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Abstract: Symmetry is a frequently recurring theme in mathematics, nature, science, etc. In mathe-
matics, its most familiar manifestation appears in geometry, most notably line geometry, and in other
closely related areas. In this study, we take advantage of the symmetry properties of both dual space
and original space in order to transfer problems in original space to dual space. We use E. Study
Mappingas a direct method for analyzing the kinematic geometry of timelike ruled and developable
surfaces. Then, the invariants for a spacelike line trajectory are studied and the well-known formulae
of Hamilton and Mannheim on the theory of surfaces are provenfor the line space. Meanwhile,
a timelike Plücker conoid generated by the Disteli-axis is derived and its kinematic geometry is
discussed. Finally, some equations for particular timelike ruled surfaces, such as the general timelike
helicoid, the Lorentzian sphere, and the timelike cone, are derived and plotted.

Keywords: Hamilton and Mannheim formulae; timelike Plücker conoid

MSC: 53A04; 53A05; 53A17

1. Introduction

Differential line geometry mainly studies line families in three-dimensional space.
The ambient space can be Euclidean or non-Euclidean. Because it is directly related to
spatial motion (kinematics), it has been extensively implemented in robot kinematics and
mechanism design, which is an interesting subdivision of differential geometry [1–3]. On
the other hand, nature organizes itself using the language of symmetry. Symmetry is one of
the most basic and important notions in all fields of science, technology, and art. Geometry
and symmetry have always been basic tools of scientific investigations, as they are two of
the main ingredients in modern mathematical theories. Our methods in this paper rely
on symmetry and geometry. We take advantage of symmetry properties between dual
space and original space to transfer problems in original space to dual space. In spatial
kinematics, it is significant to investigate the inherent properties of linear trajectories in
accordance with the concept of straight surfaces in differential geometry. It is well known
that it a very effective method of detecting the motion of a straight line trajectory is to use
dual numbers. Hence, the E. Study Mapping processleads to the conclusion that the set
of all oriented lines in Euclidean 3-space E3 is immediately linked to the set of points on
the dual unit sphere in the dual 3-space D3. This means that a regular curve on a dual unit
sphere represents a ruled surface at E3 (see, for instance, [4–9]).

In the Minkowski 3-space E3
1, the differential geometry of ruled surfaces is much

more complicated than in the Euclidean case, since the Lorentzian metric is not a positive
definite metric. Rather, the distance function 〈, 〉 can be positive, negative, or zero, whereas
the distance function in the Euclidean space can only be positive. Hence, if we take
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the Minkowski 3-space E3
1 as an alternative of E3 the E. Study map can be described as

follows. The timelike and spacelike dual unit vectors of hyperbolic and Lorentzian dual
unit spheres H2

+ and S2
1 in the Lorentzian 3-space D3

1 are in one-to-one correspondence with
the oriented timelike and spacelike lines of the space of Lorentzian lines E3

1, respectively.
Then, a differentiable curve on H2

+ corresponds to a timelike ruled surface at E3
1. Similarly,

the timelike (resp. spacelike) curve on S2
1 corresponds to any spacelike (resp. timelike)

ruled surface at E3
1 [10–12]. In Euclidean 3-spaceE3 the E. Study map can be given as

follows. The timelike (resp. spacelike) oriented lines are represented with the timelike (resp.
spacelike) dual points on a hyperbolic (resp. Lorentzian) dual unit sphere in the Lorentzian
dual 3-Space D3

1. Hence, a regular curve on H2
+ represents a timelike ruled surface at E3

1.
Similarly, the spacelike (resp. timelike) curve on S2

1 represents timelike (resp. spacelike)
ruled surface at E3

1. In consideration of its relationship to engineering and the physical
science of Minkowski space, many geometers and engineers have studied straight surfaces
and other surfaces and curves and have observed many different properties(see [10–19]).

