Article

Carlitz's Equations on Generalized Fibonacci Numbers

Min Wang (©) Peng Yang * and Yining Yang
Department of Mathematics, University of Science and Technology Liaoning, Anshan 114051, China; 202070100008@stu.ustl.edu.cn (M.W.); 202070100025@stu.ustl.edu.cn (Y.Y.)
* Correspondence: 320123800106@ustl.edu.cn

Abstract

Carlitz solved some Diophantine equations on Fibonacci or Lucas numbers. We extend his results to the sequence of generalized Fibonacci and Lucas numbers. In this paper, we solve the Diophantine equations of the form $A_{n_{1}} \cdots A_{n_{k}}=B_{m_{1}} \cdots B_{m_{r}} C_{t_{1}} \cdots C_{t_{s}}$, where (A_{n}), (B_{m}), and $\left(C_{t}\right)$ are generalized Fibonacci or Lucas numbers. Especially, we also find all solutions of symmetric Diophantine equations $U_{a_{1}} U_{a_{2}} \cdots U_{a_{m}}=U_{b_{1}} U_{b_{2}} \cdots U_{b_{n}}$, where $1<a_{1} \leq a_{2} \leq \cdots \leq a_{m}$, and $1<b_{1} \leq b_{2} \leq \cdots \leq b_{n}$.

Keywords: Fibonacci numbers; Lucas numbers; Diophantine equation

1. Introduction

Let P, Q be nonzero coprime integers with $D=P^{2}-4 Q \neq 0$. The sequences of generalized Fibonacci numbers and Lucas numbers, U_{n} and V_{n} satisfy the following recurrence relation:

$$
\begin{array}{lll}
U_{0}=0, & U_{1}=1, & U_{n}=P U_{n-1}-Q U_{n-2} \\
V_{0}=2, & (n \geq 2) \tag{2}\\
V_{1}=P, & V_{n}=P V_{n-1}-Q V_{n-2} & (n \geq 2)
\end{array}
$$

Their close forms are

$$
\begin{equation*}
U_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}, \quad V_{n}=\alpha^{n}+\beta^{n} \tag{3}
\end{equation*}
$$

where

$$
\alpha=\frac{P+\sqrt{P^{2}-4 Q}}{2} \text { and } \beta=\frac{P-\sqrt{P^{2}-4 Q}}{2}
$$

are roots of $x^{2}-P x+Q=0$.
For $m, n \in \mathbb{N}$. It is well known that these numbers have the following properties

- (a) $\operatorname{gcd}\left(U_{m}, U_{n}\right)=U_{d}$;
- (b) If $m \mid n$, then $U_{m} \mid U_{n}$;
- (c) If $U_{m} \mid U_{n}$ and $m>2$, then $m \mid n$.

The generalized Fibonacci and Lucas numbers include many famous integer sequences such as Fibonacci numbers, Lucas numbers, Pell numbers, and Jacobsthal numbers. Their fascinated properties lead to abundant applications in totally surprising and unrelated fields (cf. [1-6]).

Consider equations:

$$
\begin{align*}
U_{n} & =U_{m} V_{k} \tag{4}\\
U_{n} & =U_{m} U_{k} \tag{5}\\
U_{n} & =V_{m} V_{k} \tag{6}\\
V_{n} & =U_{m} V_{k} \tag{7}\\
V_{n} & =V_{m} V_{k} \tag{8}
\end{align*}
$$

$$
\begin{equation*}
V_{n}=U_{m} U_{k} \tag{9}
\end{equation*}
$$

where $n>m \geq k \geq 0, P>1$, and $Q<-1$.
In 1964, L. Carlitz [7] solved the above equations for $P=1$ and $Q=-1$, i.e., Fibonacci numbers and Lucas numbers. After half a century, M. Farrokhi D. G. [8] showed equation $F_{n}=k F_{m}$ has at most one solution (n, m) for $k>1$. He gives the complete nontrivial solutions of the equation

$$
F_{m}=F_{n_{1}} F_{n_{2}} F_{n_{3}} \cdots F_{n_{k}} .
$$

Moreover, he also gives the complete nontrivial solutions of the symmetric Diophantine equation

$$
F_{m_{1}} F_{m_{2}} \cdots F_{m_{k}}=F_{n_{1}} F_{n_{2}} F_{n_{3}} \cdots F_{n_{s}} .
$$

In 2011, as a byproduct of Lucas square classes, R. Keskin and B. Demirturk [9] rediscovered that $L_{n}=L_{m} L_{r}$ is impossible if $m, r>1$. Two years later, R. Keskin and Z. Siar [10] proved that when $P>1$ and $Q= \pm 1$, there is no generalized Lucas number V_{n} such that $V_{n}=V_{m} V_{r}$ for $m, r>1$ as a byproduct of Lucas square classes. Lastly, they show that there is no generalized Fibonacci number U_{n} such that $U_{n}=U_{m} U_{r}$ for $Q= \pm 1$ and $1<r<m$. With the help of Carmichael's primitive divisor theorem, P. Pongsriiam [11] solved equations:

$$
\begin{aligned}
F_{m}^{a} & =F_{n_{1}} F_{n_{2}} F_{n_{3}} \cdots F_{n_{k}}, \\
F_{m}^{a} & =L_{n_{1}} L_{n_{2}} L_{n_{3}} \cdots L_{n_{k}}, \\
L_{m}^{a} & =F_{n_{1}} F_{n_{2}} F_{n_{3}} \cdots F_{n_{k}}, \\
L_{m}^{a} & =L_{n_{1}} L_{n_{2}} L_{n_{3}} \cdots L_{n_{k}},
\end{aligned}
$$

