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Abstract: Constrained ordered weighted averaging (OWA) aggregation attempts to solve the OWA
optimization problem subject to multiple constraints. The problem is nonlinear in nature due to the
reordered variables of arguments in the objective function, and the solution approach via mixed
integer linear programming is quite complex even in the problem with one restriction of which
coefficients are all one. Recently, this has been relaxed to allow a constraint with variable coefficients
but the solution approach is still abstruse. In this paper, we present a new intuitive method to
constructing a problem with auxiliary symmetric constraints to convert it into linear programming
problem. The side effect is that we encounter many small sub-problems to be solved. Interestingly,
however, we discover that they share common symmetric features in the extreme points of the
feasible region of each sub-problem. Consequently, we show that the structure of extreme points and
the reordering process of input arguments peculiar to the OWA operator lead to a closed optimal
solution to the constrained OWA optimization problem. Further, we extend our findings to the OWA
optimization problem constrained by a range of order-preserving constraints and present the closed
optimal solutions.

Keywords: ordered weighted average (OWA) operator; constrained OWA aggregation; extreme point

1. Introduction

Yager [1] introduced the ordered weighted averaging (OWA) operator to provide a
parameterized class of mean-like operators that can be used to aggregate a collection of
input arguments. A unique feature of the OWA operator is that the operator weights are
associated with the arguments that are ordered by their magnitudes. Therefore, the OWA
operator is the inner product of an ordered input vector and a weighting vector. In the short
time since its first appearance, the OWA operator has been applied in diverse fields such as
neural networks, database systems, fuzzy logic controllers, multi-criteria decision making,
data mining, location-based services (LBS), and geographical information systems (GIS).

Yager [2] presented a new class of OWA aggregation problem, the so-called constrained
OWA aggregation problem, and exemplified its simplified problem with a single constraint
to indicate that it can be formulated by a mixed integer linear programming problem.
Later, Carlsson et al. [3] presented a simple algorithm for the exact computation of optimal
solutions to a single constrained OWA aggregation problem. Ahn [4] presented a solution
to the same problem through a linear transformation that is accomplished by incorporating
weak inequality constraints representing order relations of variables. Recently, Coroianu
and Fullér [5] presented a proof of the constrained OWA aggregation problem with a
single constraint having variable coefficients, which are extended to the co-monotone
constraints that share the same ordering permutation of the coefficients [6]. Chen and
Tang [7] considered a constrained OWA aggregation problem with a single constraint and
lower bounded variables. In particular, they presented four types of solution depending
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on the number of zero elements for the three-dimensional constrained OWA aggregation
problem with lower bounded variables. They deal with the maximization constrained
OWA problem with lower bounded variables and the minimization constrained OWA
problem with upper bounded variables. For a three-dimensional case of these models, they
present the explicitly optimal solutions theoretically and empirically [8].

In this paper, we deal with a single constrained OWA aggregation problem having
variable coefficients in a completely different manner on the basis of the development by
Ahn [4]. The proposed method is very intuitive, and thus easy to understand, and can
be readily extended to include order-preserving constraints. Specifically, we incorporate
auxiliary weak inequality constraints of variables in an attempt to transform it into linear
programming (LP) problems, which inevitably leads to as many LPs as the factorial of the
number of variables. It is evident that the reordering property of the OWA aggregation
instantly leads to the LP equivalent once we add the weak inequalities to the set of original
constraints. Instead of solving each LP and selecting the largest objective function value as
the optimal solution (in fact, the number of problems to be solved increases exponentially as
the number of variables increases), we determine the extreme points of the feasible region
of each LP. Interestingly, we find that the set of extreme points consists of a vector with
one positive element, a vector with two equal positive elements, etc.; moreover, the places
where the positive elements appear solely depend on the order of variables in the weak
inequalities incorporated. Consequently, we show that the features of extreme points and
the reordering process of input arguments peculiar to the OWA operator lead to a closed
optimal solution to the constrained OWA optimization problem. Above all, we notice that
this can be achieved by a novel idea of incorporating symmetric weak inequalities into the
set of original constraints.

The paper is organized as follows: in Section 2, we present a solution to a single
constrained OWA optimization problem with variable coefficients; in Section 3, we deal
with a multiple constrained OWA optimization problem, followed by concluding remarks
in Section 4.

