symmetry

Article

ieHDDP: An Integrated Solution for Topology Discovery and
Automatic In-Band Control Channel Establishment for Hybrid
SDN Environments

Joaquin Alvarez-Horcajo

and David Carrascal *

check for
updates

Citation: Alvarez-Horcajo, J.;
Martinez-Yelmo, I; Rojas, E.; Carral,
J.A.; Carrascal, D. ieHDDP: An
Integrated Solution for Topology
Discovery and Automatic In-Band
Control Channel Establishment for
Hybrid SDN Environments.
Symmetry 2022, 14, 756. https://
doi.org/10.3390/sym14040756

Academic Editor: Chin-Ling Chen

Received: 16 March 2022
Accepted: 2 April 2022
Published: 6 April 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Isaias Martinez-Yelmo *

t

, Elisa Rojas T, Juan Antonio Carral *

Departamento de Automaética, Universidad de Alcald, Escuela Politécnica Superior. Pza. San Diego, s/n,
Alcala de Henares, 28801 Madrid, Spain; j.alvarez@uah.es (J.A.-H.); elisa.rojas@uah.es (E.R.);

juanantonio.carral@uah.es (J.A.C.); david.carrascal@uah.es (D.C.)

* Correspondence: isaias.martinezy@uah.es

t These authors contributed equally to this work.

Abstract: In-Band enhanced Hybrid Domain Discovery Protocol (ieHDDP) is a novel integral ap-
proach for hybrid Software-Defined Networking (SDN) environments that simultaneously provides
a topology discovery service and an autonomous control channel configuration in the band. This
contribution is particularly relevant since, to the best of our knowledge, it is the first all-in-one pro-
posal for SDN capable of collecting the entire topology information (type of devices, links, etc.) and
establishing in-band control channels at once in hybrid SDN environments (composed by SDN/no-
SDN, wired /wireless devices), even with isolated SDN devices. ieHDDP facilitates the integration of
heterogeneous networks, for example, in 5G/6G scenarios, and the deployment of SDN devices by
using a simple exploration mechanism to gather all the required topological information and learn
the necessary routes between the control and data planes at the same time. ieHDDP has been imple-
mented in a well-known SDN software switch and evaluated in a comprehensive set of randomized
topologies, acknowledging that ieHDDDP is scalable in representative scenarios.

Keywords: hybrid; SDN; in-band control channel; topology discovery; OpenFlow

1. Introduction

The SDN paradigm is being embraced by the networking community due to the capa-
bilities and features given by a programmable control plane [1]. Some of the main pillars
of SDN are: (1) the separation of control and data planes, connected by a control channel;
(2) the full knowledge of the underlying network topology and data plane; (3) the possibil-
ity to manage and set up the data plane at any time, based on the desired requirements and
features of the control plane.

Concerning the first aspect, the SDN control channel is either based on dedicated
connections that make up an out-of-band control channel or shared connections with
regular data traffic, which is typically known as an in-band control channel. In-band control
channels can be manually configured or based on auto-configuration mechanisms such
as Amaru [2]. Regarding the knowledge of the underlying network topology, it is mostly
based on protocols that convey the topological information from the data plane, such as
the popular Open Flow Discovery Protocol (OFDP) [3]. Additionally, recent proposals also
obtain complementary information, e.g., Tree Exploration Discovery Protocol (TEDP) [4]
not only collects the topological information, but it also gathers routing information. Finally,
the management of the data plane also requires protocols that allow establishing the desired
rules to properly manage network traffic. These protocols can be OpenFlow or P4ARuntime
API (P4Runtime). However, all previously mentioned protocols are strictly applicable to
fully-SDN environments. For this reason, alternatives such as enhanced Hybrid Domain

Symmetry 2022, 14, 756. https:/ /doi.org/10.3390/sym14040756

https://www.mdpi.com/journal /symmetry

https://doi.org/10.3390/sym14040756
https://doi.org/10.3390/sym14040756
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-8522-9933
https://orcid.org/0000-0001-9648-8669
https://orcid.org/0000-0002-6385-2628
https://orcid.org/0000-0002-5545-9463
https://orcid.org/0000-0002-6982-9365
https://doi.org/10.3390/sym14040756
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14040756?type=check_update&version=1

Symmetry 2022, 14, 756

20f16

Discovery Protocol (eHDDP) [5] recently appeared to support hybrid SDN scenarios as a
direct consequence of the inclusion of wireless and other heterogeneous network devices
in the field. Nevertheless, the setup of SDN in-band control channels in hybrid SDN
topologies still remains an open issue. In particular, the main challenge is how to integrate
the capability to forward in-band control packets in non-SDN devices.

This article presents extended capabilities to our previous works Hybrid Domain
Discovery Protocol (HDDP) [6], which is only suitable for wired networks, and eHDDP [5],
which is suitable for hybrid wired/wireless networks, not only to convey topological
information in hybrid SDN scenarios but also to establish SDN in-band control channels.
Therefore, the proposal in this manuscript, ieHDDDP, is capable of providing an integrated
solution that allows effortless and plug-and-play use of SDN technology in any kind of
scenario. This novel solution has been named ieHDDP and breaks with the traditional
assumption in which the data plane is absolutely dependent on the control plane. This
disruption is motivated by the symmetry introduced by ieHDDP that consists of a balanced
coordination between the data and control planes. The data plane requires the control
plane to have an adequate configuration, while the control plane requires the data plane to
obtain the in-band control channel, which is key in hybrid heterogeneous networks where
an out-band control channel for all devices is not feasible. Hence, ieHDDP fills in the gap
by finding an integrated solution that performs both tasks (topology discovery and in-band
control channel setup) at the same time in hybrid environments SDN. To the best of our
knowledge, no work has merged both the topology discovery and in-band control channel
configuration for generalized networks (that is, networks comprised of both wired and
wireless links, and both SDN and non-SDN devices). Therefore, the main contributions of
this paper are:

* The extension of eHDDP [5] (which already provides a topology discovery service)
into ieHDDP to also establish in-band control channels.

* The implementation of the data plane part of ieHDDP in Basic OpenFlow User-space
Software Switch (BOFUSS) [7] for wired devices.

* The implementation of the control plane part of ieHDDP in Open Network Operating
System (ONOS).

* The evaluation of ieHDDP in wired hybrid SDN networks.

The paper is structured as follows. Section 2 presents the related work. Section 3
presents the necessary add-ons in ieHDDP to allow the exchange of SDN in-band control
traffic between the hybrid SDN control and data planes. Section 4 presents the most
relevant implementation details of the proposal, and Section 5 evaluates the proposal itself.
Finally, Section 6 summarizes the conclusions of the presented work.