where $a \geq 1, m \geq 0, k \geq 1$, and $0 \leq n_{1} \leq n_{2} \leq \cdots \leq n_{k}$.
In 2017, P. Pongsriiam [12] considered the following Diophantine equations:

$$
\begin{aligned}
& F_{m}=F_{n_{1}} F_{n_{2}} F_{n_{3}} \cdots F_{n_{k}} \pm 1, \\
& F_{m}=L_{n_{1}} L_{n_{2}} L_{n_{3}} \cdots L_{n_{k}} \pm 1, \\
& L_{m}=F_{n_{1}} F_{n_{2}} F_{n_{3}} \cdots F_{n_{k}} \pm 1, \\
& L_{m}=L_{n_{1}} L_{n_{2}} L_{n_{3}} \cdots L_{n_{k}} \pm 1,
\end{aligned}
$$

where $m \geq 0, k \geq 1$, and $0 \leq n_{1} \leq n_{2} \leq \cdots \leq n_{k}$. There are various other types of equations involving generalized Fibonacci and Lucas numbers that many authors have also considered (cf. [13,14]).

Assume $P>1$ and $Q<-1$. In this paper, we find Equation (4) holds if and only if $n=2, m=k=1$ or $n=2 m=2 k$. Equation (6) holds if and only if $n=4, m=2, k=1$. Moreover, Equations (5) and (7)-(9) have no solution. Generally, we completely solved the Diophantine equations of the symmetric form

$$
\begin{align*}
U_{a} & =U_{b_{1}} U_{b_{2}} U_{b_{3}} \cdots U_{b_{n}} \tag{10}\\
U_{a} & =V_{b_{1}} V_{b_{2}} V_{b_{3}} \cdots V_{b_{n}} \tag{11}
\end{align*}
$$

With the help of (10) and (11), we also find all solutions of symmetric Diophantine equations

$$
\begin{equation*}
U_{a_{1}} U_{a_{2}} \cdots U_{a_{m}}=U_{b_{1}} U_{b_{2}} \cdots U_{b_{n}} \tag{12}
\end{equation*}
$$

where $a>1,1<a_{1} \leq a_{2} \leq \cdots \leq a_{m}$, and $1<b_{1} \leq b_{2} \leq \cdots \leq b_{n}$.

2. Preliminaries

In this section, we give some equalities and inequalities concerning generalized Fibonacci and Lucas numbers.

Lemma 1. Let $n>2, P \geq 1$, and $Q<-1$. Then

$$
\begin{aligned}
& (P-Q) U_{n-2}<U_{n}<(P-Q) U_{n-1} \\
& (P-Q) V_{n-2}<V_{n}<(P-Q) V_{n-1}
\end{aligned}
$$

Proof. Using the recursive formula,

$$
(P-Q) U_{n-2}<U_{n}=P U_{n-1}-Q U_{n-2}<(P-Q) U_{n-1}
$$

It is easy to check that the above inequality holds. Proceed as in the proof of U_{n}. We have a similar result of V_{n}.

Lemma 2. Let $P \geq 1, Q<-1$. For $n \geq 2 k>0$.

$$
\begin{aligned}
& U_{n}>(-Q)^{k} U_{n-2 k} \\
& V_{n}>(-Q)^{k} V_{n-2 k}
\end{aligned}
$$

Proof. Proceed by induction on k. It is easy to check that the above inequality holds when $k=1$. Now, assume the inequality holds for $k=m$. By the induction method.

$$
U_{n}>(-Q)^{m} U_{n-2 m}
$$

Therefore, it follows that

$$
U_{n}=P U_{n-1}-Q U_{n-2}>-Q U_{n-2}>(-Q)^{m+1} U_{n-2(m+1)}
$$

Proceed as in the proof of U_{n}. We have a similar result of V_{n}.
Lemma 3. Let n and k be positive integers. The following identities hold

- (a) $U_{m} V_{k}=U_{m+k}+Q^{k} U_{m-k} \quad(m \geq k) ;$
- (b) $U_{m} V_{k}=U_{m+k}-Q^{m} U_{k-m} \quad(k \geq m)$;
- (c) $V_{m} V_{k}=V_{m+k}+Q^{k} V_{m-k} \quad(m \geq k \geq 1)$;
- (d) $D U_{m} U_{k}=V_{m+k}+Q^{k} V_{m-k} \quad(m \geq k \geq 1)$.

Proof.

- (a) Using (3),

$$
U_{m} V_{k}=\frac{\alpha^{m}-\beta^{m}}{\alpha-\beta} \times\left(\alpha^{k}+\beta^{k}\right)=\frac{\alpha^{m+k}-\beta^{m+k}}{\alpha-\beta}+(\alpha \beta)^{k} \frac{\alpha^{m-k}-\beta^{m-k}}{\alpha-\beta}
$$

- (b) It follows by the same method as in (a).
- (c) Using (3),

$$
V_{m} V_{k}=\left(\alpha^{m}+\beta^{m}\right)\left(\alpha^{k}+\beta^{k}\right)=\left(\alpha^{m+k}+\beta^{m+k}\right)+(\alpha \beta)^{k}\left(\alpha^{m-k}+\beta^{m-k}\right)
$$

- (d) Using (3),

$$
D U_{m} U_{k}=\left(\alpha^{m+k}+\beta^{m+k}\right)-(\alpha \beta)^{k}\left(\alpha^{m-k}+\beta^{m-k}\right)
$$

Corollary 1. $V_{k}=U_{k+1}-Q U_{k-1}$.
Proof. It is easy to check Corollary 1 holds if one takes $m=1$ in formula (b) of Lemma 3.