This work presents an approach to the kinematic geometry of timelike ruled sur-
faces with a constant Disteli-axis based on E. Study Mapping. Using this method, we
obtain and investigate several characterizations and equations of special timelike ruled sur-
faces undergoing one-parameter screw motion. Additionally, we have obtained necessary
and sufficient conditions for constant Disteli-axis timelike ruled surfaces. Consequently,
we have also considered some special cases which lead to some timelike ruled surfaces.
Moreover, in recent years, many papers have focused on singularity theory, submanifold
theory, harmonic quasiconformal mappings, etc. [20–31]. In our future research, we will
conduct intersecting studies with singularity theory, submanifolds theory, etc., to obtain
further results.

2. Basic Concepts

We begin with requisite concepts relating to dual numbers, dual Lorentzian vectors,
and E. Study Mapping (see [1–3,32–36]): An oriented (non-null) line in Minkowski 3-space
E3

1 can be defined by a point p ∈ L and a normalized direction vector x of L, that is,
〈x, x〉 = ±1. To have coefficients of L, one forms the moment vector x∗ = p× x with
respect to the origin point in E3

1. If p is substituted by any point q = p+tx, t ∈ R on L, this
impliesthat x∗ is independent of p on L. The two vectors x and x∗ are dependent on one
other; they fulfil the following:

〈x, x〉 = ±1, 〈x∗, x〉 = 0.

The six coordinates xi, x∗i (i = 1, 2, 3) of x and x∗are named the normalized Plűcker
coordinates of the line L.

Thus, the two vectors x and x∗ locate the oriented line L.
A dual number x̂ is a number x + εx∗, where x, x∗ ∈ R, and ε is a dual unit with the

property that ε2 = 0. Then the set:

D3 = {x̂:= x + εx∗ = (x̂1, x̂2, x̂3)},

jointly with the Lorentzian inner product

〈x̂, x̂〉 = x̂2
1 + x̂2

2 − x̂2
3,

forms the so-called dual Lorentzian 3-space D3
1. This yields:

f̂1 × f̂2 = f̂3, f̂1 × f̂3 = f̂2, f̂3 × f̂2 = f̂1,
〈f̂1, f̂1〉 = 〈f̂2 ,̂f2〉 = −〈f̂3 ,̂f3〉 = 1,

}
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where f̂1, f̂2, and f̂3, are the dual base at the origin point O(0, 0, 0) of the dual Lorentzian
3-space D3

1. Thus, a point x̂ = (x̂1, x̂2, x̂3)
t has dual coordinates x̂i = (xi + εx∗i ) ∈ D. If

x 6= 0 the norm ‖x̂‖ of x̂ = x + εx∗ is defined by

‖x̂‖ =
√
|〈x̂, x̂〉| =

√
|〈x, x〉|(1 + ε

〈x, x∗〉
〈x, x〉 ).

A dual vector x̂ with norm 1 is called a dual unit vector, and the vector x̂ is called a
spacelike (resp. timelike) dual unit vector if 〈x, x〉 =1(resp. 〈x, x〉 =− 1). It is understand-
able that

〈x̂, x̂〉 = ±1⇐⇒ 〈x, x〉 = ±1, 〈x, x∗〉 =0.

The hyperbolic and Lorentzian (de Sitter space) dual unit spheres with the center ô,
respectively, are

H2
+ =

{
x̂∈D3

1 | x̂2
1 + x̂2

2 − x̂2
3 = −1

}
,

and
S2

1 =
{

x̂∈D3
1 | x̂2

1 + x̂2
2 − x̂2

3 = 1
}

.

Another important concept is E. Study Mapping [36]:The main idea underlying E.
Study Mapping is the reduction of the dimensions of the objects which we are studying.
This map is related with symmetry. An E. study map connects dual space and original
space; using this map, we can transfer problems in original space to dual space with a
reduction in its dimensions. This make problems easier to solve. Due to the symmetry
properties of dual space and original space,the results obtained in dual space can explain
and reflect the properties of the objects which we study in original space. We mainly make
use of dual unit spheres, which have the shape of a pair of conjugate hyperboloids. In
Minkowski 3-space, the common asymptotic cone represents the set of null (lightlike) lines,
the oval shaped hyperboloid forms the set of timelike lines, the ring shaped hyperboloid
represents the set of spacelike lines, and opposite points of each hyperboloid represent the
pair of opposite vectors on a line (see Figure 1).