2. Related Work

As mentioned above, one of the pillars of the SDN paradigm is the knowledge of
the underlying network of the data plane. This feature is covered for SDN-only networks
by OFDP [3] or advanced solutions such as TEDP [4], eTDP [8]. Jia et al. [9] focused on
improving its scalability and performance, which is a key issue in the field [10]. In the case
of hybrid SDN networks, in which SDN and other devices coexist, some works try to infer
the existence and connectivity of legacy devices (devices before the definition of the SDN
architecture with distributed functionalities). On the one hand, the work in [11] combines
Link Layer Discovery Protocol (LLDP) and Broadcast Domain Discovery Protocol (BDDP)
to discover legacy devices in hybrid SDN networks, but it does not work properly in
topologies containing loops of non-SDN devices. On the other hand, the work in [12] uses
Forwarding and Control Element Separation (ForCES) [13] to detect non-SDN neighbor
devices, but the proposal does not scale, since its passive mechanism based on LLDP
and Address Resolution Protocol (ARP) cannot deal with topologies containing loops of
non-SDN devices. Furthermore, the work in [14] attempts to solve the problem of link
failures in hybrid scenarios, with coexisting SDN and legacy devices, applying machine
learning-based policies. In this regard, the solution provided by eHDDP [5] allows the full

Symmetry 2022, 14, 756

30f16

discovery of hybrid SDN topologies by using a specific protocol in non-SDN devices that
conveys all the topological information to the SDN control plane even if loops of non-SDN
devices exist.

At the same time, all the previous aforementioned solutions require an SDN con-
trol channel to transmit information from the data plane to the control plane. Although
this channel might be deployed following either an out-of-band or in-band approach,
the possibility of establishing an in-band control channel, even as a backup option (if the
primary communication is out-of-band), significantly increases the resilience of SDN-based
environments [15,16] and might provide additional functionality, such as inter-controller
communication for distributed environments [17]. However, the dynamic establishment
of in-band control channels requires certain autonomous functionality and/or the use of
specific protocols to allow the correct exchange of SDN control traffic [18]. For example,
some proposals rely on Rapid Spanning Tree Protocol (RSTP) to establish the SDN in-band
control channel [19]. Additionally, reconfiguration after failure is also required and might
be planned based on local re-routing [20]. Other approaches with global rerouting are
as follows. Medieval [21] and FASIC [22] require manual configuration for the initial
in-band control channel setup and control plane configuration to provide alternative paths
in case of failures. FCCR [23] is a simulation-only study that creates the in-band control
channel asynchronously among SDN devices and the recovery mechanism for failures is
based on a complex mechanism based on failure detection in subrings. 1zzy [24] is also a
simulation-only study that requires a certain initial manual configuration and requires an
AODV-like mechanism to establish alternative control paths if failures occur. ConForm [25]
and Sakic et al. [19] build spanning tree-like in-band control channels rooted in the con-
troller; the latter also establishes alternative paths from the control plane. Finally, Amaru [2]
defines a novel discovery mechanism initiated by the control plane to obtain multiple paths
to reach the control plane, which allows the required redundancy in case of failures.

Finally, few works emphasize the possibility of leveraging a global service for both
topology discovery and in-band control bootstrapping, such as rXstp [26], and even fewer
focus on the specific case of in-band control for wireless SDN [27]. Furthermore, the es-
tablishment of in-band control channels is only the first step to properly make use of the
data plane. In this regard, additional considerations might be necessary for an optimized
data plane when in-band control is leveraged, such as the installation of SDN rules and
correct management of control traffic [28]. These considerations are complementary to the
proposed work and, therefore, not directly related with the topic covered in this manuscript.

The final objective of the related work presented in this section is to provide the
required functionality and the enabler technologies to integrate hybrid SDN scenarios
that make feasible use cases such as Internet-of-Things (IoT) mobile-edge computing
with enhanced capabilities, such as optimized task offloading [29], in which different
network technologies coexist. Our ieHDDP proposal goes a step further in the state of
the art toward the full-fledged integration of the SDN and IoT networking technologies,
among other examples.

3. Support of SDN In-Band Signaling with ieHDDP
3.1. Problem Statement

In order to support SDN in-band control, a bidirectional connection between the
control plane and an SDN device must be set up across the data plane. Since we consider
eHDDP the starting point for the design ieHDDP, let us first describe its foundations. The
eHDDP protocol [5] was designed to allow full topology discovery in hybrid networks,
made of SDN and non-SDN devices. The protocol is triggered by the control plane and
works in two phases. First, it explores the underlying network with a discovery message
broadcast from the control plane, and then, it conveys the topological information acquired
by the network devices during the exploration phase back to the control plane.

The original protocol, eHDDP, works on the basis that SDN devices already have an
active connection (either in-band or outbound) to the control plane, so non-SDN devices

Symmetry 2022, 14, 756

40f16

must only establish a path to reach an SDN device and from there the control plane,
but this no longer holds with ieHDDP. In this new scenario, SDN devices are stand-by
nodes; they cannot connect to the control plane because they lack the necessary knowledge
(the Controller Port and, probably, even the control plane network address) until they are
awakened by the discovery service exploration message. However, implementing the
former eHDDP in SDN devices would allow them to learn a path to the controller by
establishing the Controller Port to reach the control plane. Unfortunately, this is not enough
to set up an in-band control channel, since eHDDP by itself does not provide support for
the communication in the opposite direction, from the control plane to the network devices.
Hence, our first and main goal is to provide a way so that those devices in the path from a
given device toward the control plane (the chain of devices resulting from going back from
device to device through their corresponding Controller Port until the controller is reached)
learn the port pointing back to that specific device, thus conforming a bidirectional path
that supports the in-band channel.

Moreover, taking into account that SDN devices are activated after receiving the
discovery message, it is advisable that this message conveys certain information regarding
the control plane, such as the IP address, port, or transport protocol. This information can
also be preconfigured at devices as a primary control plane address, but its inclusion in
the discovery message ensures that more than one controller can coexist in the network,
and we grant additional flexibility in case it should be necessary for its dynamical update.
Thus, it is up to the device to decide to stick to its primary control plane address or to abide
by the address conveyed by the received discovery message.

3.2. Proposed ieHDDP Solution

In order to deal with the problems mentioned above, we propose ieHDDP, an exten-
sion of eHDDP, which is able to combine the topology discovery and support for in-band
operation in hybrid networks composed of both SDN and non-SDN devices.