Lemma 4. Let $n \geq k+1>0$ and $Q<-1$. Then

$$
U_{n}=U_{k+1} U_{n-k}-Q U_{k} U_{n-k-1}
$$

and

$$
V_{n}=U_{k+1} V_{n-k}-Q U_{k} V_{n-k-1} .
$$

Proof. Proceed by induction on k. It is easy to check that the above identities hold when $k=1$. Now, assume the equation holds for integer k. By the induction method.

$$
\begin{aligned}
U_{n} & =U_{k+1} U_{n-k}-Q U_{k} U_{n-k-1} \\
& =U_{k+1}\left(P U_{n-k-1}-Q U_{n-k-2}\right)-Q U_{k} U_{n-k-1} \\
& =U_{k+2} U_{n-(k+1)}-Q U_{k+1} U_{n-(k+1)-1}
\end{aligned}
$$

Proceed as in the proof of U_{n}. We have a similar result of V_{n}.
Corollary 2. For all $a, b, c, a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{N}$. The following identities hold:

- (a)

$$
\begin{equation*}
U_{a+b-1}=U_{a} U_{b}-Q U_{a-1} U_{b-1} \tag{13}
\end{equation*}
$$

- (b)

$$
\begin{equation*}
U_{a+b-2}=\frac{1}{P}\left[U_{a} U_{b}-Q^{2} U_{a-2} U_{b-2}\right] \tag{14}
\end{equation*}
$$

- (c)

$$
\begin{equation*}
U_{a+b+c-3}=\frac{1}{P}\left[U_{a} U_{b} U_{c}-P Q U_{a-1} U_{b-1} U_{c-1}+Q^{3} U_{a-2} U_{b-2} U_{c-2}\right] \tag{15}
\end{equation*}
$$

- (d) If $n \geq 3, P>1$, and $Q<-1$, then

$$
\begin{equation*}
U_{a_{1}+\cdots+a_{n}-n} \geq \frac{1}{P} U_{a_{1}} U_{a_{2}} \cdots U_{a_{n}} \tag{16}
\end{equation*}
$$

Proof.

- (a) Formula (13) follows easily from Lemma 4, if one takes $k+1=a$ and $n-k=b$.
- (b) Apply (13) to (14),

$$
\begin{aligned}
U_{a+b-2} & =U_{a-1} U_{b}-Q U_{a-2} U_{b-1} \\
& =\frac{1}{P}\left[U_{a} U_{b}-Q U_{a-2}\left(-U_{b}+P U_{b-1}\right)\right] \\
& =\frac{1}{P}\left[U_{a} U_{b}-Q^{2} U_{a-2} U_{b-2}\right] .
\end{aligned}
$$

- (c) Combining Lemma 4 with (13) and (14),

$$
\begin{aligned}
U_{a+b+c-3} & =U_{a+b-1} U_{c-1}-Q U_{a+b-2} U_{c-2} \\
& =\frac{1}{P}\left[U_{a} U_{b} U_{c}-P Q U_{a-1} U_{b-1} U_{c-1}+Q^{3} U_{a-2} U_{b-2} U_{c-2}\right]
\end{aligned}
$$

- (d) From (15), (16) holds. Then

$$
\begin{aligned}
U_{a_{1}+a_{2}+\cdots+a_{n+1}-(n+1)} & =U_{\left[a_{1}+a_{2}+\cdots+a_{n}-n\right]+a_{n+1}-1} \\
& =U_{a_{1}+a_{2}+\cdots a_{n}-n} U_{a_{n+1}}-Q U_{a_{1}+a_{2}+\cdots+a_{n}-(n+1)} U_{a_{n+1}-1} \\
& \geq U_{a_{1}+a_{2}+\cdots+a_{n}-n} U_{a_{n+1}} \\
& \geq \frac{1}{P} U_{a_{1}} U_{a_{2}} \cdots U_{a_{n}} U_{a_{n+1}} .
\end{aligned}
$$

Lemma 5. Assume $P>2, Q<-1$, and $P^{2}>-Q$. For all $a, b, c \in \mathbb{N}$. The following conditions hold

- (a)

$$
\begin{equation*}
U_{a+b-2}<U_{a} U_{b} \quad(a+b \geq 2) \tag{17}
\end{equation*}
$$

- (b)

$$
\begin{equation*}
U_{a+b+c-3}<U_{a} U_{b} U_{c} \quad(a+b+c \geq 3) \tag{18}
\end{equation*}
$$

Proof.

- (a) It is easy to check that (17) holds for $a, b<2$. Now, assume $a, b \geq 2$. By Lemma 2 .

$$
U_{a} U_{b}>-Q^{2} U_{a-2} U_{b-2}
$$

Combine with (14),

$$
P U_{a+b+c-2}<2 U_{a} U_{b}
$$

implies $U_{a+b-2}<U_{a} U_{b}$.

- (b) Since

$$
\begin{aligned}
U_{a} U_{b} U_{c} & =\left(P U_{a-1}-Q U_{a-2}\right)\left(P U_{b-1}-Q U_{b-2}\right)\left(P U_{b-1}-Q U_{b-2}\right) \\
& >P^{3} U_{a-1} U_{b-1} U_{c-1}+Q^{3} U_{a-2} U_{b-2} \\
& >-P Q U_{a-1} U_{b-1} U_{c-1}+Q^{3} U_{a-2} U_{b-2}
\end{aligned}
$$

So

$$
P U_{a+b+c-3}<2 U_{a} U_{b} U_{c}
$$

Since $P>2$. It is easy to show that (18) holds.