Figure 1. Dual hyperbolic and dual Lorentzian unit spheres.

3. Timelike Ruled Surfaces

According to the concept of E. Study Mapping, a spacelike or timelike ruled surface
can be represented by a differentiable curve on S2

1, that is,

t ∈ R 7→ x̂(t) ∈ S2
1.
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where x̂(t) are specified with the rulings of the surface and henceforth we do not distin-
guishbetween the ruled surface and the image of its dual curve. We assume a timelike
ruled surface in our study, and denote this surface by (X). The spacelike dual unit vector

t̂(t) = t + εt∗ =
dx̂(t)

dt

∥∥∥∥dx̂(t)
dt

∥∥∥∥−1

is the tangent vector on x̂(t). Introducing the timelike dual unit vector ĝ(t) = g(t) +
εg∗(t) = x̂ × t̂, we have the moving frame {x̂(t), t̂(t), ĝ(t)} on x̂(t) called the Blaschke
frame. Then

〈x̂, x̂〉 = 〈̂t,̂t〉 = −〈ĝ,ĝ〉 = 1,
ĝ = x̂× t̂, t̂ = x̂× ĝ, x̂ = −t̂× ĝ.

}
In terms of the principals of spherical kinematics, the motion of the Blaschke frame at

any instant is a rotation around the Darboux vector ω̂ of this frame, that is,

d
dt

 x̂
t̂
ĝ

 =

 0 p̂ 0
− p̂ 0 q̂
0 q̂ 0

 x̂
t̂
ĝ

 = ω̂×

 x̂
t̂
ĝ

, (1)

where ω̂ = ω + εω∗ = q̂x̂ − p̂ĝ. Here, p̂(t) = p(t) + εp∗(t) =
∥∥∥ dx̂(t)

dt

∥∥∥, and

q̂(t) = q(t) + εq∗(t) = det
(

x̂, dx̂(t)
dt , d2 x̂(t)

dt2

)
are the Blaschke invariants of x̂(t) ∈ S2

1. The

dual unit vectors x̂, t̂, and ĝ are identical to three orthogonally intersected oriented lines at
a point c, named the central point. The locus of the central points is the striction curve on
(X). The tangent of the striction curve c(t) is given by [12]:

c
′
(t) = q∗x(t)− p∗g(t). (2)

The distribution parameters of the timelike ruled surface (X), and the spacelike ruled
surface (G), respectively, are:

µ(t) =
p∗(t)
p(t)

, and λ(t) =
q∗(t)
q(t)

. (3)

3.1. Kinematic Geometry

The Blaschke invariants p̂(t) and q̂(t) furnish a kinematic geometry of the moving
Blaschke frame. Under the position |q̂|〈| p̂|, we locate the timelike dual unit vector

b̂(t) := b + εb∗ =
ω̂

‖ω̂‖ =
q̂√

p̂2 − q̂2
x̂− p̂√

p̂2 − q̂2
ĝ. (4)

It is obvious that b̂ is the Disteli-axis (curvature-axis or striction-axis) of (X). Eventu-
ally, we have the following:

(i) The timelike Disteli-axis b̂ is given by Equation (4).
(ii) The dual angular speed is ‖ω̂‖ = ω(1 + εh).
(iii) If y(x, y, z) is a point on the timelike Disteli-axis b̂, then

y(t, v) = b× b∗ + vb, v ∈ R, (5)

is a non-developable timelike ruled surface (B).
(iv) If the Blaschke motion is pure rotation, that is, h(t) = 0, then

b̂(t)= b(t) + εb∗(t) =
1
‖ω‖ (ω + εω∗).
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Note that if h(t) = 0, and ‖ω‖2 = 1, then ω̂ is a timelike oriented line. However, in
the case that the motion is purely translational, that is, ω̂=0+εω∗, we write ω∗ = ‖ω∗‖,
ω∗b =ω∗ and choose an arbitrary b∗under ω∗ 6= 0; otherwise the timelike unit vector b
can be taken arbitrarily as well.

Furthermore, the timelike Disteli-axis vector allows us to recast the Blaschke formula by:

dx̂
dt

= ‖ω̂‖b̂× x̂,
d̂t
dt

= ‖ω̂‖b̂× t̂,
dĝ
dt

= ‖ω̂‖b̂× ĝ.