The original protocol works in two phases: a Network exploration phase designed to
discover all the devices followed by a Confirmation phase in which the devices report back
to the control plane. Firstly, the SDN controller will trigger the topology discovery service
(the exploration phase in eHDDP). At this point, only SDN devices directly connected to
the controller will have a pre-existing channel and function as a gateway for the rest (no
matter if SDN or non-SDN, their control channel will be still inactive). At each step of the
standard topology discovery service, all SDN devices traversed by the discovery message
will be awakened, and this will trigger the creation of the in-band control channel back to
the source gateway and, hence, toward the SDN controller. At the same time, all devices
will have a twofold action, since they will also propagate the topology discovery service
message forwards to continue the exploration of network devices, as in eHDDP.

We propose two updates to the original exploration phase of eHDDP. On the one hand,
anew field is added to the discovery message to convey the address of the control plane
to devices, that is, to identify the controller that initiates the process. On the other hand,
when an SDN device learns which is the Controller Port (the first port that receives a copy
of the discovery message), it triggers the in-band channel setup process (awakes its SDN
capabilities) defined by ieHDDP. Non-SDN devices would learn the address of the control
plane and its corresponding forwarding port for later use in the in-band control channel.

The exploration phase is followed by the confirmation phase. Every device receiving
a late copy of the discovery message (at other ports) would report back to the control
plane with a reply message, thus announcing its presence in the network. The reply is sent
through the Controller Port (the one that received the first copy of the discovery message)
and will be forwarded toward the control plane by other devices on the path (once its own
presence on the path is added to the reply). No changes are needed in this phase for the
new protocol.

As we mentioned in the previous section, in that way, devices in the network are not
only discovered by the control plane, but they also learn the path to reach it. However,

Symmetry 2022, 14, 756

50f16

to set up the in-band channel, we also need a path in the opposite direction. To accomplish
this new functionality, a new logic has been added to the protocol.

This new logic relies on the ARP Request and Reply packet exchange triggered by
SDN devices to establish the connection with the control plane as soon as the Controller
Port is made available by the ieHDDP agent (although the ARP process is leveraged in
this case, as we consider a common IPv4 network, Neighbor Discovery Protocol (NDP)
would also be similarly applicable for IPv6-based networks). This packet exchange occurs
concurrently with the original eHDDP exploration and confirmation phases, but it can be
easily explained as a process composed of two additional phases called the In-band Channel
Learning phase and In-band Channel Confirmation phase.

During the In-band Channel Learning phase, the ARP Request packet (issued by the
SDN devices to learn the control plane Media Access Control (MAC) address before any
communication) is sent across the network. Any ieHDDP-enabled device will receive
the ARP Request and will learn the MAC address of the sending SDN device. Eventually,
the corresponding ARP Reply would be sent back from the control plane, following the
path previously set up by the original ARP Request. This ARP Reply is processed in every
intermediate device to learn the control plane MAC address (In-band Channel Confirmation
phase). At this point, every device in the path from an SDN device and the control plane
knows how to communicate with them in both directions, thus enabling the setup of the
in-band control channel.

3.3. ieHDDP Behavior Example

Figure 1 illustrates the operation of ieHDDP in a simple network made of four com-
bined SDN/ieHDDP devices (switches S1, S2, S5, and S6) and two ieHDDP-only devices
(switches S3 and S4). Only S1 can autonomously connect to the control plane, while S2, S5,
and S6 will set up an in-band control channel when enabled through the ieHDDP protocol.
For simplicity, only wired devices and the ieHDDP wired mode are considered in the
example, but a similar approach would also apply for bidirectional wireless links. Note
that at the beginning, only S1 is connected to the control plane (depicted in blue in the
figure), while 52, S5 &, and 56 have to wait for ieHDDP to finish before setting up their
SDN connection (they are depicted in white at the beginning), and S3 and 54 (depicted in
gray), which are not SDN nodes, will never turn into the connected state.

jg/()ﬁ\"/,+ Controller \Q\\\i\{ .= Controller

Y —p 2 —;}f) A 1 2
(S1} S3 S6 [ST} S3 S6
‘\\1 S/ 2 <_ - 2\ - ,,// 2 2\

3 lt j 3 1

2 2 9 2

<- - Y 1) 1.4
@2 5 (8e)- S5 @2 gy) S5
(a) (b)

] Controller .- Controller

k- 1 T 1 5 AT
(\&— 2 (\ 2 | \
t\?l/ > S3 2\86 \?1//2 S3 2‘\Sﬁ/,

E 3 1 . 3 1
| iy . ¥ 10
52 1543 1§s5 ‘s2) 1fg4)3 1$5)
9 < < 2 % \ 4

Figure 1. Cont.

Symmetry 2022, 14, 756

6 of 16

Dev If Phase Dev If Phase Dev

f Phase Dev If Phase

Ctrl 1 Config Ctrl 1 a) Ctrl 2 a) Ctrl 1 a)

ss 2) s6 3) 6 3 c) 6 2)

6 2) S5 3 c) ss 3 c)

2 3)

S1 Learning table S3 Learning table S4 Learning table S5 Learning table

(e)

() ‘Connected” SDN-ieHDDP Node O ‘Disconnected” SDN-ieHDDP Node icHDDP Node

o—p ieHDDP Request (First copy) - = ieHDDP Request (Late copy) ieHDDP Reply

‘Locked’ Port Packot In Packct Out —> ARP Request —> ARP Reply

Figure 1. Example of In-Band Channel creation in ieHDDP. (a) Network exploration phase. (b) Con-
firmation phase. (c¢) In-band Channel Learning phase. (d) In-band Channel Confirmation phase.
(e) ieHDDP learning tables.

3.3.1. Exploration Phase (Controller Port Learning)

The network exploration phase of ieHDDP (which is similar to the original phase in
eHDDP) is shown in Figure 1a. It is triggered by the SDN control plane by flooding an
ieHDDP Request message into the network through S1, as explained in [5]. The ingress
port of the first copy received at each switch is locked, which prevents the switch from
forwarding late copies of the same ieHDDP Request message received at other ports, to avoid
loops. Then, the locked port is marked as Controller port in every node except for the ones
already connected to the control plane (only S1 in our example), which also triggers the
In-band Channel Learning phase.

3.3.2. Confirmation Phase (Topological Information Gathering)

This phase remains unchanged; it works exactly as in eHDDP (see Figure 1b). When-
ever a late copy is received at a node, an ieHDDP Reply message is generated and sent
back via the ingress port of the late copy. Each switch receiving an ieHDDP Reply message
would update its contents to include itself on the route before relaying it toward the control
plane via its Controller Port. Finally, when the ieHDDP Reply message arrives at S1, which is
connected to the control plane, it is sent directly to it, via the corresponding PacketIn message,
with no further processing.