Theorem 1 (Primitive divisor theorem of Carmichael [15]). If α and β are real and $n \neq 1,2,6$, then U_{n} has a primitive divisor except when

$$
n=12, \alpha+\beta= \pm 1, \alpha \beta=-1
$$

3. Main Theorems

Firstly, we begin this section by solving Equations (4)-(9) for $P>1$ and $Q<-1$. Then, we solve (10)-(12) for $P>2, Q<-1$, and $P^{2}>-Q$.

Theorem 2. Let $n>m \geq k$. Equation (4) holds if and only if $n=2, m=k=1$ and $n=2 m=2 k$.

Proof. Equation (4) holds when $n=2$ and $m=k=1$. Thus, $m>2$ and $k>1$.
If $m=k$. Then $U_{n}=U_{2 k}$ and $n=2 m=2 k$.
If $m-k=1$ and k is even. Then $n \geq 2 k+2$. By Lemma 2 .

$$
\begin{aligned}
U_{2 k+1}+Q^{k} & =U_{n}=U_{n-1}-Q U_{n-2} \geq U_{2 k+1}-Q U_{2 k} \\
& >U_{2 k+1}-Q P(-Q)^{k-1}>U_{2 k+1}+Q^{k}
\end{aligned}
$$

If $m-k=1$ and k is odd. Then $2 k+1 \geq n+1$. By Lemma 2 .

$$
U_{n}-Q^{k}=U_{2 k+1}=U_{2 k}-Q U_{2 k-1} \geq U_{n}-Q U_{2 k-1}>U_{n}-Q^{k}
$$

If $k-m=1$ and m is odd. Then $n \geq 2 m+2$. By Lemma 2 .

$$
\begin{aligned}
U_{2 m+1}-Q^{m} & =U_{n}=U_{n-1}-Q U_{n-2} \geq U_{2 m+1}-Q U_{2 m} \\
& >U_{2 m+1}-Q(-Q)^{m-1}=U_{2 m+1}-Q^{m}
\end{aligned}
$$

If $k-m=1$ and m is even. Then $2 m+1 \geq n+1$. By Lemma 2 .

$$
U_{n}+Q^{m}=U_{2 m+1}=U_{2 m}-Q U_{2 m-1} \geq U_{n}-Q U_{2 m-1}>U_{n}+Q^{m}
$$

If $m-k>1$ and k is even. Then $n \geq m+k+1$. By Lemma 2 .

$$
\begin{aligned}
U_{m+k}+Q^{k} U_{m-k} & =U_{n}=U_{n-1}-Q U_{n-2} \geq U_{m+k}-Q U_{m+k-1} \\
& >U_{m+k}+(-Q)^{k} U_{m-k+1}>U_{m+k}+Q^{k} U_{m-k}
\end{aligned}
$$

If $m-k>1$ and k is odd. Then $m+k \geq n+1$. By Lemma 2 .

$$
\begin{aligned}
U_{n}-Q^{k} U_{m-k} & =U_{m+k}=U_{m+k-1}-Q U_{m+k-2} \geq U_{n}-Q U_{m+k-1} \\
& >U_{n}+(-Q)^{k} U_{m-k+1}>U_{n}-Q^{k} U_{m-k}
\end{aligned}
$$

If $k-m>1$ and m is odd. Then $n \geq m+k+1$. By Lemma 2 .

$$
\begin{aligned}
U_{m+k}-Q^{m} U_{k-m} & =U_{n}=U_{n-1}-Q U_{n-2} \geq U_{m+k}-Q U_{m+k-1} \\
& >U_{m+k}+(-Q)^{m} U_{k-m+1}>U_{m+k}+(-Q)^{m} U_{k-m}
\end{aligned}
$$

If $k-m>1$ and m is even. Then $m+k \geq n+1$. By Lemma 2 .

$$
\begin{aligned}
U_{n}+Q^{m} U_{k-m} & =U_{m+k}=U_{m+k-1}-Q U_{m+k-2} \geq U_{n}-Q U_{m+k-2} \\
& >U_{n}+(-Q)^{m} U_{k-m}
\end{aligned}
$$

Theorem 3. Let $n>m \geq k$. Equation (5) possesses no solution.
Proof. If $U_{k}=U_{3}$. By Lemma 4.

$$
U_{3} U_{n-2}<U_{n}=U_{3} U_{n-2}-Q U_{n-3}<U_{3} U_{n-1}
$$

Then $U_{n-2}<U_{m}<U_{n-1}$.
If $U_{k}=U_{4}$. By Lemma 4 .

$$
U_{4} U_{n-3}<U_{n}<U_{4} U_{n-2}
$$

Then $U_{n-3}<U_{m}<U_{n-2}$.
It follows from induction and Lemma 4 that

$$
U_{n-1} U_{2}<U_{n}=U_{3} U_{n-2}-Q U_{n-3}<U_{n-1} U_{3}
$$

Then $U_{2}<U_{m}<U_{3}$.
Theorem 4. Let $n>m \geq k$. Equation (6) holds if and only if $n=4, m=2$, and $k=1$.
Proof. If $n=4, m=2$, and $k=1$. Equation (6) always holds. Suppose $m \geq k>1$. By Lemma 3 (c) and Corollary 1. Equation (6) becomes

$$
\begin{aligned}
U_{n} & =U_{m+k+1}-Q U_{m+k-1}+Q^{k} V_{m-k} \\
& =U_{m+k+1}-Q U_{m+k-1}+Q^{k} U_{m-k+1}-Q^{k+1} U_{m-k-1}
\end{aligned}
$$

By Lemma 2

$$
\begin{aligned}
-Q U_{m+k-1} & =-P Q U_{m+k-2}+Q^{2} U_{m+k-1} \\
& >-Q^{k+1} U_{m-k-1}+Q^{k} U_{m-k+1}=Q^{k} V_{m-k}
\end{aligned}
$$