Hence, at any instant t ∈ R, ‖ω̂‖ := ω̂(t) = ω(t) + εω∗(t) is the dual angular
speed and

ω(t) =
√

p2 − q2 and ω∗(t) =
qq∗ − pp∗√

p2 − q2

are the rotational angular speed and translational angular speed of the moving Blaschke
frame along (X), respectively. Hence, the pitch of the Blaschke frame throughout the length
of b̂ is

h(t) =
〈ω∗, ω〉
‖ω‖ =

pp∗ − qq∗

p2 − q2 . (6)

So, the timelike Disteli-axis b̂ is the instantaneous screw axis of the Blaschke frame.
According to Equation (4), the timelike Disteli-axis is orthogonal to the spacelike central
normal t̂ and is parallel to the tangent plane of the ruled surface (X). Let ψ̂(t) = ψ + εψ∗ be
the spacelike dual angle (dual radius of curvature) between b̂ and x̂; then, we have

b̂(t) : =
q̂√

p̂2 − q̂2
x̂− p̂√

p̂2 − q̂2
ĝ = sinh ψ̂x̂− cosh ψ̂ĝ. (7)

It is understandable that

q̂
p̂

:= tanh ψ̂ = tanh ψ + εψ∗(1− tanh2 ψ).

From this equation, we obtain:

ψ∗(t) =
pq∗ − qp∗

p2 − q2 (8)

which is the short distance between the dual unit vectors b̂ and x̂. This distance is measured
along the spacelike central normal t̂, and is seen to be the collection of the Blaschke invariants.

From Equations (3), (6) and (8), we obtain

h(t) = µ cosh2 ψ− λ sinh2 ψ,

ψ∗(t) = (µ− λ) sinh ψ cosh ψ.

 (9)

These formulas are Lorentzian versions of the Hamilton and Mannhiem formulae
in Euclidean 3-space E3, respectively [1–4]. The surface defined by ψ∗ is the Lorentzian
version of the Plücker conoid in Euclidean 3-space E3. The parametric representation can
also be given in terms of point coordinates. We may select t̂, which is coincident with the
y−axis of a fixed Lorentzian frame (oxyz), whereas the position of the timelike dual unit
vector b̂ is given by the angle ψ and distance ψ∗ along the positive direction of the y−axis.
The edges x̂ and ĝ can be selected in the sense of the x- and z-axes, respectively (Figure 2).
In view of Equations (5) and (7), it is possible to have the following point coordinates

(B) : y(t, v) = (v sinh ψ,−ψ∗,−v cosh ψ), v ∈ R. (10)
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Using this paramerization approach, the timelike dual unit vectors b̂ are obviously
apparent, crossing through the y-axis. It is easily seen based on the latter equation and
Equation (9) that

(B) : x = v sinh ψ, ψ∗ := y =
1
2
(λ− µ) sinh 2ψ, z = −v cosh ψ,

which is a timelike Plücker conoid; λ− µ = 1, 0 ≤ ψ ≤ 2π, −2 ≤ v ≤ 2 (see Figure 3).
Using straightforward calculations,(

x2 − z2
)

y + (µ− λ)xz = 0.

It is interesting to note that this is a third-order polynomial in the coordinates x, y, and
z. However, the geometric interpretations can be analyzed as follows:

x
z
=

1
2y

[
(µ− λ)±

√
(µ− λ)2 + 4y2

]
. (11)

The limits of (B) can be obtained by equating the discriminant of Equation (11) to zero,
that is,

y = ± i
2
(λ− µ); i =

√
−1,

which are the locations of the two isotropic torsal planes π1, π2, and each one of them
contains one isotropic line (null line) L. Furthermore, the pitch h(t) is not a periodic
function and has at most two extreme values, the distribution parameters µ and λ. Thus,
the two edges x̂ and ĝ are principal axes of the timelike Plücker conoid. However, the
geometric properties are discussed as follows:

(1) If h(t) 6= 0, then there are two isotropic lines L1, and L2 passing through the isotropic
point (0, y, 0) only if y〈(λ− µ); for the two isotropic limit points y = ± i

2 (λ− µ), they
synchronize with the edges x̂ and ĝ.

