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Abstract: Carlitz solved some Diophantine equations on Fibonacci or Lucas numbers. We extend
his results to the sequence of generalized Fibonacci and Lucas numbers. In this paper, we solve
the Diophantine equations of the form An1 · · · Ank = Bm1 · · · Bmr Ct1 · · ·Cts , where (An), (Bm), and
(Ct) are generalized Fibonacci or Lucas numbers. Especially, we also find all solutions of symmetric
Diophantine equations Ua1 Ua2 · · ·Uam = Ub1

Ub2 · · ·Ubn , where 1 < a1 ≤ a2 ≤ · · · ≤ am, and
1 < b1 ≤ b2 ≤ · · · ≤ bn.

Keywords: Fibonacci numbers; Lucas numbers; Diophantine equation

1. Introduction

Let P, Q be nonzero coprime integers with D = P2 − 4Q 6= 0. The sequences of gener-
alized Fibonacci numbers and Lucas numbers, Un and Vn satisfy the following recurrence
relation:

U0 = 0, U1 = 1, Un = PUn−1 −QUn−2 (n ≥ 2) (1)

V0 = 2, V1 = P, Vn = PVn−1 −QVn−2 (n ≥ 2) (2)

Their close forms are

Un =
αn − βn

α− β
, Vn = αn + βn. (3)

where

α =
P +

√
P2 − 4Q
2

and β =
P−

√
P2 − 4Q
2

are roots of x2 − Px + Q = 0.
For m, n ∈ N. It is well known that these numbers have the following properties

• (a) gcd(Um, Un) = Ud;
• (b) If m | n, then Um | Un;
• (c) If Um | Un and m > 2, then m | n.

The generalized Fibonacci and Lucas numbers include many famous integer sequences
such as Fibonacci numbers, Lucas numbers, Pell numbers, and Jacobsthal numbers. Their
fascinated properties lead to abundant applications in totally surprising and unrelated
fields (cf. [1–6]).

Consider equations:
Un = UmVk, (4)

Un = UmUk, (5)

Un = VmVk, (6)

Vn = UmVk, (7)

Vn = VmVk, (8)
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Vn = UmUk, (9)

where n > m ≥ k ≥ 0, P > 1, and Q < −1.
In 1964, L. Carlitz [7] solved the above equations for P = 1 and Q = −1, i.e., Fibonacci

numbers and Lucas numbers. After half a century, M. Farrokhi D. G. [8] showed equation
Fn = kFm has at most one solution (n, m) for k > 1. He gives the complete nontrivial
solutions of the equation

Fm = Fn1 Fn2 Fn3 · · · Fnk .

Moreover, he also gives the complete nontrivial solutions of the symmetric Diophan-
tine equation

Fm1 Fm2 · · · Fmk = Fn1 Fn2 Fn3 · · · Fns .

In 2011, as a byproduct of Lucas square classes, R. Keskin and B. Demirturk [9]
rediscovered that Ln = LmLr is impossible if m, r > 1. Two years later, R. Keskin and
Z. Siar [10] proved that when P > 1 and Q = ±1, there is no generalized Lucas number Vn
such that Vn = VmVr for m, r > 1 as a byproduct of Lucas square classes. Lastly, they show
that there is no generalized Fibonacci number Un such that Un = UmUr for Q = ±1 and
1 < r < m. With the help of Carmichael’s primitive divisor theorem, P. Pongsriiam [11]
solved equations:

Fa
m = Fn1 Fn2 Fn3 · · · Fnk ,

Fa
m = Ln1 Ln2 Ln3 · · · Lnk ,

La
m = Fn1 Fn2 Fn3 · · · Fnk ,

La
m = Ln1 Ln2 Ln3 · · · Lnk ,

where a ≥ 1, m ≥ 0, k ≥ 1, and 0 ≤ n1 ≤ n2 ≤ · · · ≤ nk.
In 2017, P. Pongsriiam [12] considered the following Diophantine equations:

Fm = Fn1 Fn2 Fn3 · · · Fnk ± 1,

Fm = Ln1 Ln2 Ln3 · · · Lnk ± 1,

Lm = Fn1 Fn2 Fn3 · · · Fnk ± 1,

Lm = Ln1 Ln2 Ln3 · · · Lnk ± 1,

where m ≥ 0, k ≥ 1, and 0 ≤ n1 ≤ n2 ≤ · · · ≤ nk. There are various other types of
equations involving generalized Fibonacci and Lucas numbers that many authors have
also considered (cf. [13,14]).