Then $n \geq m+k+2$. By Lemma 2

$$
\begin{gathered}
P Q^{2} U_{m+k-3}>Q^{k} U_{m-k+1} \\
-Q^{3} U_{m+k-4}>-Q^{k+1} U_{m-k}>-Q^{k+1} U_{m-k-1} \\
U_{m+k+2}=P U_{m+k+1}-P Q U_{m+k-1}+P Q^{2} U_{m+k-3}-Q^{3} U_{m+k-4} \\
>U_{m+k+1}-Q U_{m+k-1}+Q^{k} U_{m-k+1}=Q^{k} V_{m-k}
\end{gathered}
$$

Then $n<m+k+2$. It is a contradiction.
Theorem 5. Let $n>m \geq k$. Equation (7) possesses no solution.
Proof. If $U_{k}=U_{3}$. By Lemma 4 .

$$
U_{3} V_{n-2}<V_{n}=U_{3} V_{n-2}-Q V_{n-3}<U_{3} V_{n-1} .
$$

Then $V_{n-2}<V_{k}<V_{n-1}$. If $U_{k}=U_{4}$. By Lemma 4 .

$$
U_{4} U_{n-3}<U_{n}<U_{4} U_{n-2}
$$

Then $V_{n-3}<V_{k}<V_{n-2}$. Thus, we obtain the contradiction. It follows from induction and Lemma 4 that

$$
U_{n-1} V_{2}<V_{n}<U_{n-1} V_{3}
$$

Then $V_{2}<V_{k}<V_{3}$. Thus, no integer k makes Equation (7) hold.
Theorem 6. Let $n>m \geq k$. Equation (8) possesses no solution.
Proof. Consider $V_{n}=V_{m+k}+Q^{k} V_{m-k}$ by Lemma 3 (c). If k is even. Then

$$
\begin{gathered}
n \geq m+k+1 \\
V_{m+k+1} \leq V_{m+k}+Q^{k} V_{m-k}<P V_{m+k}+Q^{k} V_{m-k}
\end{gathered}
$$

which is equal to

$$
V_{m+k-1}<-Q^{k-1} V_{m-k}
$$

However,

$$
V_{m+k-1}>(-Q)^{k-1} V_{m-k+1}>(-Q)^{k-1} V_{m-k}
$$

a contradiction.
If k is odd. Then $n \leq m+k-1$. By Lemma 2 and Lemma 3 (c).

$$
V_{n}-Q^{k} V_{m-k}=V_{m+k}=P V_{m+k-1}-Q V_{m+k-2}>V_{n}-Q V_{m+k-2}>V_{n}-Q^{k} V_{m-k} .
$$

Theorem 7. Let $n>m \geq k$. Equation (9) possesses no solution.
Proof. By Lemma 3 (d). We can transform Equation (9) into

$$
\begin{equation*}
D V_{n}=V_{m+k}-Q^{k} V_{m-k} \tag{19}
\end{equation*}
$$

By Lemma 2. We have $D V_{n}<2 V_{m+k}$. This implies that $n<m+k$.

Since

$$
\begin{equation*}
V_{m+k}=P V_{m+k-1}-Q V_{m+k-2}=\left(P^{3}-2 P Q\right) V_{m+k-3}+Q^{2}-P^{2} Q V_{m+k-4} . \tag{20}
\end{equation*}
$$

We plug (20) back into (19).

$$
\left(P^{2}-4 Q\right) V_{n}=\left(P^{3}-2 P Q\right) V_{m+k-3}+\left(Q^{2}-P^{2} Q\right) V_{m+k-4}-Q^{k} V_{m-k}
$$

By Lemma 2.

$$
\left(Q^{2}-P^{2} Q\right) V_{m+k-4}>(-Q)^{2} V_{m+k-4}>-Q^{k} V_{m-k} .
$$

This implies

$$
\left(P^{2}-4 Q\right) V_{n}>\left(P^{3}-2 P Q\right) V_{m+k-3} .
$$

We see that $n>m+k-3$. The proof falls into two conditions.
If $n=m+k-1$. Then

$$
\left(P^{2}-4 Q\right) V_{m+k-1}=V_{m+k}-Q^{k} V_{m-k}
$$

It can be deduced that

$$
-Q V_{m+k-1}<(-Q)^{k} V_{m-k} .
$$

However, we have

$$
-Q V_{m+k-1}>(-Q)^{k} V_{m+k+1}
$$

by Lemma 2.
If $n=m+k-2$. Then

$$
\left(P^{2}-4 Q\right) V_{m+k-1}=V_{m s+k}-Q^{k} V_{m-k}
$$

which is equal to

$$
\begin{equation*}
-3 Q V_{m+k-2}=-P Q V_{m+k-3}-Q^{k} V_{m-k} \tag{21}
\end{equation*}
$$

The left-hand side of (21) is equal to

$$
-3 Q V_{m+k-2}=-3 P Q V_{m+k-3}+3 Q^{2} V_{m+k-4}
$$

Thus, we obtain

$$
-3 P Q V_{m+k-3}+3 Q^{2} V_{m+k-4}=-P Q V_{m+k-3}-Q^{k} V_{m-k}
$$

It is a contradiction by Lemma 2. Since

$$
\begin{gathered}
-3 P Q V_{m+k-3}>-P Q V_{m+k-3} \\
3 Q^{2} V_{m+k-4}>Q^{2} V_{m+k-4}>-Q^{k} V_{m-k} .
\end{gathered}
$$

Theorem 8. Let $n>m \geq k$. Equation (5) possesses no solution.
Proof. If triple (a, b, c) is a solution of the equation. Then $b \mid c$ holds for $U_{b} \mid U_{c}$. Clearly, suppose $c=k b$ for $k \geq 2$.

$$
U_{a} U_{b}=U_{k b} \geq U_{2 b}=U_{b} U_{b+1}-Q U_{b} U_{b-1}=P U_{b}^{2}-2 Q U_{b} U_{b-1}>P U_{b}^{2} \geq U_{a} U_{b}
$$ which is impossible.