3.3.3. In-Band Channel Learning Phase

Together with the next phase, the process shown in Figure 1c implements a basic
learning switch in every combined SDN/ieHDDP device, so that a bidirectional path to the
control plane can be learnt. It is triggered when the port locked by the first copy received
from an ieHDDP Request message is marked as Controller Port at S2, S5, and S6. To set
up the connection to the control plane, they send, only via their Controller Port, an ARP
Request message looking for the MAC address of the control plane. Every intermediate
node would process the ARP Request message and store the tuple <source MAC address,
ingress port> into a Learning Table, before relaying the message, through its own Controller
Port, toward the control plane. Finally, when the ARP Request message arrives at S1, it is
processed in the same way and then sent directly to the server running the control plane.
In our example, after the ARP Request messages from S2, S5, and S6 have been completely
processed, a unidirectional path has been learned on the network, spanning from S1 to any
of them. These paths would become bidirectional after the In-band Channel Confirmation
and last phase.

Symmetry 2022, 14, 756

7 of 16

3.3.4. In-Band Channel Confirmation Phase (Controller MAC Learning)

After receiving an ARP Request message, the server running the control plane issues
the corresponding ARP Reply. S1 already knows how to reach the destination node of the
ARP Reply (either S2, S5, or S6), they are stored into its Learning Table (see Figure 1d), so it
simply forwards the ARP Reply to its destination. Now, the intermediate nodes on the path
would process the ARP Reply and update their corresponding Learning Table with a new
entry pointing to the control plane, the tuple <source MAC address of the reply, ingress port>,
before relaying it to the next switch in the path. In this way, every switch visited by the
ARP Reply would learn how to get to the control plane, thus transforming in a bidirectional
manner the path to the replied destination switch. Finally, the bidirectional paths from S2,
S5, and S6 to the control plane would be in place, and the in-band connections could be set
up so that these switches become connected (they change from white to blue in Figure 1d);
that means they can establish connections with the control plane as expected similarly to
SDN devices, since the in-band control channel is already established and functional.

The control plane must periodically trigger all previous phases by executing the initial
exploration phase. This periodicity guarantees both the detection of topology changes and
reestablishment of the in-band control channel in case of failures. Furthermore, alternative
in-band control paths may be established by the control plane, if necessary, as was proposed
by other solutions previously mentioned in Section 2.

4. Implementation

Figure 2 shows the flow diagram of our proof-of-concept implementation, which is
based on BOFUSS [7], a well-known SDN software switch.

Msg In

4

Isa

Isa
)k_ Yes _ Yes Ctrl related No
RP;

\of Ifaces >~

|
I
YI_? “isthe™ ! Yes. Isa .. No
first copy/ ‘ : V """""" "-.,.Request".{_""_ T |
e Lock ~ 1 1 v N
I Ingress ! ! ?-S—.‘,". Is a Late™. N0 :
ort__ | I I P, copy?. |
I ! T Y.
| ! Block l
Yes “lsan No ! I : i MACssrc :
—< SDN node? - ! ! : i, &&port :
~ v | I 1 :
I 1 JUTTIT. A . B AN
Yes “Exists™ No | | " { Update : Update
~Ctrl Port2~ I | : Learning : . Learning
NS I I L. Table _Table_
| s] | I v
Set Ctrl | ! I RO
| [Port | 1 1 Yes ~* Isan “\ No
| - -— I | I D SDN node/? =
_____ —_— | ! H i . N :
| : : :
P I v_ R, AN : V.) |
Yes _ “Number « No | (Update 1 i { Update : rUpdate :
- _l | ieHDDP 1: : SDN : SDN | |
|
|

| Reply 1: __Table - .
I <y -ER- AP :
y _ yl_ - ;.......: !"
| (Create I Look for ! : : rLook for
| ieHDDP | 1 out port | H . t t |
| | _Reply g outport : i - outeort -
i b : H 1T
Y_ Y. Y N Mo, VN
e Flood] [send 1 (Forward [Discard { Forward : H rForward .
I ieHDDP I I back 1 | Updated 1i ARP @ : ARP : . ARP |
Request. ' _Reply_1 ! _Reply_J ..B.e.%.iﬁﬁt.. i, Request : _Reply_:
~" . = - . ¢*="; In-band Channel ~==. In-band Channel
[L __ Exploration phase _ _ Confirmation phase “exst Leaming phase - . Confirmation phase

Figure 2. Implementation of the ieHDDP agent.

Symmetry 2022, 14, 756

8 of 16

The flow chart is organized into four branches (depicted in different colors and pat-
terns) that correspond to the four phases of the protocol, as explained in Section 3. When
the switch is connected to the control plane and the message received is not an ARP related
to the controller (either Request or Reply), the processing of incoming messages checks if it
belongs to ieHDDP or ARP protocols to process its contents; otherwise, the processing is
left to the default pipeline. Afterwards, two possibilities arise depending on whether they
carry a Request or a Reply packet, so we end up with four processing options, i.e., the four
branches just mentioned above.

The left branch of the flowchart, depicted in blue (and long dashed lines) in Figure 2,
shows the processing related to the Exploration phase of ieHDDP. It is triggered by the
reception of the first copy of an ieHDDP Request message. First of all, the agent locks the
ingress port to avoid processing late copies of the same ieHDDP Request as an original
request, which may produce loops. Then, the next operation depends on whether the
switch also features an SDN agent. If true, it checks if the Controller Port has already been
set (meaning an active connection to the control plane has been initiated and there is
nothing else to do) and otherwise sets the Controller Port as the ingress port of the iecHDDP
Request, which acts as a trigger to the SDN agent to initiate the connection. Finally, it checks
whether it is a single interface; if true, it forces an immediate ieHDDP Reply back to the
control plane (in our scheme, the flow moves to the next phase); otherwise, it broadcasts
the ieHDDP Request to ensure that it reaches every switch in the network. This last check is
compliant with eHDDP and allows to discover devices with only one interface sharing that
link with their only neighbor.

The middle-left branch of the flowchart, depicted in yellow in (and dashed lines)
Figure 2, shows the processing related to the Confirmation phase of ieHDDP. This phase
manages the ieHDDP Reply messages, either to generate and send them to the control plane
or to process the replies generated by other switches on their way to the control plane.
Whenever a late copy of an eHDDP Request is received, an ieHDDP Reply is created and
sent back through the ingress port of the eHDDP Request. The ieHDDP Reply carries the
information regarding the switch Id and the ingress port of the eHDDP Request; in this way,
it conveys the information about the link to the control plane. On the other hand, when
an ieHDDP Reply is received, it updates its contents by also including the tuple <switch Id,
ingress port> before forwarding it to the control plane through its Controller Port.

