flow of Oldroyd-B fluid over the
vertical plate having infinite length, and wall slip condition analyzed on temperature distri-
bution, is taken into consideration in regards to the Prabhakar fractional derivative operator
under constant concentration were investigated. The non-dimensional developed fractional
model for momentum, thermal and diffusion equations based on Prabhakar fractional
derivative operator has been solved analytically via Laplace transformation method and
calculated solutions expressed in terms of Mittag-Leffler special functions. For thorough
knowledge of the substantial importance of the flow problem, graphs portrayed for in-
volving physical parameters such as α, β, γ, Pr, Sc, Gm and Gr. In Figures 2–18; graphical
representations for velocity field, concentration and temperature are plotted, taking distinct
values of α, β and γ, together with the other system parameters.

Figures 2–4 portray the impact of three fractional parameters, namely, α, β, γ on energy
profile at two distinct levels of time, in presence of slip parameter and observed graphical
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behavior of the curves in the absence of slip parameter. It is noticed from these graphs
that the energy profile declined with increased values of α, β and γ. Further, it is observed
that the temperature profile decreased rapidly for wall slip condition instead of no slip
conditions. Also, it is remarkable that α, β and γ had a significant influence on thermal
flux, in case of small time, but in case of large time it has a more significant impact on
thermal flux.

Figure 5 displayed the temperature illustration for different values of Pr at two dis-
tinct levels of time, in presence of slip parameter and observed graphical behavior of the
curves in the absence of slip parameter. It has been depicted that for large values of Pr,
the temperature is falling. Generally, the consistency of thermal boundary layer contracts
rapidly as increasing Pr, because of this temperature profile linearly slow down.

Figures 6–8 illustrates the impact of three fractional parameters namely, α, β, γ on
mass profile at two distinct levels of time. It is noticed from these graphs that the mass
profile declined when the values of fractional parameters increased. Also, it is remarkable
that α, β and γ had a significant influence on mass contour, in case of small time, but in
case of large time it had a more significant impact on mass curve.

Figure 2. Simulation to illustrate the temperature profile for both the cases with/without slip
conditions for varying the values of α, when β = 0.3, Pr = 12, γ = 0.5, ℘ = 0.4 and ω = 0.5.

Figure 3. Simulation to illustrate the temperature profile for both the cases with/without slip
conditions for varying the values of β, when γ = 0.5, Pr = 12, α = 0.3, ω = 0.5 and ℘ = 0.4.
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Figure 4. Simulation to illustrate the temperature profile for both the cases with/without slip
conditions for varying the values of γ, when α = 0.5, Pr = 12, ℘ = 0.4, ω = 0.5 and β = 0.3.

Figure 5. Simulation to illustrate the temperature profile for both the cases with/without slip
conditions for varying the values of Pr, when γ = 0.5, α = 0.4, ℘ = 0.4, β = 0.3 and ω = 0.5.

Figure 6. Simulation to illustrate the concentration profile for varying the values of α, when Sc = 9,
β = 0.3, ℘ = 0.4 and γ = 0.5.
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Figure 7. Simulation to illustrate the concentration profile for varying the values of β, when Sc = 9,
α = 0.3, ℘ = 0.4 and γ = 0.5.

Figure 8. Simulation to illustrate the concentration profile for varying the values of γ, when Sc = 9,
α = 0.3, ℘ = 0.4 and β = 0.5.

Figure 9 displays the behavior of mass profile versus distinct values of parameter
Sc at two distinct levels of time, from graphs it is detected that concentration profile is
reduced corresponding to rising values of Sc. The reason behind this phenomenonis that
the boundary layer of concentration is reduced when increasing the values of Schmidt
number. Concentration is an important factor of velocity field on the movement of the fluid
that cannot be overlooked.

Figures 10–12 illustrates the impact of three fractional parameters namely, α, β, γ on
velocity field at two distinct levels of time, in presence of slip parameter and observed
graphical behavior of the curves in the absence of slip parameter. It is noticed from these
graphs the momentum distribution profile declined when increased the values of α, β,
γ. Further, it is observed that velocity contour decreased rapidly for wall slip condition
instead of no slip conditions.

Figure 13 represent the influence of Pr at two distinct levels of time, in presence of slip
parameter and observed graphical behavior of the curves in the absence of slip parameter,
on momentum equation. It is anticipated that velocity contour of the moving fluid is falling
down for rising the values of Pr along with various values of involving parameters for
both the cases with/without slip conditions. The outer layer of velocity field gets thicker
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because of the thermal diffusion rate is smaller, Pr which dominates the thickness of outer
layer of momentum for problems related to heat transfer.

Figure 14 examined the relative contribution of buoyancy and viscous forces in the
moving fluid. For positive values of Gr means increasing the temperature of the fluid that
cause to generate the natural convention currents in the region where the fluid flowing.
When the values of Gr enhanced, then in the flow region a strong buoyancy force is
developed because of dominant existence of natural convention currents. This strong
buoyancy force over powered the all viscous forces which consequently the fluid velocity
appreciated. From the graphs it is prescribed that the profile of velocity is escalated for
rising values of Gr.

Figure 9. Simulation to illustrate the concentration profile for varying the values of Sc, when α = 0.5,
γ = 0.3, ℘ = 0.4 and β = 0.5.

Figure 10. Simulation to illustrate the velocity profile for both the cases with/without slip conditions
for varying the values of α, when Gr = 5, ℘ = 0.4, Gm = 3.5, ω = 0.5, λ1 = 0.7, Pr = 12, Sc = 9,
λ2 = 0.3, β = 0.3 and γ = 0.4.
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Figure 11. Simulation to illustrate the velocity profile for both the cases with/without slip conditions
for varying the values of β, when Gr = 5, ℘ = 0.4, Gm = 3.5, ω = 0.5, λ1 = 0.7, Pr = 12, Sc = 9,
λ2 = 0.3, α = 0.5 and γ = 0.4.