2. Single Constrained OWA Aggregation with Variable Coefficients
2.1. The OWA Operator

Definition 1 (Yager [1]). An OWA operator of dimension n is a mapping F : Rn → R that has an
associated weighting vector w = (w1, w2, · · · , wn) such that ∑n

j=1 wj = 1, wj ≥ 0, j = 1, · · · , n.
The function value F of input arguments x = (x1, x2, · · · , xn) determines the aggregated value of
arguments in such a manner that

F(x1, · · · , xn) = ∑n
j=1 wjyj (1)

with yj being the jth largest element of x = (x1 , x2, · · · , xn).

The OWA operator is featured by two distinguished procedures, namely, (a) reorder-
ing the input arguments and (b) associating weights with the reordered arguments. The
reordering process, which is substantially different from other aggregation operators, has
a crucial impact on the final aggregation outcomes. A proper determination of operator
weights based on the mathematical programming approach is governed principally by
two criteria—the attitudinal character (or orness) and the degree of information (or input
arguments) usage. Various objective functions are used to maximize information usage
whereas the attitudinal character is consistently satisfied as a constraint in the optimization
problem. The nonlinear objective functions in the mathematical programming approach
include the maximum entropy, the minimal variability, the maximal Renyi entropy, the
least square method, and the chi-square method. The linear objective functions, relatively
few in number, include the minimax (or improved) disparity [9,10] and the parametric ap-
proach [11]. Readers may refer to the surveys of recent developments in the determination
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of the OWA operator weights [12,13]. The OWA operator weights that are determined by
any one of the aforementioned methods serve as the coefficients of the objective function in
the OWA aggregation problem.

2.2. The Constrained OWA Aggregation

Yager [2] considered the problem of maximizing an OWA aggregation constrained by
a collection of linear inequalities:

maximize F(x1, · · · , xn) = ∑n
j=1 wjyj

subject to {Ax ≤ b, x ≥ 0}
(2)

where yj is the jth largest element of x = (x1 , x2, · · · , xn), A denotes an m× n matrix whose
elements are aij, i = 1, · · · , m, j = 1, · · · , n, and b denotes an m vector whose elements are
bi, i = 1, · · · , m. Note that in the above constrained OWA aggregation problem, the input
arguments are not specific values but variables that can take on a range of values within
the feasible region of the constraints. Further, Yager [2] exemplified a simple constrained
OWA aggregation problem with a single constraint as shown in (3) to show that it can be
formulated by a mixed integer linear programming problem:

maximize F(x1, · · · , xn) = ∑n
j=1 wjyj

subject to x1 + x2 + · · ·+ xn ≤ 1
xj ≥ 0, j = 1, · · · ,

(3)

where yj denotes the jth largest element of the bag {x1, · · · , xn}.
Recently, Coroianu and Fullér [5] generalized Problem (3) by allowing, instead of an

unvarying coefficient, variable coefficients αj, j = 1, · · · , n to the constraint:

F∗ = maximizeF(x1, · · · , xn) = ∑n
j=1 wjyj

subject to α1x1 + α2x2 + · · ·+ αnxn ≤ 1
(
αj ≥ 0

)
xj ≥ 0 j = 1, · · · ,

(4)

where yj denotes the jth largest element of the bag {x1, · · · , xn}.
Here, we first deal with the same constrained OWA aggregation problem but from

a totally different perspective, and later we extend it to the one with more constraints.
Before proceeding further to deal with a general n variable case, we briefly introduce a
constrained OWA optimization problem with three variables in Figure 1, which helps to
grasp the concept behind our proposed method.
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Layer 1 (Formulation). The optimal solution to the OWA optimization problem with
variable coefficients in each of three variables is to be sought.

Layer 2 (Decomposition). The original problem in Layer 1 is decomposed into six
sub-problems each of which has weak inequalities of three variables.

Layer 3 (Linearization). Each (non-linear) sub-problem in Step 2 becomes a linear
programming problem due to the incorporation of weak inequalities and the definition of
variables yi, the ith largest of {x1, x2, x3}.

Layer 4 (Extreme Points). The set of extreme points for each sub-problem is deter-
mined. Each linearized sub-problem shares common properties in the extreme points of
its feasible region. First, the set of extreme points consists of a vector with one positive
element, a vector with two equal positive elements, and a vector with three equal positive
elements. Moreover, the places where the positive elements appear only depend on the
order of permutations of the incorporated weak inequalities.