(2) If h(t) = 0, then the two isotropic torsal lines L1, and L2 are obtained by

x
z
= − tanh ψ = ∓

√
µ

λ
, and y = ±i

√
λµ. (12)

These equations mean that the two isotropic torsal lines L1 and L2 are orthogonal each
other. Hence, in this special case, we have:

(a) In the case of λ = µ the timelike Plücker conoid degenerates into the pencil of lines
through “o” in the timelike plane y = 0.

(b) In the case of λ + µ = 0 the two torsal isotropic lines L1, and L2 are coincident with
the edges x̂ and ĝ.

(c) In the case of µ = 0, λ 6= 0 the two torsal isotropic lines L1, and L2 both coincide with
the x−axis; for µ 6= 0, λ = 0 they coincide with the z−axis.

(d) In the case of λ = µ = 0 the ruled timelike surface (X) and the spacelike surface (G)
are developable surfaces (cones); the central point c is a fixed point.
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Figure 2. b̂(t)= sinh ψ̂x̂− cosh ψ̂ĝ.

Figure 3. A timelike Plücker conoid.

Serret–Frenet Motion

(a) If µ = 0, then the tangent vector of the striction curve is parallel to x, that is, c
′ ‖ x.

This means that (X) is a timelike tangential surface. For the curvature κ, and the torsion τ,
we can find the following calculations simply:

κ(t) =

∥∥∥c
′ × c

′′
∥∥∥∥∥c′

∥∥3 =
p
q∗

, and τ(t) =
det(c

′
, c
′′
, c
′′′
)∥∥c′ × c′′

∥∥2 =
1
λ

, with λ 6= 0.

Thus, the distribution parameter λ is the radius of torsion of the spacelike striction
curve. We arrive, therefore, at the conclusion that the spacelike striction curve c(t) is the
edge of regression of (X). Based on [35], we summarize this result in the following.

Theorem 1. Any timelike ruled surface (X) with the curvature function

q∗(t) = p(a cosh θ − b sinh θ); θ(t) =
t∫
0

dt
λ
(t) 6= 0,

with real constants (a, b) 6= (0, 0) is a timelike tangential surface of a spacelike curve lying on a
Lorentzian sphere with radius

√
a2 − b2 > 0.
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Corollary 1. The curvature function κ(t) and torsion function τ(t) of the Lorentzian spherical
curve in Theorem 1, respectively, are:

κ(t) =
1

a cosh θ − b sinh θ
, and τ(t) =

q
p(a cosh θ − b sinh θ)

. (13)

Furthermore, based on Equations (7) and (13), we can write:

τ(t)
κ(t)

=
q(t)
p(t)

⇒ cosh ψ =
κ√

κ2 − τ2
, and sinh ψ =

τ√
κ2 − τ2

. (14)

On the basis of this and Equation (9), it follows that

h(t) = − 1
τ

sinh2 ψ = − τ

κ2 − τ2 , and ψ∗(t) = − 1
τ

sinh ψ cosh ψ = − κ

κ2 − τ2 .

The corresponding timelike Plücker conoid is

τ
(

x2 − z2
)

y− xz = 0.

(b) If λ(t) = 0, then the striction curve is tangent to g; it is normal to the ruling through
c(t). In this case (X) is a timelike binormal ruled surface. Similarly, we find

κ(t) =
q
p∗

, τ(t) =
1
µ

, with p∗ 6= 0.

Therefore, the curvature function µ(t) is the radius of torsion of the timelike striction
curve c(t). Similarly, we summarize this result in the following.

Theorem 2. Any timelike ruled surface (X) with the curvature function

(
p∗

q

)
(t) = a cos θ + b sin θ; θ(t) =

t∫
0

dt
µ
6= 0,

with real constants (a, b) 6= (0, 0) is a timelike binormal surface of a spacelike curve lying on a
Lorentzian sphere with radius

√
a2 + a2.