The right side of the flowchart covers the processing of ARP Request and Reply mes-
sages related to the Control Plane. The middle right branch of the flowchart, depicted in
purple (and doted lines) in Figure 2, shows the processing related to the In-band Channel
Learning phase of ieHDDP, which is triggered by the reception of an ARP Request message.
This message is broadcast in the network so multiple copies of the same packet could be
received at a given switch. When the first copy of the ARP Request is received, the switch
locks the ingress port to avoid broadcast loops and updates its Learning Table by inserting a
new entry pointing to the source MAC address of the ARP Request. If the switch features
an SDN agent, it also sends a message to force the insertion of the corresponding rule in
the SDN table. Finally, it forwards the ARP Request to the control plane. Otherwise, if the
ARP Request received is a late copy of a previous request, it is simply discarded to avoid
loops of broadcast traffic.

The last branch (and the rightmost one) of the flowchart, shown in green (and dash-
doted lines) in Figure 2, shows the processing of incoming ARP Reply messages. The switch
updates its Learning Table by inserting a new entry pointing to the source MAC address of
the reply (i.e., the controller MAC address). If the switch features an SDN agent, it also
sends a message to force the insertion of the corresponding rule into the SDN table. Finally,
it looks for the destination port in its Learning Table and forwards the ARP Reply.

Symmetry 2022, 14, 756

9o0f 16

5. Evaluation

The evaluation of ieHDDP was performed on Intel(R) Core(TM) i7 CPUs (12 core)
and 24 GB of RAM servers, running ONOS as the SDN controller as well as the emulated
topologies. The network devices are deployed in independent Linux network namespaces
connected through virtual Ethernet interfaces. This setup allows the isolation of the em-
ulated network devices with respect to their host to ensure the communication with the
control plane through the in-band control channel.

The obtained results only show the performance of ieHDDP, since there is no other
solution that provides topology discovery and in-band control channel autoconfiguration
in hybrid SDN networks.

5.1. Proof-of-Concept

To verify the correct operation of the ieHDDP in-band selection process, a proof-of-
concept has been performed. This test was conducted on a 3 x 3 square mesh topology
composed of seven ieHDDP-only and two combined SDN-ieHDDP nodes. The controller
is connected to one of the combined SDN-ieHDDP nodes, while the other combined
node is located in the opposite corner of the mesh. We outlined this scenario as a worst-
case situation because several non-SDN nodes must be traversed to set up the in-band
control channel.

Figure 3a shows the 3 x 3 square mesh topology detected by the ONOS controller. The
combined SDN-ieHDDP nodes are depicted in dark blue, while ieHDDP-only nodes are
depicted in light blue. We can observe how the ieHDDP-only nodes are placed in the middle
of the topology (switches S2 through S8), while the combined SDN-ieHDDP nodes are
located at the opposite corners (switches S1 and S9). Therefore, with this proof-of-concept,
we prove that the controller can create the topology graph as expected. Furthermore, it is
demonstrated how the in-band control channel has been properly set up crossing multiple
ieHDDP-only nodes. Moreover, Figure 3b illustrates the devices detected by the controller
in more detail. The two devices with an ID consisting of “of:” followed by a Datapath
ID (DpID) represent the SDN-ieHDDP nodes, while the remaining, labeled as “sw:” plus a
DpID, are the ieHDDP-only nodes. Likewise, the number of ports of each device is shown
as well as a green tick that indicates all nodes are operational. Finally, Figure 3¢ depicts
additional information acquired by ONOS about both types of nodes.

(a)

Figure 3. Cont.

Symmetry 2022, 14, 756

10 of 16

Devices (9 total) O
[search | All Fields v
DEVICE ID PORTS VENDOR
v E sw:0000000000000008 3 Switch Legacy
~ E sw:0000000000000007 2
v sw:0000000000000006 3
v B w:0000000000000005 4
v sw:0000000000000004 3
v B sw:0000000000000003 2
v B s+0000000000000002 3
. Stanford University, Ericssan
v of:0000000000000001 4 L
& Research and CPqD Research
. _ Stanford University, Ericsson
v j¢d 0f:0000000000000009 3 ’ 2
l Research and CPqD Research
(b)
:Z 0f:0000000000000001 X :: of:0000000000000009 X
URI © 000 URI ofi(0
Type Switch Type Switch
Master ID 127.0.0.1 Master ID 127.00.1
ChassisID 1 Chassis ID 9
Vendor Stanford University, Ericsson Research and CPgD Research Vendor Stanford University, Ericsson Research and CPgD Research
Ports Ports
Enabled D Speed Type Egress Links Name Enabled 1D Speed Type Egress Links Name
true Local 10485 Copper true Loca 10485 Copper ,;:}m
true 1 10485 o
— 5 10485 Copper sw0000000000D00002/1 V;TL true 10485 Copper sw:0000000000000006/3
o N . veth true 2 10485 Copper sw(000000000000000873 ‘o
true 3 10485 Copper sw:0000000000000004/1 R s0902
s0103
(c)

Figure 3. Graphical interface of ONOS illustrating the topology and network devices. (a) Mesh
hybrid topolody discovered. (b) Devices detected by the ONOS controller. (c) Info on SDN devices
acquired by ONOS.

5.2. ieHDDP Protocol Performance

To assess the performance of our ieHDDP implementation, we designed and carried
out several experiments on random topologies, following the Barabdsi-Albert [30] and
Waxman [31] models of increasing size (10, 15, and 20 nodes). Only one node per topology
is directly connected to the control plane (acting as the gateway), while the rest of the nodes
will wait for the in-band control channel to be set up before connecting. Therefore, this is a
worst-case scenario in terms of both the number of control packets exchanged and the time
elapsed to establish the connection. For each topology size, three sets of 10 randomized
topologies were generated using BRITE, corresponding to average topology connectivity
degrees of 2, 4, and 6. Finally, each experiment was repeated at least 10 times to compute
95% confidence intervals by selecting a different node as a gateway in each run.

First, we measured the time required to perform the Controller Port selection (i.e.,
the exploration time in ieHDDP) and to complete the in-band control channel setup. The
left part of Figure 4 shows the exploration time, measured as the time elapsed from the
moment the first ietHDDP Request message is created in the control plane until it is received
by all nodes in the network. We observe that it is in the range of a few hundreds of
milliseconds and clearly increases with the network size (number of nodes), as the top
graph shows 10 nodes and the bottom one shows 20. At the same time, regarding the
network connectivity, we can see how the exploration time decreases with increasing

Symmetry 2022, 14, 756

11 0f 16

node degree (three bars with three different colors). This is due to the tree-like nature of
the exploration process, producing trees that grow in breadth instead of in depth with
increasing node degree; i.e., higher connectivity degrees accelerate the exploration process.
Finally, regarding the network model, we can observe the influence of the hub-and-spoke
nature of Barab’asi-Albert’s model, which clearly reduces the exploration time (nodes are
located at fewer hops to the gateway), especially for low-degree nodes.