Assume P > 1 and Q < −1. In this paper, we find Equation (4) holds if and only if
n = 2, m = k = 1 or n = 2m = 2k. Equation (6) holds if and only if n = 4, m = 2, k = 1.
Moreover, Equations (5) and (7)–(9) have no solution. Generally, we completely solved the
Diophantine equations of the symmetric form

Ua = Ub1Ub2Ub3 · · ·Ubn , (10)

Ua = Vb1 Vb2 Vb3 · · ·Vbn , (11)

With the help of (10) and (11), we also find all solutions of symmetric Diophan-
tine equations

Ua1Ua2 · · ·Uam = Ub1Ub2 · · ·Ubn , (12)

where a > 1, 1 < a1 ≤ a2 ≤ · · · ≤ am, and 1 < b1 ≤ b2 ≤ · · · ≤ bn.

2. Preliminaries

In this section, we give some equalities and inequalities concerning generalized Fi-
bonacci and Lucas numbers.
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Lemma 1. Let n > 2, P ≥ 1, and Q < −1. Then

(P−Q)Un−2 < Un < (P−Q)Un−1,

(P−Q)Vn−2 < Vn < (P−Q)Vn−1.

Proof. Using the recursive formula,

(P−Q)Un−2 < Un = PUn−1 −QUn−2 < (P−Q)Un−1.

It is easy to check that the above inequality holds. Proceed as in the proof of Un. We
have a similar result of Vn.

Lemma 2. Let P ≥ 1, Q < −1. For n ≥ 2k > 0.

Un > (−Q)kUn−2k,

Vn > (−Q)kVn−2k.

Proof. Proceed by induction on k. It is easy to check that the above inequality holds when
k = 1. Now, assume the inequality holds for k = m. By the induction method.

Un > (−Q)mUn−2m.

Therefore, it follows that

Un = PUn−1 −QUn−2 > −QUn−2 > (−Q)m+1Un−2(m+1).

Proceed as in the proof of Un. We have a similar result of Vn.

Lemma 3. Let n and k be positive integers. The following identities hold

• (a) UmVk = Um+k + QkUm−k (m ≥ k);
• (b) UmVk = Um+k −QmUk−m (k ≥ m);
• (c) VmVk = Vm+k + QkVm−k (m ≥ k ≥ 1);
• (d) DUmUk = Vm+k + QkVm−k (m ≥ k ≥ 1).

Proof.

• (a) Using (3),

UmVk =
αm − βm

α− β
× (αk + βk) =

αm+k − βm+k

α− β
+ (αβ)k αm−k − βm−k

α− β
.

• (b) It follows by the same method as in (a).

• (c) Using (3),

VmVk = (αm + βm)
(

αk + βk
)
=
(

αm+k + βm+k
)
+ (αβ)k

(
αm−k + βm−k

)
.

• (d) Using (3),

DUmUk =
(

αm+k + βm+k
)
− (αβ)k

(
αm−k + βm−k

)
.

Corollary 1. Vk = Uk+1 −QUk−1.

Proof. It is easy to check Corollary 1 holds if one takes m = 1 in formula (b) of Lemma 3.
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Lemma 4. Let n ≥ k + 1 > 0 and Q < −1. Then

Un = Uk+1Un−k −QUkUn−k−1

and
Vn = Uk+1Vn−k −QUkVn−k−1.

Proof. Proceed by induction on k. It is easy to check that the above identities hold when
k = 1. Now, assume the equation holds for integer k. By the induction method.

Un = Uk+1Un−k −QUkUn−k−1

= Uk+1(PUn−k−1 −QUn−k−2)−QUkUn−k−1

= Uk+2Un−(k+1) −QUk+1Un−(k+1)−1.