Corollary 2. The curvature function κ(t) and torsion function τ(t) of the Lorentzian spherical
curve in Theorem 2, respectively, are:

κ(t) =
1

a cos θ + b sin θ
, and τ(t) =

p
q(a cos θ + b sin θ)

.

Using similar arguments, we can give the identical equations for case (a);

cosh ψ = τ√
τ2−κ2 , sinh ψ = κ√

τ2−κ2 , |κ|〈|τ|,

h(t) = τ2

τ2−κ2 , ψ∗(t) = − κ
τ2−κ2 ,

τ
(
x2 − z2)y + xz = 0.


(15)
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3.2. Timelike Ruled Surfaces with Constant Disteli-Axis

In this section we examine the propertiesof the Blaschke invariants of (X). The dual
arc-length ŝ of x̂(t) is given by

dŝ = ds + εds∗ =
∥∥∥∥dx̂(t)

dt

∥∥∥∥dt = p̂(t)dt. (16)

Based on Equations (1) and (16), we obtain x̂
′

t̂
′

ĝ
′

 =

 0 1 0
1 0 −γ̂
0 γ̂ 0

 x̂
t̂
ĝ

; (′=
d
dŝ

), (17)

where γ̂(ŝ) := q̂
p̂ = γ + εγ∗ is the dual geodesic curvature of x̂(ŝ) on S2

1. Furthermore,
we have:

γ̂(ŝ) = γ[1 + ε(λ− µ)] = tanh ψ̂ = tanh ψ + εψ∗(1− tanh2 ψ),
κ̂(ŝ) := κ + εκ∗ =

√
1− γ̂2 = 1

cosh ψ̂
,

τ̂(ŝ) := τ + ετ∗ = ±ψ̂
′
= ± γ̂

′

1−γ̂2 ,

 (18)

where κ̂(ŝ) is the dual curvature and τ̂(ŝ) is the dual torsion of the spacelike dual curve
x̂(ŝ) ∈ S2

1.

Proposition 1. If the dual geodesic curvature function γ̂(ŝ) is constant, x̂(ŝ) is a spacelike dual
circle on S2

1.

Proof. From Equation (18), we can find that γ̂(ŝ) = constant yields that τ̂(ŝ) = 0, and κ̂(ŝ)
is constant, which implies that x̂(ŝ) is a spacelike dual circle on S2

1.

Definition 1. A non-developable timelike ruled surface (X) is defined as a constant Disteli-axis
timelike ruled surface if its dual geodesic curvature γ̂(ŝ) is constant.

According to the E. Study map, the constant Disteli-axis timelike ruled surface (X) is
generated by a spacelike line undergoing a Lorentzian helical motion of constant pitch h
about the timelike Disteli-axis b̂ As a special case, if γ̂(ŝ) = 0, then x̂(ŝ) is a great spacelike
dual circle on S2

1, that is,

ĉ = {x̂∈S2
1 | 〈x̂, b̂〉 = 0, with 〈b̂, b̂〉 = −1}.

In this case, all the rulings of (X) intersected orthogonally with the timelike Disteli-axis
b̂, that is, ψ = ψ∗ = 0. Thus, we can observe that γ̂(ŝ) = 0⇔ (X) is a timelike helicoidal
surface. The class of the constant-Disteli-axis ruled surfaceis fundamental to the curvature
theory of ruled surfaces. We therefore examine its properties in some detail.

Example 1. In the following, we establish the constant Disteli-axis timelike ruled surface (X).

Since γ̂(ŝ) is constant, based on Equations (17) and (18) we obtain the ODE t̂
′′
+ κ̂2 t̂ = 0. Without

the loss of generality, we may assume t̂(0) = (0, 1, 0), and the general solution of the ODE becomes:

t̂(ŝ) =
(

b̂1 sin(κ̂ŝ), cos(κ̂ŝ) + b̂2 sin(κ̂ŝ), b̂3 sin(κ̂ŝ)
)

, (19)
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where b̂1, b̂2, and b̂3 are some dual constants fulfilling b̂2
1− b̂2