Layer 5 (Local Optimal Solution). The local optimal objective value F∗i , i = 1, . . . , 6
for each sub-problem can be determined by multiplying the coefficients of the objective
function by the elements of extreme points as the order of variables in the weak inequalities
since the ordered arguments are associated with the operator weights.

Layer 6 (Global Optimal Solution). The global optimal objective value is the largest
among the six local optimal objective values, which can be further grouped into one positive
element, two positive elements, and three positive elements across the six sub-problems,
and the largest one among them is then selected.

In general, a nonnegative real space Rn
+ is the union of the sets of n! weak inequali-

ties, each of which has an equal volume by symmetry, and thus Rn
+ can be equivalently

expressed as:

Rn
+ = {x1 ≥ x2 ≥ · · · ≥ xn ≥ 0} ∪ · · · ∪ {xn ≥ xn−1 ≥ · · · ≥ x1 ≥ 0}.
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Incorporating Rn
+ into Problem (4) does not change its feasible region and thus Problem

(4) is equivalent to (5):

maximizeF(x1, · · · , xn) = ∑n
j=1 wjyj

subject to α1x1 + α2x2 + · · ·+ αnxn ≤ 1
{x1 ≥ x2 ≥ · · · ≥ xn} ∪ · · · ∪ {xn ≥ xn−1 ≥ · · · ≥ x1}

xj ≥ 0, j = 1, · · · , n.

(5)

Loosely speaking, the optimal solution to (4) corresponds to the largest objective
function value of n! sub-problems, F∗ = maxi=1,··· , n!

[
F∗

σ(i)

]
, where F∗

σ(i) is obtained by
solving the following problem (Ahn [4] used a similar reasoning when solving the OWA
optimization problem with a single constraint, the coefficients of which are all equal to one):

maximizeFσ(x1, · · · , xn) = ∑n
j=1 wjyj

subject to α1x1 + α2x2 + · · ·+ αnxn ≤ 1
xσ(1) ≥ xσ(2) ≥ · · · ≥ xσ(n), xj ≥ 0, j = 1, · · · ,

(6)

where σ(·) denotes a permutation of {1, 2, · · · , n}.
For convenience, consider a constraint {x1 ≥ x2 ≥ · · · ≥ xn} where σ(1) = 1,

σ(2) = 2,· · · , σ(n) = n among n! different permutations. Incorporating this into Problem
(4) immediately leads to an LP counterpart (7) since yj corresponds to xj for all j:

maximizeFσ(x1, · · · , xn) = ∑n
j=1 wjxj

subject to α1x1 + α2x2 + · · ·+ αnxn = 1
x1 ≥ x2 ≥ · · · ≥ xn, xj ≥ 0, j = 1, · · · , .

Note that the inequality constraint in (4) is transformed into an equality in (7).
If we add a constraint {xn ≥ xn−1 ≥ · · · ≥ x1} to (4), the resulting linearized problem

will be:
maximize Fσ(x1, · · · , xn) = ∑n

j=1 wjxn−j+1

subject to α1x1 + α2x2 + · · ·+ αnxn = 1
xn ≥ xn−1 ≥ · · · ≥ x1, xj ≥ 0, j = 1, · · · , .

Instead of solving many LP problems one by one (in fact, we have to solve n! LP
problems), we attempt to find some properties about the extreme points of the feasible
region of the constraints that are relevant to all LP problems. To do so, we start to find the
extreme points of the equality constraint in (7) as follows:

v(0)
1 =

(
1
α1

, 0, · · · , 0
)T

, v(0)
2 =

(
0,

1
α2

, 0, · · · , 0
)T

, · · · , v(0)
n =

(
0, · · · 0,

1
αn

)T
. (7)

Then, we are to determine new extreme points of the feasible region restricted by
adding each weak equality constraint in (7) to the set (8) one by one. Therefore, the pro-
cedure requires determining the extreme points whenever incorporating {xi − xi+1 ≥ 0},
i = 1, · · · , n− 1.

Adding a constraint {x1 − x2 ≥ 0} to (4) divides the current extreme points of (8) into
two sets:

(i) a set of extreme points satisfying it: S =
{

v(0)
1 , v(0)

3 , · · · , v(0)
n

}
(ii) the extreme point not satisfying it: NS =

{
v(0)

2

}
.