Proceed as in the proof of Un. We have a similar result of Vn.

Corollary 2. For all a, b, c, a1, a2, . . . , an ∈ N. The following identities hold:

• (a)
Ua+b−1 = UaUb −QUa−1Ub−1; (13)

• (b)

Ua+b−2 =
1
P
[UaUb −Q2Ua−2Ub−2]; (14)

• (c)

Ua+b+c−3 =
1
P
[UaUbUc − PQUa−1Ub−1Uc−1 + Q3Ua−2Ub−2Uc−2]; (15)

• (d) If n ≥ 3, P > 1, and Q < −1, then

Ua1+···+an−n ≥
1
P

Ua1Ua2 · · ·Uan . (16)

Proof.

• (a) Formula (13) follows easily from Lemma 4, if one takes k + 1 = a and n− k = b.
• (b) Apply (13) to (14),

Ua+b−2 = Ua−1Ub −QUa−2Ub−1

=
1
P
[UaUb −QUa−2(−Ub + PUb−1)]

=
1
P
[UaUb −Q2Ua−2Ub−2].

• (c) Combining Lemma 4 with (13) and (14),

Ua+b+c−3 = Ua+b−1Uc−1 −QUa+b−2Uc−2

=
1
P
[UaUbUc − PQUa−1Ub−1Uc−1 + Q3Ua−2Ub−2Uc−2].

• (d) From (15), (16) holds. Then

Ua1+a2+···+an+1−(n+1) = U[a1+a2+···+an−n]+an+1−1

= Ua1+a2+···an−nUan+1 −QUa1+a2+···+an−(n+1)Uan+1−1

≥ Ua1+a2+···+an−nUan+1

≥ 1
P

Ua1Ua2 · · ·Uan Uan+1 .
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Lemma 5. Assume P > 2, Q < −1, and P2 > −Q. For all a, b, c ∈ N. The following conditions hold

• (a)
Ua+b−2 < UaUb (a + b ≥ 2); (17)

• (b)
Ua+b+c−3 < UaUbUc (a + b + c ≥ 3). (18)

Proof.

• (a) It is easy to check that (17) holds for a,b < 2. Now, assume a, b ≥ 2. By Lemma 2.

UaUb > −Q2Ua−2Ub−2.

Combine with (14),
PUa+b+c−2 < 2UaUb

implies Ua+b−2 < UaUb.
• (b) Since

UaUbUc = (PUa−1 −QUa−2)(PUb−1 −QUb−2)(PUb−1 −QUb−2)

> P3Ua−1Ub−1Uc−1 + Q3Ua−2Ub−2

> −PQUa−1Ub−1Uc−1 + Q3Ua−2Ub−2.

So
PUa+b+c−3 < 2UaUbUc.

Since P > 2. It is easy to show that (18) holds.

Theorem 1 (Primitive divisor theorem of Carmichael [15]). If α and β are real and n 6= 1, 2, 6,
then Un has a primitive divisor except when

n = 12, α + β = ±1, αβ = −1.

3. Main Theorems

Firstly, we begin this section by solving Equations (4)–(9) for P > 1 and Q < −1. Then,
we solve (10)–(12) for P > 2, Q < −1, and P2 > −Q.

Theorem 2. Let n > m ≥ k. Equation (4) holds if and only if n = 2, m = k = 1 and
n = 2m = 2k.

Proof. Equation (4) holds when n = 2 and m = k = 1. Thus, m > 2 and k > 1.
If m = k. Then Un = U2k and n = 2m = 2k.
If m− k = 1 and k is even. Then n ≥ 2k + 2. By Lemma 2.

U2k+1 + Qk = Un = Un−1 −QUn−2 ≥ U2k+1 −QU2k

> U2k+1 −QP(−Q)k−1 > U2k+1 + Qk.

If m− k = 1 and k is odd. Then 2k + 1 ≥ n + 1. By Lemma 2.

Un −Qk = U2k+1 = U2k −QU2k−1 ≥ Un −QU2k−1 > Un −Qk.

If k−m = 1 and m is odd. Then n ≥ 2m + 2. By Lemma 2.