3 = 1, and b̂2 = 0. Equation (19)
gives us:

x̂(ŝ) =
(
−b̂1

1
κ̂

cos(κ̂ŝ) + d̂1,
1
κ̂

sin(κ̂ŝ),−b̂3
1
κ̂

cos(κ̂ŝ) + d̂3

)
,

where d̂1 and d̂3 are some dual constants fulfilling b̂3d̂3 − b̂1d̂1 = 0 and d̂2
1 − d̂2

3 = 1− ρ̂2,
where ρ̂κ̂ = 1. We now replace the dual coordinates by x̂1, x̂2, x̂3 as: x̂1

x̂2
x̂3

 =

 b̂1 0 −b̂3
0 1 0
−b̂3 0 b̂1

 x̂1
x̂2
x̂3

.

With respect to the dual coordinates by x̂1, x̂2, x̂3, x̂(ŝ) becomes

x̂(ŝ) =
(
− cosh ψ̂ cos(κ̂ŝ), cosh ψ̂ sin(κ̂ŝ), d̂

)
, (20)

for a dual constant d̂ = b̂1d̂3 − b̂3d̂1, with d̂ = ± sinh ψ̂. Note that x̂(ŝ) is independent of
the choice of the lower sign or upper sign of ±. Therefore, using the method described in
this paper, we choose upper sign, that is,

x̂(ϕ̂) =
(
− cosh ψ̂ cos ϕ̂, cosh ψ̂ sin ϕ̂, sinh ψ̂

)
, (21)

where ϕ̂ = κ̂ŝ It is a spacelike spherical curve with the dual curvature κ̂ =
√

1− γ̂2 on
the Lorentzian dual unit sphere. S2

1. Let ϕ̂ = ϕ(1 + εh), h indicate the pitch of the helical
motion; then Equation (21) represents a timelike ruled surface. Thus, the Blaschke frame is
found as follows: x̂

t̂
ĝ

 =

 − cosh ψ̂ cos ϕ̂ cosh ψ̂ sin ϕ̂ sinh ψ̂
sin ϕ̂ cos ϕ̂ 0
− sinh ψ̂ cos ϕ̂ sinh ψ̂ sinh ϕ̂ cosh ψ̂


 f̂1

f̂2

f̂3

. (22)

It can be readily seen from Equation (22) that

p̂(ϕ) = (1 + εh) cosh ψ̂, q̂(ϕ) = (1 + εh) sinh ψ̂,

dŝ = p̂(ϕ)dϕ, γ̂(ϕ) =: q̂(ϕ)
p̂(ϕ)

= tan ψ̂.

 (23)

From the real and dual parts of Equation (23), we find

µ = ψ∗ tanh ψ + h, and λ = ψ∗ coth ψ + h. (24)

Furthermore, we have

b̂ = sinh ψ̂x̂− cosh ψ̂ĝ = −f̂3. (25)

This means that the axis of the Lorentzian helical motion is the constant timelike
Disteli-axis b̂.

Now we derive the equation of the timelike ruled surface (X). If we separate Equation (21)
into real and dual parts, we obtain

x(ϕ)=(− cosh ψ cos ϕ, cosh ψ sin ϕ, sinh ψ), (26)

and

x∗(ϕ) =

 x∗1
x∗2
x∗3

 =

 ϕ∗ sin ϕ cosh ψ− ψ∗ sinh ψ cos ϕ
ϕ∗ cos ϕ cosh ψ + ψ∗ sinh ψ sin ϕ

ψ∗ cosh ψ

. (27)
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Let β(β1, β2, β3) be a point on x̂. Since β×x = x∗ we have the system of linear
equations in β1, β2, and β3:

β2 sinh ψ− β3 cosh ψ sin ϕ = x∗1 ,
−β1 sinh ψ− β3 cosh ψ cos ϕ = x∗2 ,
−(β1 sin ϕ + β2 cos ϕ) cosh ψ = x∗3 .