The line segments via a convex combination are formed to find a new extreme point
for each pair of vectors in S and NS. To illustrate, we construct a line segment for a

pair of vectors v(0)
1 =

(
1
α1

, 0, · · · , 0
)T

in S and v(0)
2 =

(
0, 1

α2
, 0, · · · , 0

)T
in NS such that
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(
0, 1

α2
, 0, · · · , 0

)
+ λ

(
1
α1
− 0, 0− 1

α2
, 0− 0, · · · , 0− 0

)
=

(
1
α1

λ, 1
α2
− 1

α2
λ, 0, · · · , 0

)
,

0 ≤ λ ≤ 1.
We solve an equation 1

α1
λ−

(
1
α2
− 1

α2
λ
)
= 0 corresponding to {x1 − x2 = 0} to de-

termine if an intersection point exists and, as a result, we find λ = α1
α1+α2

∈ [0, 1], which
consequently leads to a new extreme point by substituting it into the parameterized line
segment as follows:(

1
α1

λ,
1
α2
− 1

α2
λ, 0, · · · , 0

)
=

(
1
α1
· α1

α1 + α2
,

1
α2
− 1

α2
· α1

α1 + α2
, 0, · · · , 0

)
=

(
1

α1 + α2
,

1
α1 + α2

, 0, · · · , 0
)

.

Repeating this process for the other pairs of vectors in S and NS results in the following
extreme points:

v(1)
1 =

(
1
α1

, 0, · · · , 0
)T

, v(1)
2 =

(
1

α1+α2
, 1

α1+α2
, 0, · · · , 0

)T
, v(1)

3 =
(

0, 0, 1
α3

, 0, · · · , 0
)T

, · · · ,

v(1)
n =

(
0, · · · 0, 1

αn

)T
.

(8)

Next, we repeat the procedure by incorporating a constraint {x2 − x3 ≥ 0} into the
feasible region characterized by the extreme points of (9), which eventually results in the
following extreme points:

v(2)
1 =

(
1
α1

, 0, · · · , 0
)T

, v(2)
2 =

(
1

α1+α2
, 1

α1+α2
, 0, · · · , 0

)T
,

v(2)
3 =

(
1

α1+α2+α3
, 1

α1+α2+α3
, 1

α1+α2+α3
, 0 · · · , 0

)T
, · · · , v(2)

n =
(

0, · · · 0, 1
αn

)T
.

Note that incorporating the constraint {x2 − x3 ≥ 0} divides the current extreme
points of (9) into two sets S and NS: S =

{
v(1)

1 , v(1)
2 , v(1)

4 , · · · , v(1)
n

}
and NS =

{
v(1)

3

}
.

This process ends when we finally incorporate a constraint {xn−1 − xn ≥ 0} and we
obtain the following extreme points:

v1 =
(

1
α1

, 0, · · · , 0
)

,v2 =
(

1
α1+α2

, 1
α1+α2

, 0, · · · , 0
)

,

v3 =
(

1
α1+α2+α3

, 1
α1+α2+α3

, 1
α1+α2+α3

, 0, · · · , 0
)

, . . . , vn =
(

1
∑n

i=1 αi
, · · · , 1

∑n
i=1 αi

)
.

(9)

If we incorporated a set of constraints {xn ≥ xn−1 ≥ · · · ≥ x1} into (4), we would
have obtained the following extreme points due to its symmetric feature to the constraint
{x1 ≥ x2 ≥ · · · ≥ xn}:

v1 =
(

0, · · · , 0, 1
αn

)
, v2 =

(
0, · · · , 0, 1

αn−1+αn
, 1

αn−1+αn

)
,

v3 =
(

0, · · · , 0, 1
αn−2+αn−1+αn

, 1
αn−2+αn−1+αn

, 1
αn−2+αn−1+αn

)
, . . . , vn =

(
1

∑n
i=1 αi

, · · · , 1
∑n

i=1 αi

)
.