U2m+1 −Qm = Un = Un−1 −QUn−2 ≥ U2m+1 −QU2m

> U2m+1 −Q(−Q)m−1 = U2m+1 −Qm.
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If k−m = 1 and m is even. Then 2m + 1 ≥ n + 1. By Lemma 2.

Un + Qm = U2m+1 = U2m −QU2m−1 ≥ Un −QU2m−1 > Un + Qm.

If m− k > 1 and k is even. Then n ≥ m + k + 1. By Lemma 2.

Um+k + QkUm−k = Un = Un−1 −QUn−2 ≥ Um+k −QUm+k−1

> Um+k + (−Q)kUm−k+1 > Um+k + QkUm−k.

If m− k > 1 and k is odd. Then m + k ≥ n + 1. By Lemma 2.

Un −QkUm−k = Um+k = Um+k−1 −QUm+k−2 ≥ Un −QUm+k−1

> Un + (−Q)kUm−k+1 > Un −QkUm−k.

If k−m > 1 and m is odd. Then n ≥ m + k + 1. By Lemma 2.

Um+k −QmUk−m = Un = Un−1 −QUn−2 ≥ Um+k −QUm+k−1

> Um+k + (−Q)mUk−m+1 > Um+k + (−Q)mUk−m.

If k−m > 1 and m is even. Then m + k ≥ n + 1. By Lemma 2.

Un + QmUk−m = Um+k = Um+k−1 −QUm+k−2 ≥ Un −QUm+k−2

> Un + (−Q)mUk−m.

Theorem 3. Let n > m ≥ k. Equation (5) possesses no solution.

Proof. If Uk = U3. By Lemma 4.

U3Un−2 < Un = U3Un−2 −QUn−3 < U3Un−1.

Then Un−2 < Um < Un−1.
If Uk = U4. By Lemma 4.

U4Un−3 < Un < U4Un−2.

Then Un−3 < Um < Un−2.
It follows from induction and Lemma 4 that

Un−1U2 < Un = U3Un−2 −QUn−3 < Un−1U3.

Then U2 < Um < U3.

Theorem 4. Let n > m ≥ k. Equation (6) holds if and only if n = 4, m = 2, and k = 1.

Proof. If n = 4, m = 2, and k = 1. Equation (6) always holds. Suppose m ≥ k > 1.
By Lemma 3 (c) and Corollary 1. Equation (6) becomes

Un = Um+k+1 −QUm+k−1 + QkVm−k.

= Um+k+1 −QUm+k−1 + QkUm−k+1 −Qk+1Um−k−1.

By Lemma 2

−QUm+k−1 = −PQUm+k−2 + Q2Um+k−1

> −Qk+1Um−k−1 + QkUm−k+1 = QkVm−k.
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Then n ≥ m + k + 2. By Lemma 2

PQ2Um+k−3 > QkUm−k+1

−Q3Um+k−4 > −Qk+1Um−k > −Qk+1Um−k−1

Um+k+2 = PUm+k+1 − PQUm+k−1 + PQ2Um+k−3 −Q3Um+k−4

> Um+k+1 −QUm+k−1 + QkUm−k+1 = QkVm−k

Then n < m + k + 2. It is a contradiction.

Theorem 5. Let n > m ≥ k. Equation (7) possesses no solution.

Proof. If Uk = U3. By Lemma 4.

U3Vn−2 < Vn = U3Vn−2 −QVn−3 < U3Vn−1.

Then Vn−2 < Vk < Vn−1.
If Uk = U4. By Lemma 4.

U4Un−3 < Un < U4Un−2.

Then Vn−3 < Vk < Vn−2. Thus, we obtain the contradiction.
It follows from induction and Lemma 4 that

Un−1V2 < Vn < Un−1V3.

Then V2 < Vk < V3. Thus, no integer k makes Equation (7) hold.

Theorem 6. Let n > m ≥ k. Equation (8) possesses no solution.

Proof. Consider Vn = Vm+k + QkVm−k by Lemma 3 (c). If k is even. Then

n ≥ m + k + 1.

Vm+k+1 ≤ Vm+k + QkVm−k < PVm+k + QkVm−k

which is equal to
Vm+k−1 < −Qk−1Vm−k.