Theorem 9. Let a, b, c, d be natural numbers. Equation $U_{a} U_{b}=U_{c} U_{d}$ holds if and only if $U_{a}=U_{c}$ and $U_{b}=U_{d}, U_{a}=U_{d}$, and $U_{b}=U_{c}$.

Proof. If $a<b, c, d \leq 3$. Then $U_{b}=U_{c} U_{d}$. Applying Theorem 8. We know that either $U_{a}=U_{c}=1$ and $U_{b}=U_{d}$ or $U_{a}=U_{d}=1$ and $U_{b}=U_{c}$. Next, we assume that $3 \leq a \leq b, c, d$. Apply (14),

$$
\begin{aligned}
U_{a+b-2} & =\frac{1}{P}\left[U_{a} U_{b}+Q^{2} U_{a-2} U_{b-2}\right] \\
& <\frac{1}{P} U_{a} U_{b} \leq U_{a} U_{b}=U_{c} U_{d} \\
& =U_{c+d-1}+Q U_{c-2} U_{d-2} \\
& <U_{c+d-1} .
\end{aligned}
$$

Thus,

$$
U_{a+b-2}<U_{a} U_{b}<U_{c+d-1}
$$

It is clear that $a+b \leq c+d$. The proof of $c+d \leq a+b$ follows in a similar manner. Thus, we obtain $a+b=c+d$. Repeatedly using (13),

$$
\begin{array}{rlrl}
& U_{a} U_{b} & =U_{c} U_{d} \\
& \Rightarrow & U_{a-1} U_{b-1} & =U_{c-1} U_{d-1} \\
& & & \\
& \Rightarrow \quad U_{2} U_{b-a+2} & =U_{c-a+2} U_{d-a+2} \\
& \Rightarrow \quad U_{b-a+2} & =U_{c-a+2} U_{c-a+2}
\end{array}
$$

By Theorem 8. We have $U_{c-a+2}=1$ or $U_{c-a+2}=1$, which implies that either $a=c$ and $b=d$ or $a=d$ and $b=c$.

Theorem 10. Let a, b, c, d, and e be natural numbers. Equation $U_{a} U_{b} U_{c}=U_{d} U_{e}$ has no solution with $3 \leq a, b, c, d, e$.

Proof. If $a, b, c, d, e \in \mathbb{N}$. We assume that $(a, b, c ; d, e)$ is a solution of the equation $U_{a} U_{b} U_{c}=$ $U_{d} U_{e}$. Suppose $3 \leq a, b, c, d, e$. By (15),

$$
\begin{aligned}
U_{a+b+c-2} & =U_{a} U_{b+c-1}-Q U_{a-1} U_{b+c-2} \\
& =U_{a} U_{b} U_{c}-Q U_{a} U_{b-1} U_{c-1}-Q U_{a-1} U_{b+c-2} \\
& >U_{a} U_{b} U_{c}
\end{aligned}
$$

By (17),

$$
U_{d+e-2}<U_{d} U_{e}=U_{a} U_{b} U_{c}<U_{a+b+c-2}
$$

By (18),

$$
U_{a+b+c-3}<U_{a} U_{b} U_{c}=U_{d} U_{e}<U_{d+e-1}
$$

which implies that $a+b+c-3=d+e-2$.

$$
\begin{aligned}
U_{d+e-6} & <U_{d-2} U_{e-2}=U_{d+e-5}+Q U_{d-3} U_{e-2} \\
& =U_{a+b+c-6}+Q U_{d-3} U_{e-2} \\
& <U_{a+b+c-6}=\frac{1}{P} U_{a+b+c-5}+\frac{Q}{P} U_{a+b+c-7} \\
& <\frac{1}{P} U_{a+b+c-5} \\
& <U_{a+b+c-8}
\end{aligned}
$$

Then, we have $d+e-6<a+b+c-8$, which is impossible.
Let $P \geq 1, Q<0$, and $\operatorname{gcd}(P, Q)=1$. Next, we solve Equations (10)-(12) using the primitive divisor theorem of Carmichael.

Theorem 11. The only nontrivial solutions of Equation (10) with $a>1, b_{i}>1$. and $n \geq 2$ are

$$
(2 ; 2 \cdots 2),\left(6 ; 3^{3}, 2 \cdots 2\right),(6 ; 3,2 \cdots 2),\left(12 ; 6,4^{2}, 3,2 \cdots 2\right),\left(12 ; 4^{2}, 3^{4}, 2 \cdots 2\right)
$$

Here, nontrivial solution means that $n \geq 2, b_{i} \leq 1$ for all $i=1, \ldots, n$, and $a>1$.
Proof. If $a=12, P=1$, and $Q=-1$. Then, we obtain

$$
U_{12}=144, \quad U_{6}=8, \quad U_{4}=3, \quad U_{3}=2
$$

Note that

$$
144=2^{4} 3^{2}
$$

Then

$$
\begin{gathered}
U_{12}=U_{6} U_{4}^{2} U_{3} U_{2}^{k} \\
U_{12}=U_{4}^{2} U_{3}^{4} U_{2}^{k}
\end{gathered}
$$

If $m \geq 7$ or $m=3,4,5$. By Theorem 1, there exists an odd primitive prime divisor p of U_{a}. We see p does not divide any generalized Fibonacci numbers U_{k} with index less than a. Next, consider $m=2,6$. If $m=2$. Then

$$
U_{2}=U_{2} U_{2} \cdots U_{2}
$$

holds if and only if $U_{2}=P=1$.
If $a=6$. Assume Equation (10) has a solution $\left(n_{1}, n_{2}, \cdots, n_{s}\right)$ for $6>n_{1} \geq n_{2} \cdots \geq n_{s}$, $s \geq 2$, and $n_{s}>1$. Obviously, $n_{i} \neq 5$. If $n_{1}=4$. Since $\operatorname{gcd}\left(U_{6}, U_{4}\right)=U_{2}$. It follows that $U_{4}=U_{2}$.