Exploration Time Avg. Connection Time Max. Connection Time
600 1800 3500
500 1500 3000
2500
400 1200
2 ’g 2000 f
8 % 300 900
Z e 1500 |
IS
T~ 200 600
1000 |
100 ’*‘I [300 500 |
0 0 0
600 1800 3500
500 | 1500 3000 ¢
2500]-E T
400 1200 ?E J_E i_t
§ g 2000
S 5 300 900
c E 1500
© =
- 200 600
1000
100 300 500
0 0 0
600 1800 3500 J_E
L i_E 3000 r
500 1500 i_[:I-IE
]-E 2500
400 1200
§ g 2000 r
8 o 300 900
s E 1500
=
N7 200 600
1000
100 300 500
0 0 0
Waxman Barabasi-Albert Waxman Barabasi-Albert Waxman Barabasi-Albert
topology topology topology topology topology topology

’I:l Degree 2 [|Degree 4 [Degree 6 |

Figure 4. ieHDDP exploration and connection times in various topologies.

In addition, in Figure 4, the center and right columns depict the results regarding the
connection time (both as an average and as maximum). The connection time is measured
as the time elapsed from the creation of the first ietHDDP Request message on the controller
until the OpenFlow connection between the controller and the node is up and running, that
is, until the HELLO, OFPT_FEATURES_REQUEST and OFPT_FEATURES_REPLY messages have
been exchanged. The average connection time ranges from around 600 ms to 1.5 s on
average and up to 3 s as maximum. They are strongly dependent on the number of nodes
because of two main factors: first, the processing times of protocol messages at nodes
and, second, the availability of processor cores in the emulation servers. In the case of
only 10 nodes, every switch process runs on a dedicated processor core (our hardware
possesses 12 CPU cores), but with 15 and 20 nodes, the effect of core swapping between
switch processes becomes non-negligible. Experiments with a larger number of nodes have
been conducted, but their results are not included, since they are not representative due to

Symmetry 2022, 14, 756

12 of 16

the aforementioned core swapping effect, which increases substantially as the number of
considered nodes increases.

Moreover, Figure 5 illustrates the number of control packets (Request and Reply) used.
It is important to notice that apart from the original message exchange in eHDDP, no
additional control messages are needed for the in-band control setup. We can observe that
both figures are proportional to the number of links in the topology, as expected.

ieHDDP Request ieHDDP Reply ieHDDP Total
50 30 80
70
40 25
60
3 20
Q
S 30 50
©
= 15 40
82 .
T O 30
S 10
22, 20
5
10
0 0 0
80 50 140
70 120
40
) &0 100
Q
x 50
S 30 80
.g 40
FY 60
Q5 20
g 830
< E 2 40
n
- Z 10
10 2
120 70 200
100 60
%) 50 150
© 80
4
& 40
2 60 100
g2 30
S O
el g 40
o 3 20 50
&z
20 10
0 0 0
Waxman Barabasi-Albert Waxman Barabasi-Albert Waxman Barabasi-Albert
topology topology topology topology topology topology

||:|Degree 2 [1Degree 4 [Degree 6 |
Figure 5. Number of exchanged ieHDDP control packets.

Finally, Figure 6 shows the number of ARP protocol (Request and Reply) packets
issued by nodes to learn the MAC address of the controller, which ieHDDP leverages to
learn the in-band path in the direction from the controller to the nodes. Again, these packets
are not generated by our protocol; they are part of the usual exchange of the TCP/IPv4
connection exchange. ieHDDP simply reuses them to learn the path for the in-band control
channel. In fact, ieHDDP not only benefits from it but also reduces the amount of ARP
Request packets, because they are sent in unicast through the Controller Port discovered in
the exploration phase, instead of flooding them as usual.

Symmetry 2022, 14, 756

13 of 16

ARP Request ARP Reply ARP Total
35 35 60
+ =
30]'IE J-E 30 il: I’ 50
25 25
8 40 B
€
& 20 20
oy 30
3215 15
83 20
ZE510 10
- 2
5 5 10
0 0 0
70 70 120
60 i[60 il: 100 J-’:_
o 50 50
I Jf— Jf- 80
X
& 40 40
ey 60
2 230 30
- O
el g 40
o 520 20
-2
10 10 20
0 0 0
100 100 200
80 J_E 80 il: . =
2 an an 1 Ed
9]
S 60 60
g
— 100
w O
D = 40 40
5 ©
Qo
=
o 50
NZ g 20
0 0 0
Waxman Barabasi-Albert Waxman Barabasi-Albert Waxman Barabasi-Albert
topology topology topology topology topology topology

’I:Degree 2 [|Degree 4 [Degree 6 |

Figure 6. Number of ARP protocol packets exchanged for the in-band control channel set up.

6. Conclusions

This paper has presented ieHDDP, which is an enhancement of eHDDP that cannot
only convey topological information but is also capable of establishing in-band control
channels in hybrid SDN domains in which SDN /no-SDN and wired / wireless devices coex-
ist. The in-band control channel establishment is based on an exploration process triggered
by the control plane, which reaches all devices via a controlled flooding mechanism that
allows discovering the port/next-hop to establish a path from each device to the SDN
controller(s), and at the same time, it recollects all the required topological information.
This path allows SDN devices to establish their connections with the SDN control plane.

The proposed mechanism to recollect the topological information (derived from
eHDDP) is described in Sections 3.3.1 and 3.3.2, while the mechanism to establish—in
parallel—the in-band control channel is detailed in Sections 3.3.3 and 3.3.4, by reusing the
ieHDDP Request that explores the network from the control to the data plane.

The implementation detailed in Section 4 has been evaluated for wired scenarios in
Section 5. The obtained results are promising since the required number of packets is
linearly proportional to the existing number of links in the randomized topologies of the
experiments, and exploration and connection times are also linearly proportional to the
diameter of the network topology (it increases with the number of devices and decreases
if the degree of the network increases), as expected. This behavior of ieHDDP grants
scalability in large-scale network scenarios.

Symmetry 2022, 14, 756

14 of 16

References

As future work, we plan to extend the experiments including wireless devices and design
the required enhancements for wireless topologies with unidirectional—non-bidirectional—
links, in which ieHDDP is not directly applicable to achieve a bidirectional path to the
controller, as currently defined.