However,
Vm+k−1 > (−Q)k−1Vm−k+1 > (−Q)k−1Vm−k,

a contradiction.
If k is odd. Then n ≤ m + k− 1. By Lemma 2 and Lemma 3 (c).

Vn −QkVm−k = Vm+k = PVm+k−1 −QVm+k−2 > Vn −QVm+k−2 > Vn −QkVm−k.

Theorem 7. Let n > m ≥ k. Equation (9) possesses no solution.

Proof. By Lemma 3 (d). We can transform Equation (9) into

DVn = Vm+k −QkVm−k. (19)

By Lemma 2. We have DVn < 2Vm+k. This implies that n < m + k.
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Since

Vm+k = PVm+k−1 −QVm+k−2 = (P3 − 2PQ)Vm+k−3 + Q2 − P2QVm+k−4. (20)

We plug (20) back into (19).

(P2 − 4Q)Vn = (P3 − 2PQ)Vm+k−3 + (Q2 − P2Q)Vm+k−4 −QkVm−k

By Lemma 2.

(Q2 − P2Q)Vm+k−4 > (−Q)2Vm+k−4 > −QkVm−k.

This implies
(P2 − 4Q)Vn > (P3 − 2PQ)Vm+k−3.

We see that n > m + k− 3. The proof falls into two conditions.
If n = m + k− 1. Then

(P2 − 4Q)Vm+k−1 = Vm+k −QkVm−k.

It can be deduced that

−QVm+k−1 < (−Q)kVm−k.

However, we have
−QVm+k−1 > (−Q)kVm+k+1

by Lemma 2.
If n = m + k− 2. Then

(P2 − 4Q)Vm+k−1 = Vms+k −QkVm−k,

which is equal to
− 3QVm+k−2 = −PQVm+k−3 −QkVm−k. (21)

The left-hand side of (21) is equal to

−3QVm+k−2 = −3PQVm+k−3 + 3Q2Vm+k−4.

Thus, we obtain

−3PQVm+k−3 + 3Q2Vm+k−4 = −PQVm+k−3 −QkVm−k.

It is a contradiction by Lemma 2. Since

−3PQVm+k−3 > −PQVm+k−3

3Q2Vm+k−4 > Q2Vm+k−4 > −QkVm−k.

Theorem 8. Let n > m ≥ k. Equation (5) possesses no solution.

Proof. If triple (a, b, c) is a solution of the equation. Then b | c holds for Ub | Uc. Clearly,
suppose c = kb for k ≥ 2.

UaUb = Ukb ≥ U2b = UbUb+1 −QUbUb−1 = PU2
b − 2QUbUb−1 > PU2

b ≥ UaUb,

which is impossible.
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Theorem 9. Let a, b, c, d be natural numbers. Equation UaUb = UcUd holds if and only if
Ua = Uc and Ub = Ud, Ua = Ud, and Ub = Uc.

Proof. If a < b, c, d ≤ 3. Then Ub = UcUd. Applying Theorem 8. We know that either
Ua = Uc = 1 and Ub = Ud or Ua = Ud = 1 and Ub = Uc. Next, we assume that
3 ≤ a ≤ b, c, d. Apply (14),

Ua+b−2 =
1
P
[UaUb + Q2Ua−2Ub−2]

<
1
P

UaUb ≤ UaUb = UcUd

= Uc+d−1 + QUc−2Ud−2

< Uc+d−1.

Thus,
Ua+b−2 < UaUb < Uc+d−1.

It is clear that a + b ≤ c + d. The proof of c + d ≤ a + b follows in a similar manner.
Thus, we obtain a + b = c + d. Repeatedly using (13),

UaUb = UcUd

⇒ Ua−1Ub−1 = Uc−1Ud−1

...

⇒ U2Ub−a+2 = Uc−a+2Ud−a+2

⇒ Ub−a+2 = Uc−a+2Uc−a+2.

By Theorem 8. We have Uc−a+2 = 1 or Uc−a+2 = 1, which implies that either a = c
and b = d or a = d and b = c.