Then

$$
U_{4}-U_{2}=P\left(P^{2}-2 Q-1\right)=0
$$

Because $P \geq 1$ and $Q<0$, Equation (10) has no solution. If $n_{1}=n_{2}=3$. Since $U_{2}=P$.

$$
U_{3}=P^{2}-Q \mid P^{2}-3 Q
$$

Then

$$
U_{3}=P^{2}-Q \mid-2 Q
$$

It follows that $P^{2}=-Q, P^{2}-3 Q=2 U_{3}$ and

$$
U_{6}=2 U_{3}^{2} U_{2}
$$

If $U_{3}=P^{2}-Q=-2 Q=2$. We obtain $P=1 Q=-1$ and

$$
U_{6}=U_{3}^{3} U_{2}^{k}
$$

If $U_{2}=P=2$ and $Q=-4$. It is contradict to $\operatorname{gcd}(P, Q)=1$.
If $n_{1}=3$ and $n_{2}=2$. We have

$$
U_{6}=U_{3} U_{2}^{l+1}
$$

and

$$
U_{2}^{l}=P^{l}=P^{2}-3 Q . \quad(l>2)
$$

However, it is contradict to $\operatorname{gcd}(P, Q)=1$ if $P \neq 1$ and $P \neq 3$. If $P=1$.

$$
P^{2}-3 Q=1
$$

which has no solution with $P \geq 1$ and $Q<0$. If $P=3$.

$$
81-36 Q+3 Q^{2}=3^{l+2}-3^{l} Q
$$

which has a solution with $P \geq 1$ and $Q<-6$.
If $n_{1}=2$. Then $U_{2}=P$ divides

$$
\frac{U_{6}}{U_{2}}=P^{4}-4 P^{2} Q+3 Q^{2}
$$

Observe that $\operatorname{gcd}\left(U_{6}, U_{2}\right)=U_{2}=P$, which is also contradict to P not divides

$$
\frac{U_{6}}{U_{2}}=P^{4}-4 P^{2} Q+3 Q^{2}
$$

Theorem 12. Equation (11) has a finite nontrivial solution. Here, nontrivial solution means that $n \geq 2, b_{i} \leq 1$ for all $i=1, \ldots, n$ and $a>1$.

Proof.

Case $1 a$ is odd and $a \geq 6$. By Theorem 1. There exists an odd primitive divisor p of U_{a}. Therefore, p does not divide any generalized Lucas number with index less than a. Since $p \mid U_{a}$, we see that U_{a} is not a product of generalized Lucas numbers.

Case $2 a=2^{l} m, l \geq 1, m \geq 5$ and m is odd. By Theorem 1. There exists an odd primitive divisor p of U_{m}. Moreover, p does not divide any generalized Lucas number with index less than a. Since $p \mid U_{m}$ and $U_{m} \mid U_{a}$. We obtain U_{a} is not a product of generalized Lucas numbers with index less than a.

Case $3 a=3 \cdot 2^{l}$

$$
\begin{equation*}
U_{3 \cdot 2^{l}}=V_{3 \cdot 2^{l-1}} V_{3 \cdot 2^{l-2}} \cdots V_{6} V_{3} U_{3} \tag{22}
\end{equation*}
$$

Since

$$
U_{3}=P^{2}-Q>P=V_{1}
$$

Equation (11) holds if and only if

$$
U_{3}=P^{2}-Q=V_{0}=2
$$

Which contradict to $b_{i} \geq 2$.
Case $4 a=2^{l}$

$$
\begin{equation*}
U_{2^{l}}=V_{2^{l-1}} V_{2^{l-2}} \cdots V_{2} V_{1}(l \geq 2) \tag{23}
\end{equation*}
$$

We show that the representation of $U_{2^{l}}$ is unique for $l \geq 0$. It is easy to check that

$$
U_{2}=V_{1} U_{1} .
$$

Consider the equation

$$
\begin{equation*}
U_{2^{l}}=V_{a_{1}} V_{a_{2}} \cdots V_{a_{k}}=V_{2^{l-1}} V_{2^{l-2}} \cdots V_{2} V_{1} . \tag{24}
\end{equation*}
$$

where $l \geq 2, a^{1} \geq a^{2} \cdots \geq a^{k}$. By the identity $U_{2 m}=U_{m} V_{m}$. Transform (24) into

$$
\begin{equation*}
U_{2^{l-1}} U_{2 a_{1}} V_{a_{2}} \cdots V_{a_{k}}=U_{a_{1}} U_{2^{l}} V_{2^{l-2}} \cdots V_{2} V_{1} \tag{25}
\end{equation*}
$$

If $2^{l}>2 a_{1}$. By Theorem 1 , there exists a prime p dividing 2^{l} but p does not divide any term on the left-hand side of Equation (25). It is a contradiction. Similarly, $2 a_{1}>2^{l}$ leads to a contradiction. Therefore, $2 a_{1}=2^{l}$. Equation (24) is reduced to

$$
V_{a_{2}} \cdots V_{a^{k}}=V_{2^{l-2}} V_{2^{l-2}} \cdots V_{2} V_{1} .
$$

Repeat the same process, we obtain

$$
a_{2}=2^{l-2}, \quad a_{3}=2^{l-3}, \ldots
$$

Equation (24) is reduced to

$$
V_{2} V_{1}=V_{a_{k}} \cdots V_{a_{i}} .
$$

It is obvious that $a_{k}=1, a_{i}=2$.
By Theorem 11, Equation (12) has a nontrivial solution if and only if $P=1$ and $Q=-1$.