Figure 12. Simulation to illustrate the velocity profile for both the cases with/without slip conditions
for varying the values of γ, when Gr = 5, ℘ = 0.4, Gm = 3.5, ω = 0.5, λ1 = 0.7, Pr = 12, Sc = 9,
λ2 = 0.3, β = 0.3 and α = 0.5.

Figure 13. Simulation to illustrate the velocity profile for both the cases with/without slip conditions
for varying the values of Pr, when Gr = 5, ℘ = 0.4, Gm = 3.5, ω = 0.5, λ1 = 0.7, Sc = 9, λ2 = 0.3,
β = 0.3, α = 0.5 and γ = 0.4.
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Figure 14. Simulation to illustrate the velocity profile for both the cases with/without slip conditions
for varying the values of Gr, when Pr = 12, ℘ = 0.4, Gm = 3.5, ω = 0.5, λ1 = 0.7, Sc = 9, λ2 = 0.3,
β = 0.3, α = 0.5 and γ = 0.4.

Figure 15 described the impact of Gm by considering the varying values of Gm at two
distinct levels of time, in presence of slip parameter and observed graphical behavior of the
curves in the absence of slip parameter, on momentum equation. The ratio of buoyancy
force to viscous force is generally known as mass grashof number that causes to unrestricted
convection. Form these graphs it is depicted that velocity curves are uplifted for increasing
the values of Gm.

Figure 15. Simulation to illustrate the velocity profile for both the cases with/without slip conditions
for varying the values of Gm, when Gr = 5, ℘ = 0.4, Pr = 12, ω = 0.5, λ1 = 0.7, Sc = 9, λ2 = 0.3,
β = 0.3, α = 0.5 and γ = 0.4.

Figure 16 the behavior of Sc on fluid velocity curve is analyzed, for distinct values of
fractional parameter the flow of momentum curve is decreasing Sc increased. Physically,
the ratio of momentum to mass diffusivity is generally defined as Schmidt number Sc. It
is fact that momentum diffusivity layer of the fluid is more viscous due to which velocity
decreased for both the cases with/without slip conditions.

Figures 17 and 18 plotted to make comparison among various fluid models such as the
classical Maxwell, fractional Maxwell, fractional Oldroyd-B, ordinary Oldroyd-B, fractional
Newtonian and classical Newtonian fluid flow models for both the cases with/without
slip conditions at two different times. It is noticed that the figures of Maxwell fluids for
both ordinary and fractional cases having higher curves than Oldroyd-B and viscous fluids.
Also, it is remarkable to point out that for fractional as well as classical models, the velocity
curve perceive the same representation for both the cases with/without slip conditions.
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Figure 16. Simulation to illustrate the velocity profile for both the cases with/without slip conditions
for varying the values of Sc, when Gr = 5, ℘ = 0.4, Gm = 3.5, ω = 0.5, λ1 = 0.7, Pr = 12, λ2 = 0.3,
β = 0.3, α = 0.5 and γ = 0.4.

Figure 17. Simulation to illustrate the velocity profile comparison for different fluid models such as
fractional Maxwell, fractional viscous, fractional Oldroyd-B, classical viscous, classical Oldroyd-B
and classical Maxwell fluids for slip conditions, when Gr = 5, ℘ = 0.4, Gm = 3.5, ω = 0.5, λ1 = 0.7,
Pr = 12, Sc = 9, λ2 = 0.3, β = 0.3, α = 0.5 and γ = 0.4.

Figure 18. Simulation to illustrate the velocity profile comparison for different fluid models such as
fractional Maxwell, fractional viscous, fractional Oldroyd-B, classical viscous, classical Oldroyd-B
and classical Maxwell fluids for no slip conditions, when Gr = 5, ℘ = 0.4, Gm = 3.5, ω = 0, λ1 = 0.7,
Pr = 12, Sc = 9, λ2 = 0.3, β = 0.3, α = 0.5 and γ = 0.4.
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5. Conclusions

In this paper, unsteady natural convective flow of an Oldroyd-B fluid under the effect
of Newtonian heating near an infinitely vertical plate with wall slip condition on tem-
perature under constant concentration, embedded in a permeable medium is analyzed.
The mathematical model is transformed into non-dimensional form by using some suitable
dimensionless quantities. Novel definition of Prabhakar fractional derivative operator is
executed to hypothecate the constitutive mass, heat and velocity expressions. The devel-
oped fractional model has been solved analytically to obtained the closed-form solutions
by using the Laplace integral transformation in terms of well known special functions
namely Mittag-Leffler function. Also conferred various connected parameters such as
dimentionless time t, fractional parameters (α, β, γ), Schmidt number Sc, mass grashof
number Gm, Prandtl number Pr, thermal grashof number Gr to examined the impact on
fluid flow, concentration and temperature. The significant findings extracted from this
investigation are outlined as follows:

• It is detected that the concentration profile declined for elevating the values of Sc for
varying the values of fractional parameters (α, β, γ), while higher values of Pr reduce
the temperature curve.

• It is investigated that corresponding to greater values of Sc and Pr the velocity curve
is decreasing.

• The natural convection dominates for augmented values of Gr and Gm, which leads
to increase the fluid velocity

• The momentum, energy and concentration curves are declined when the values of
fractional parameters (α, β, γ) are increased.

• It can be seen that fluid velocity represents same behavior for small and large time as
well as for slip and no slip conditions.

• It is depicted that for slip and no slip conditions, the velocity profile represents higher
graphs for no slip conditions.

• From the graphical visualization, it is noticed that the fluid velocity curves in case of
classical models are relatively higher than fractional models.
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