Theorem 10. Let a, b, c, d, and e be natural numbers. Equation UaUbUc = UdUe has no solution
with 3 ≤ a, b, c, d, e.

Proof. If a, b, c, d, e ∈ N. We assume that (a, b, c; d, e) is a solution of the equation UaUbUc =
UdUe. Suppose 3 ≤ a, b, c, d, e. By (15),

Ua+b+c−2 = UaUb+c−1 −QUa−1Ub+c−2

= UaUbUc −QUaUb−1Uc−1 −QUa−1Ub+c−2

> UaUbUc.

By (17),
Ud+e−2 < UdUe = UaUbUc < Ua+b+c−2.

By (18),
Ua+b+c−3 < UaUbUc = UdUe < Ud+e−1,

which implies that a + b + c− 3 = d + e− 2.

Ud+e−6 < Ud−2Ue−2 = Ud+e−5 + QUd−3Ue−2

= Ua+b+c−6 + QUd−3Ue−2

< Ua+b+c−6 =
1
P

Ua+b+c−5 +
Q
P

Ua+b+c−7

<
1
P

Ua+b+c−5

< Ua+b+c−8.
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Then, we have d + e− 6 < a + b + c− 8, which is impossible.

Let P ≥ 1, Q < 0, and gcd(P, Q) = 1. Next, we solve Equations (10)–(12) using the
primitive divisor theorem of Carmichael.

Theorem 11. The only nontrivial solutions of Equation (10) with a > 1, bi > 1. and n ≥ 2 are

(2; 2 · · · 2), (6; 33, 2 · · · 2), (6; 3, 2 · · · 2), (12; 6, 42, 3, 2 · · · 2), (12; 42, 34, 2 · · · 2)

Here, nontrivial solution means that n ≥ 2, bi ≤ 1 for all i = 1, . . . , n, and a > 1.

Proof. If a = 12, P = 1, and Q = −1. Then, we obtain

U12 = 144, U6 = 8, U4 = 3, U3 = 2.

Note that
144 = 2432.

Then
U12 = U6U2

4U3Uk
2 .

U12 = U2
4U4

3Uk
2 .

If m ≥ 7 or m = 3, 4, 5. By Theorem 1, there exists an odd primitive prime divisor p of
Ua. We see p does not divide any generalized Fibonacci numbers Uk with index less than a.
Next, consider m = 2, 6. If m = 2. Then

U2 = U2U2 · · ·U2.

holds if and only if U2 = P = 1.
If a = 6. Assume Equation (10) has a solution (n1, n2, · · · , ns) for 6 > n1 ≥ n2 · · · ≥ ns,

s ≥ 2, and ns > 1. Obviously, ni 6= 5. If n1 = 4. Since gcd(U6, U4) = U2. It follows that
U4 = U2.

Then
U4 −U2 = P(P2 − 2Q− 1) = 0.

Because P ≥ 1 and Q < 0, Equation (10) has no solution. If n1 = n2 = 3. Since U2 = P.

U3 = P2 −Q|P2 − 3Q.

Then
U3 = P2 −Q| − 2Q.

It follows that P2 = −Q, P2 − 3Q = 2U3 and

U6 = 2U2
3U2.

If U3 = P2 −Q = −2Q = 2. We obtain P = 1 Q = −1 and

U6 = U3
3Uk

2 .

If U2 = P = 2 and Q = −4. It is contradict to gcd(P, Q) = 1.
If n1 = 3 and n2 = 2. We have

U6 = U3Ul+1
2 .

and
Ul

2 = Pl = P2 − 3Q. (l > 2)
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However, it is contradict to gcd(P, Q) = 1 if P 6= 1 and P 6= 3. If P = 1.

P2 − 3Q = 1,

which has no solution with P ≥ 1 and Q < 0. If P = 3.

81− 36Q + 3Q2 = 3l+2 − 3lQ,

which has a solution with P ≥ 1 and Q < −6.
If n1 = 2. Then U2 = P divides

U6

U2
= P4 − 4P2Q + 3Q2.

Observe that gcd(U6, U2) = U2 = P, which is also contradict to P not divides

U6

U2
= P4 − 4P2Q + 3Q2.