Author Contributions: Conceptualization, E.R. and . M.-Y.; methodology, LM.-Y. and].A.C; software,
J.A-H. and D.C.; validation, LM.-Y. and J.A.-H.; formal analysis, E.R. and]J.A.C.; investigation, J.A.-H.
and D.C,; resources, J.A.C.; data curation, J.A.-H. and D.C.; writing—original draft preparation,
LM.-Y. and J.A.-H.; writing—review and editing, LM.-Y,,].A.C. and E.R; visualization, D.C. and
J.A.C.; supervision, E.R. and I.M.-Y,; project administration, E.R. and LM.-Y.; funding acquisition, E.R.
and L.M.-Y. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by grants from Comunidad de Madrid through projects TAPIR-CM
(52018 /TCS-4496), IRIS-CM (CM/JIN/2019-039) and MistLETOE-CM (CM/JIN/2021-006), and by
project ONENESS (PID2020-116361RA-100) of the Spanish Ministry of Science and Innovation.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Source code at https://github.com/NETSERV-UAH/ieHDDP (ac-
cessed on 6 March 2022).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ACL Access Control List

ARP Address Resolution Protocol

BOFUSS Basic OpenFlow User-space Software Switch
DpID Datapath ID

eHDDP enhanced Hybrid Domain Discovery Protocol
ForCES Forwarding and Control Element Separation
HDDP Hybrid Domain Discovery Protocol

ieHDDP In-Band enhanced Hybrid Domain Discovery Protocol
IoT Internet of Things

LLDP Link Layer Discovery Protocol

MAC Media Access Control

NDP Neighbor Discovery Protocol

OFDP Open Flow Discovery Protocol

ONOS Open Network Operating System

P4R P4Runtime API

RSTP Rapid Spanning Tree Protocol

SDN Software-Defined Networking
TEDP Tree Exploration Discovery Protocol

1. Farhady, H.; Lee, H.; Nakao, A. Software-Defined Networking: A survey. Comput. Netw. 2015, 81, 79-95. [CrossRef]

2. Lopez-Pajares, D.; Alvarez-Horcajo, J.; Rojas, E.; Asadujjaman, A.S.M.; Martinez-Yelmo, I. Amaru: Plug Play Resilient In-Band
Control for SDN. IEEE Access 2019, 7, 123202-123218. [CrossRef]

3. Pakzad, F; Portmann, M.; Tan, W.L.; Indulska, J. Efficient Topology Discovery in Software Defined Networks. In Proceedings of
the International Conference on Signal Processing and Communication Systems, Gold Coast, Queensland, Australia, 15-17 December

2014; pp. 1-8. [CrossRef]

4. Rojas, E.; Alvarez-Horcajo, J.; Martinez-Yelmo, I.; Carral, J.A.; Arco,].M. TEDP: An Enhanced Topology Discovery Service for
Software-Defined Networking. IEEE Commun. Lett. 2018, 22, 1540-1543. [CrossRef]

5. Martinez-Yelmo, I.; Alvarez-Horcajo, J.; Carral, J.A.; Lopez-Pajares, D. eHDDP: Enhanced Hybrid Domain Discovery Protocol for
network topologies with both wired /wireless and SDN/non-SDN devices. Comput. Netw. 2021, 191, 107983. [CrossRef]

6. Alvarez-Horcajo, J.; Rojas, E.; Martinez-Yelmo, 1.; Savi, M.; Lopez-Pajares, D. HDDP: Hybrid Domain Discovery Protocol for
Heterogeneous Devices in SDN. IEEE Commun. Lett. 2020, 24, 1655-1659. [CrossRef]

https://github.com/NETSERV-UAH/ieHDDP
http://doi.org/10.1016/j.comnet.2015.02.014
http://dx.doi.org/10.1109/ACCESS.2019.2937528
http://dx.doi.org/10.1109/ICSPCS.2014.7021050
http://dx.doi.org/10.1109/LCOMM.2018.2845372
http://dx.doi.org/10.1016/j.comnet.2021.107983
http://dx.doi.org/10.1109/LCOMM.2020.2991347

Symmetry 2022, 14, 756 15 of 16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Fernandes, E.L.; Rojas, E.; Alvarez-Horcajo, J.; Kis, Z.L.; Sanvito, D.; Bonelli, N.; Cascone, C.; Rothenberg, C.E. The road to
BOFUSS: The basic OpenFlow userspace software switch. J. Netw. Comput. Appl. 2020, 165, 102685. [CrossRef]

Ochoa-Aday, L.; Cervell6-Pastor, C.; Ferndndez-Ferndndez, A. eTDP: Enhanced Topology Discovery Protocol for Software-Defined
Networks. IEEE Access 2019, 7, 23471-23487. [CrossRef]

Jia, Y,; Xu, L,; Yang, Y.; Zhang, X. Lightweight Automatic Discovery Protocol for OpenFlow-Based Software Defined Networking.
IEEE Commun. Lett. 2020, 24, 312-315. [CrossRef]

Wazirali, R.; Ahmad, R.; Alhiyari, S. SDN-OpenFlow Topology Discovery: An Overview of Performance Issues. Appl. Sci. 2021,
11, 6999. [CrossRef]

Ochoa Aday, L.; Cervell6 Pastor, C.; Fernandez Fernandez, A. Current Trends of Topology Discovery in OpenFlow-based Software
Defined Networks; Technical Report; Universitat Politécnica de Catalunya, Departament d’Enginyeria Telemaética: Barcelona,
Spain, 2015.

Tarnaras, G.; Athanasiou, F,; Denazis, S. Efficient Topology Discovery Algorithm for Software-Defined Networks. IET Netw. 2017,
6,157-161. [CrossRef]

Yang, L.; Dantu, R.; Anderson, T.; Gopal, R. Forwarding and Control Element Separation (ForCES) Framework; Technical Report 3746;
Internet Engineering Task Force: Fremont, CA, USA, 2004.