Theorem 13. The only nontrivial solutions of Equation (12) with $1<a_{1} \leq a_{2} \leq \cdots \leq a_{m}$, $1<b_{1} \leq b_{2} \leq \cdots \leq b_{n}$ are

$$
\begin{aligned}
& (3, \ldots, 3 ; 6, \ldots, 6) \quad, \quad m=3 n \\
& (\overbrace{3, \ldots, 3}^{a}, \overbrace{6, \ldots, 6}^{b}, 4, \ldots, 4 ; 12, \ldots, 12) \quad, \quad a+3 b=4 n \\
& (\overbrace{3, \ldots, 3}^{a}, 4, \ldots, 4 ; \overbrace{6, \ldots, 6}^{b}, 12, \ldots, 12) \quad, \quad a=3 b+4 n \\
& (\overbrace{6, \ldots, 6}^{a}, 4, \ldots, 4 ; \overbrace{3, \ldots, 3}^{b}, 12, \ldots, 12) \quad, \quad 3 a=b+4 n \\
& (3, \ldots, 3,4, \ldots, 4 ; \overbrace{12, \ldots, 12}^{a} \overbrace{6, \ldots, 6}^{b}), \quad 3 b+6 a=m
\end{aligned}
$$

Here, nontrivial solution means that $a_{i}, b_{j}>1$ and $a_{i} \neq b_{j}$ for all $i=1, \ldots, m$ and $j=1, \ldots, n$.

4. Conclusions

In this paper, we mainly solve some Diophantine equations of the form $A_{n_{1}} \cdots A_{n_{k}}=$ $B_{m_{1}} \cdots B_{m_{r}} C_{t_{1}} \cdots C_{t_{s}}$, where $\left(A_{n}\right),\left(B_{m}\right)$, and $\left(C_{t}\right)$ are generalized Fibonacci or Lucas numbers. Our theorems show that no generalized Fibonacci numbers can be expressed as the product of generalized Fibonacci or Lucas numbers except the trivial cases. In general, two different products of generalized Fibonacci numbers are not equal except the trivial cases.

Author Contributions: All authors contributed equally to this work. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the Foundation of Liaoning Educational Committee, Project 2019LNJC08.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.
Acknowledgments: The authors would like to thank the reviewers for their valuable feedback and constructive comments which helped improve the quality of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mortici, C.; Rassias, M.T.; Jung, S.M. On the stability of a functional equation associated with the Fibonacci numbers. Abstr. Appl. Anal. 2014, 2014, 546046. [CrossRef]
2. Jung, S.M.; Rassias, M.T. A linear functional equation of third order associated with the Fibonacci numbers. Abstr. Appl. Anal. 2014, 2014, 137468. [CrossRef]
3. Andrica, D.; Bagdasar, O. On Generalized Lucas Pseudoprimality of Level k. Gac. R. Soc. Mat. Esp. 2021, 9, 838. [CrossRef]
4. Koshy, T. Fibonacci and Lucas Numbers with Applications; Wiley-Interscience: New York, NY, USA, 2001.
5. DeLio, T. lannis Xenakis ${ }^{\prime \prime \prime}$ Nomos Alpha ${ }^{\prime \prime}$: The Dialectics of Structure and Materials. J. Math. Music 1980, 24, 63-95.
6. Bazzanella, D.; Scala, A.D.; Dutto, S.; Murru, U. Primality tests, linear recurrent sequences and the Pell equation. Ramanujan J. 2022, 57, 755-768. [CrossRef]
7. Carlitz, L. A note on Fibonacci numbers. Fibonacci Quart. 1964, 2, 15-28.
8. Farrokhi, D.G.M. Some remarks on the equation $F_{n}=k F_{m}$ in Fibonacci. J. Integer Seq. 2007, 10, 57.
9. Keskin, R.; Demirtürk Bitim, B. Fibonacci and Lucas congruences and their applications. Acta Math. Sin. (Engl. Ser.) 2011, 27, 725-736. [CrossRef]
10. Keskin, R.; Siar, Z. On the Lucas sequence equations $V_{n}=k V_{m}$ and $U_{n}=k U_{m}$. Colloq. Math. 2013,130, 27-38. [CrossRef]
11. Pongsriiam, P. Fibonacci and Lucas numbers which are one away from their products. Fibonacci Quart. 2017, 55, 29-40.
12. Pongsriiam, P. Factorization of Fibonacci numbers into products of Lucas numbers and related results. JP J. Algebra Number Theory Appl. 2016, 38, 363-372. [CrossRef]
13. Altassan, A.; Luca, F. Markov type equations with solutions in Lucas sequences. Mediterr. J. Math. 2021, 18, 87. [CrossRef]
14. Adédji, K.N.; Luca, F.; Togbé, A. On the solutions of the Diophantine equation $F_{n} \pm \frac{a\left(10^{m}-1\right)}{9}=k!J$. Number Theory 2022. [CrossRef]
15. Carmichael, R.D. On the numerical factors of the arithmetic forms $\alpha^{n} \pm \beta^{n}$. Ann. Math. 1913, 15, 49-70. [CrossRef]