Theorem 12. Equation (11) has a finite nontrivial solution. Here, nontrivial solution means that
n ≥ 2, bi ≤ 1 for all i = 1, . . . , n and a > 1.

Proof.
Case 1 a is odd and a ≥ 6. By Theorem 1. There exists an odd primitive divisor p of Ua.

Therefore, p does not divide any generalized Lucas number with index less than a. Since
p|Ua, we see that Ua is not a product of generalized Lucas numbers.

Case 2 a = 2lm, l ≥ 1, m ≥ 5 and m is odd. By Theorem 1. There exists an odd
primitive divisor p of Um. Moreover, p does not divide any generalized Lucas number with
index less than a. Since p|Um and Um|Ua. We obtain Ua is not a product of generalized
Lucas numbers with index less than a.

Case 3 a = 3 · 2l

U3·2l = V3·2l−1 V3·2l−2 · · ·V6V3U3 (22)

Since
U3 = P2 −Q > P = V1

.
Equation (11) holds if and only if

U3 = P2 −Q = V0 = 2.

Which contradict to bi ≥ 2 .
Case 4 a = 2l

U2l = V2l−1 V2l−2 · · ·V2V1(l ≥ 2). (23)

We show that the representation of U2l is unique for l ≥ 0. It is easy to check that

U2 = V1U1.

Consider the equation

U2l = Va1 Va2 · · ·Vak = V2l−1 V2l−2 · · ·V2V1. (24)

where l ≥ 2, a1 ≥ a2 · · · ≥ ak. By the identity U2m = UmVm. Transform (24) into

U2l−1U2a1 Va2 · · ·Vak = Ua1U2l V2l−2 · · ·V2V1. (25)
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If 2l > 2a1. By Theorem 1, there exists a prime p dividing 2l but p does not divide any
term on the left-hand side of Equation (25). It is a contradiction. Similarly, 2a1 > 2l leads to
a contradiction. Therefore, 2a1 = 2l . Equation (24) is reduced to

Va2 · · ·Vak = V2l−2 V2l−2 · · ·V2V1.

Repeat the same process, we obtain

a2 = 2l−2, a3 = 2l−3, · · · .

Equation (24) is reduced to

V2V1 = Vak · · ·Vai .

It is obvious that ak = 1, ai = 2.

By Theorem 11, Equation (12) has a nontrivial solution if and only if P = 1 and
Q = −1.

Theorem 13. The only nontrivial solutions of Equation (12) with 1 < a1 ≤ a2 ≤ · · · ≤ am,
1 < b1 ≤ b2 ≤ · · · ≤ bn are

(3, . . . , 3; 6, . . . , 6) , m = 3n

(

a︷ ︸︸ ︷
3, . . . , 3,

b︷ ︸︸ ︷
6, . . . , 6, 4, . . . , 4; 12, . . . , 12) , a + 3b = 4n

(

a︷ ︸︸ ︷
3, . . . , 3, 4, . . . , 4;

b︷ ︸︸ ︷
6, . . . , 6, 12, . . . , 12) , a = 3b + 4n

(

a︷ ︸︸ ︷
6, . . . , 6, 4, . . . , 4;

b︷ ︸︸ ︷
3, . . . , 3, 12, . . . , 12) , 3a = b + 4n

(3, . . . , 3, 4, . . . , 4;

a︷ ︸︸ ︷
12, . . . , 12

b︷ ︸︸ ︷
6, . . . , 6) , 3b + 6a = m

Here, nontrivial solution means that ai, bj > 1 and ai 6= bj for all i = 1, . . . , m and
j = 1, . . . , n.

4. Conclusions

In this paper, we mainly solve some Diophantine equations of the form An1 · · · Ank =
Bm1 · · · Bmr Ct1 · · ·Cts , where (An), (Bm), and (Ct) are generalized Fibonacci or Lucas num-
bers. Our theorems show that no generalized Fibonacci numbers can be expressed as the
product of generalized Fibonacci or Lucas numbers except the trivial cases. In general, two
different products of generalized Fibonacci numbers are not equal except the trivial cases.
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