Ibrar, M.; Wang, L.; Muntean, G.M.; Akbar, A.; Shah, N.; Malik, K.R. PrePass-Flow: A Machine Learning based technique to
minimize ACL policy violation due to links failure in hybrid SDN. Comput. Netw. 2021, 184, 107706. [CrossRef]

Huang, H.; Guo, S.; Liang, W.; Li, K; Ye, B.; Zhuang, W. Near-Optimal Routing Protection for In-Band Software-Defined
Heterogeneous Networks. IEEE |. Sel. Areas Commun. 2016, 34, 2918-2934. [CrossRef]

Gonzélez, S.; De la Oliva, A.; Bernardos, C.J.; Contreras, L.M. Towards a Resilient Openflow Channel Through MPTCP. In
Proceedings of the 2018 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Valencia,
Spain, 6-8 June 2018; pp. 1-5. [CrossRef]

Hark, R.; Rizk, A.; Richerzhagen, N.; Richerzhagen, B.; Steinmetz, R. Isolated in-band communication for distributed SDN
controllers. In Proceedings of the 2017 IFIP Networking Conference (IFIP Networking) and Workshops, Stockholm, Sweden,
12-16 June 2017; pp. 1-2. [CrossRef]

Bentstuen, O.I.; Flathagen,]. On Bootstrapping In-Band Control Channels in Software Defined Networks. In Proceedings of the
2018 IEEE International Conference on Communications Workshops (ICC Workshops), Kansas City, MO, USA, 20-24 May 2018;
pp. 1-6. [CrossRef]

Sakic, E.; Avdic, M.; Van Bemten, A.; Kellerer, W. Automated Bootstrapping of A Fault-Resilient In-Band Control Plane. In
Proceedings of the Symposium on SDN Research, SOSR "20, Los Angeles, CA, USA, 3 March 2020; Association for Computing
Machinery: New York, NY, USA, 2020; pp. 1-13. [CrossRef]

Park, Y.; Nguyen, D.T,; Kang, B.; Lee, K.; Lee, J.; Choo, H. A Fast Recovery Scheme Based on Detour Planning for In-Band
Openflow Networks. In Proceedings of the 11th International Conference on Ubiquitous Information Management and
Communication, IMCOM 17, Beppu, Japan, 5-7 January 2017; Association for Computing Machinery: New York, NY, USA, 2017.
[CrossRef]

Schiff, L.; Schmid, S.; Canini, M. Medieval: Towards a Self-Stabilizing, Plug & Play, In-Band SDN Control Network; ACM Sigcomm
Symposium on SDN Research (SOSR): San Jose, CA, USA, 2015.

Su, Y.L.; Wang, I.C.; Hsu, Y.T.; Wen, C.H.P. FASIC: A Fast-Recovery, Adaptively Spanning In-Band Control Plane in Software-
Defined Network. In Proceedings of the GLOBECOM 2017—2017 IEEE Global Communications Conference, Singapore,
4-8 December 2017; pp. 1-6. [CrossRef]

Asadujjaman, A.S.M.; Rojas, E.; Alam, M.S.; Majumdar, S. Fast Control Channel Recovery for Resilient In-band OpenFlow
Networks. In Proceedings of the 2018 4th IEEE Conference on Network Softwarization and Workshops (NetSoft), Montreal, QC,
Canada, 25-29 June 2018; pp. 19-27. [CrossRef]

Holzmann, P; Zitterbart, M. Izzy: A Distributed Routing Protocol for In-band SDN Control Channel Connectivity. In
Proceedings of the 2019 IEEE 44th LCN Symposium on Emerging Topics in Networking (LCN Symposium), Osnabrueck,
Germany, 14-17 October 2019; pp. 18-25. [CrossRef]

Silva Freitas, M.; Oliveira, R.; Molinos, D.; Melo, J.; Frosi Rosa, P.; de Oliveira Silva, F. ConForm: In-band Control Plane Formation
Protocol to SDN-Based Networks. In Proceedings of the 2020 International Conference on Information Networking (ICOIN),
Barcelona, Spain, 7-10 Janaury 2020; pp. 574-579. [CrossRef]

Wu, E; Tian, A. rXstp: A Topology Discovery Mechanism Based on Rapid Spanning Tree for SDN In-Band Control. In Proceedings
of the 2021 International Conference on Communications, Information System and Computer Engineering (CISCE), Beijing,
China, 14-16 May 2021; pp. 703-706. [CrossRef]

An, N.; Lim, H. Poster: Protecting Control Planes in In-Band Software-Defined Wireless Networks. In Proceedings of the 25th
Annual International Conference on Mobile Computing and Networking, MobiCom "19, Los Cabos, Mexico, 21-25 October 2019;
Association for Computing Machinery: New York, NY, USA, 2019. [CrossRef]

Awan, LL; Shah, N.; Imran, M.; Shoaib, M.; Saeed, N. An improved mechanism for flow rule installation in-band SDN.]. Syst.
Archit. 2019, 96, 1-19. [CrossRef]

Naouri, A.; Wu, H.; Nouri, N.A.; Dhelim, S.; Ning, H. A Novel Framework for Mobile-Edge Computing by Optimizing Task
Offloading. IEEE Internet Things J. 2021, 8, 13065-13076. [CrossRef]

http://dx.doi.org/10.1016/j.jnca.2020.102685
http://dx.doi.org/10.1109/ACCESS.2019.2899653
http://dx.doi.org/10.1109/LCOMM.2019.2956033
http://dx.doi.org/10.3390/app11156999
http://dx.doi.org/10.1049/iet-net.2017.0066
http://dx.doi.org/10.1016/j.comnet.2020.107706
http://dx.doi.org/10.1109/JSAC.2016.2615184
http://dx.doi.org/10.1109/BMSB.2018.8436865
http://dx.doi.org/10.23919/IFIPNetworking.2017.8264881
http://dx.doi.org/10.1109/ICCW.2018.8403796
http://dx.doi.org/10.1145/3373360.3380829
http://dx.doi.org/10.1145/3022227.3022334
http://dx.doi.org/10.1109/GLOCOM.2017.8254760
http://dx.doi.org/10.1109/NETSOFT.2018.8460079
http://dx.doi.org/10.1109/LCNSymposium47956.2019.9000676
http://dx.doi.org/10.1109/ICOIN48656.2020.9016580
http://dx.doi.org/10.1109/CISCE52179.2021.9446027
http://dx.doi.org/10.1145/3300061.3343396
http://dx.doi.org/10.1016/j.sysarc.2019.01.016
http://dx.doi.org/10.1109/JIOT.2021.3064225

Symmetry 2022, 14, 756 16 of 16

30. Barabasi, A.L.; Albert, R. Emergence of Scaling in Random Networks. Science 1999, 286, 509-512. [CrossRef] [PubMed]
31. Waxman, B.M. Routing of multipoint connections. IEEE]. Sel. Areas Commun. 1988, 6, 1617-1622. [CrossRef]

http://dx.doi.org/10.1126/science.286.5439.509
http://www.ncbi.nlm.nih.gov/pubmed/10521342
http://dx.doi.org/10.1109/49.12889

	Introduction
	Related Work
	Support of SDN In-Band Signaling with ieHDDP
	Problem Statement
	Proposed ieHDDP Solution
	ieHDDP Behavior Example
	Exploration Phase (Controller Port Learning)
	Confirmation Phase (Topological Information Gathering)
	In-Band Channel Learning Phase
	In-Band Channel Confirmation Phase (Controller MAC Learning)

	Implementation
	Evaluation
	Proof-of-Concept
	ieHDDP Protocol Performance

	Conclusions
	References