The matrix of coefficients of unknowns β1, β2, and β3 is: 0 sinh ψ − cosh ψ sin ϕ

− sinh ψ 0 − cosh ψ cos ϕ
− cosh ψ sin ϕ − cosh ψ cos ϕ 0

,

and therefore its rank is 2 with ϕ 6= pπ (p is an integer), and ψ 6= 0. In addendum, the rank
of the augmented matrix 0 sinh ψ − cosh ψ sin ϕ x∗1

− sinh ψ 0 − cosh ψ cos ϕ x∗2
− cosh ψ sin ϕ − cosh ψ cos ϕ 0 x∗3

,

is 2. Hence, this system has infinitely many solutions, represented as

β1 = −ψ∗ sin ϕ− (ϕ∗ + β3) coth ψ cos ϕ,
β2 = −ψ∗ cos ϕ + (ϕ∗ + β3) coth ψ sin ϕ,

−β1 sin ϕ− β2 cos ϕ = ψ∗.
(28)

Since β3 is taken at random, then we may take ϕ∗ + β3 = 0. In this case, Equation (28)
reduces to

β1 = −ψ∗ sin ϕ, β2 = −ψ∗ cos ϕ, β3 = −ϕ∗.

We now straightforwardly find the base curve:

β(ϕ) = (−ψ∗ sin ϕ,−ψ∗ cos ϕ,−hϕ).

It can be show that 〈β′ , x
′〉 = 0; (′ = d

dϕ ), so the base curve of (X) is its striction curve.
Furthermore, it can be shown that β(ϕ) is a spacelike (resp., a timelike) if and only if
|ψ∗| > h (resp., |ψ∗| < h). Regarding the curvature κ, and the torsion τ, we can find these
using the following calculations.

κ(ϕ) =
ψ∗

ψ∗2 − h2
, and τ(ϕ) =

h
ψ∗2 − h2

.

So, β(ϕ) is a spacelike helix (resp., timelike) if and only if |ψ∗| > h (resp., |ψ∗| < h). In
addition, if p(x, y, z) is a point on (X), then we have

(X) : p(ϕ, v)) =

 −ψ∗ sin ϕ− v cosh ψ cos ϕ
−ψ∗ cos ϕ + v cosh ψ sin ϕ

−hϕ + v sinh ψ

, (29)

from which we attain,

(X) :
x2

ψ∗2
+

y2

ψ∗2
− Z2

χ2 = 1,

where χ = ψ∗ coth ψ, and Z = z + hϕ. The parameters h, ψ, and ψ∗ can control the shape
of the timelike surface (X). Thus, (X) is a 3-parameter family of Lorentzian unit spheres.
The intersection of each Lorentzian unit sphere and the corresponding spacelike plane
z = −hϕ is a one-parameter set of Euclidean circles x2 + y2 = ψ∗2 Therefore, the envelope



Symmetry 2022, 14, 749 12 of 14

of (X) is a one-parameter set of Lorentzian cylinders. According to Equation (29), we have
the following:

(1) A general timelike helicoid: for h = −0.7, ψ∗ = −2, ψ = 1, −1.5 ≤ v ≤ 1.5, and
0 ≤ ϕ ≤ 2π (see Figure 4).

(2) Lorentzian sphere: for h = 0, ψ∗ = −2, ψ = 1, −1.5 ≤ v ≤ 1.5, and 0 ≤ ϕ ≤ 2π (see
Figure 5).

(3) A timelike helicoid: for h = −1, ψ∗ = ψ = 0, −2.5 ≤ v ≤ 2.5, and 0 ≤ ϕ ≤ 2π (see
Figure 6).

(4) A timelike cone: for h = ψ∗ = 0, ψ = 1, −2.5 ≤ v ≤ 2.5, and 0 ≤ ϕ ≤ 2π (see
Figure 7).

Figure 4. A general timelike helicoid.

Figure 5. Lorentzian sphere.

Figure 6. A timelike helicoid.
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Figure 7. Timelike cone.

4. Conclusions

The main result of this study was to provide the necessary and sufficient conditions
to analyze constant dual angles with respect to a constant spacelike Disteli-axis.We pre-
sented and examined some characterizations of special timelike ruled surfaces undergoing
one-parameter helical motion. Furthermore, we provided an approach for studying the
kinematic geometry of a timelike ruled surface with constant Disteli-axis based on E.
Study Mapping. As a result, we have obtained and examined the timelike Plücker conoid
associated with the Blaschke frame associated with the surface.
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