At this time, we notice a particular pattern of extreme points. Each linearized sub-
problem shares similar properties in the extreme points of its feasible region. First, the
set of extreme points consists of a vector with one positive element, a vector with two
equal positive elements, a vector with three equal positive elements, etc. Moreover, the
places where the positive elements appear only depend on the order of permutations of
the incorporated constraints, which is, in fact, of no importance in the OWA aggregation
because the ordered arguments are associated with the operator weights. These findings
lead to Theorem 1 below, which states that the optimal solution to (4) can be obtained by
the so-called vector-wise comparisons instead of solving all n! linear sub-problems.
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Theorem 1. The optimal objective function value to the constrained OWA optimization problem
(4) is determined by

F∗ = max
{

w1

α(1)
,

w1 + w2

α(1) + α(2)
, · · · ,

∑n
i=1 wi

∑n
i=1 α(i)

}
(10)

where α(i) is the ith smallest element in the constraint coefficients set C = {α1, α2, · · · , αn}

Proof. Our goal is to find the maximum of the optimal solutions of n! linearized OWA
aggregation problems. Considering each linearized problem, the optimal solution
undoubtedly occurs at one of the n extreme points, which may be a vector with one
positive element (zeros elsewhere), or a vector with two positive elements (zeros
elsewhere), etc. It is obvious that considering n different vectors with one positive

element such as
{(

1
α1

, 0, · · · , 0
)T

,
(

0, 1
α2

, 0, · · · , 0
)T

, · · · ,
(

0, · · · 0, 1
αn

)T
}

, the objective

function of (4) is maximized at w1
α(1) where α(1) is the smallest element in C. Similarly,

considering
(

n
2

)
different vectors with two positive elements such as{(

1
α1+α2

, 1
α1+α2

, 0, · · · , 0
)T

,
(

1
α1+α3

, 0, 1
α1+α3

, · · · , 0
)T

, · · · ,
(

0, · · · , 0, 1
αn+αn−1

, 1
αn+αn−1

)T
}

,

the objective function is maximized at w1+w2
α(1)+α(2) because of w1+w2

α(1)+α(2) ≥
w1+w2
αi+αj

for all i 6= j.

For some k < n, ∑k
i=1 wi

∑k
i=1 α(i)

is the largest objective function value among
(

n
k

)
different vectors

with k positive elements. Continuing in this manner, we arrive at the conclusion that the optimal

solution to (4) corresponds to the maximum of
{

w1
α(1) , w1+w2

α(1)+α(2) , · · · , ∑k
i=1 wi

∑k
i=1 α(i)

, · · · , ∑n
i=1 wi

∑n
i=1 α(i)

}
.

We break a tie arbitrarily when it occurs. �

Corollary 1. If the optimal solution occurs at the kth place (1 ≤ k ≤ n), the optimal extreme point
is determined by {

1
∑k

i=1 α(i)
at the µ(i) place, i = 1, · · · , k

0 elsewhere
. (11)

where µ(i) =
{

j
∣∣α(i) = αj

}
. Further, a set of constraints incorporated for the linearized problem

is
{

xµ(1) ≥ xµ(2) ≥ · · · ≥ xµ(k) ≥ xπ(1) · · · ≥ xπ(n−k)

}
where π(i) is any index in {1, · · · , n}

except µ(i), i = 1, · · · , k.

Proof. The proof follows directly from Theorem 1. �

Consider the following constrained OWA optimization problem:

F∗ = minimize F(x1, · · · , xn) = ∑n
j=1 wjyj

subject to α1x1 + α2x2 + · · ·+ αnxn = 1
xj ≥ 0, j = 1, · · · , n.

(12)

Corollary 2. Considering problem (12), we obtain the optimal solution

F∗ = min
{

w1

α(1)
,

w1 + w2

α(1) + α(2)
, · · · ,

∑n
i=1 wi

∑n
i=1 α(i)

}
(13)

where α(i) is the ith largest element in C = {α1, α2, · · · , αn}.

Proof. Corollary 2 follows directly from the proof of Theorem 1 since the extreme points of
(4) are equal to those of (12). �
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Corollary 3. Consider a special case of αi = 1 for all i in (4). Then, the optimal objective function
value is determined by

F∗ = max
{

w1

1
,

w1 + w2

2
, · · · ,

∑n
i=1 wi

n

}
. (14)

Proof. We simply obtain the result (14) since α(i) = 1 for all i and thus ∑k
i=1 α(i) = k for

1 ≤ k ≤ n. �

For convenience, we denote the extreme points of the feasible region formed by a set
of constraints {x1 + x2 + · · ·+ xn = 1, x1 ≥ x2 ≥ · · · ≥ xn ≥ 0}:

v1 = (1, 0, · · · , 0), v2 =

(
1
2

,
1
2

, 0, · · · , 0
)

, v3 =

(
1
3

,
1
3

,
1
3

, 0, · · · , 0
)

, . . . , vn =

(
1
n

, · · · ,
1
n

)
. (15)

Finally, consider the following constrained OWA optimization problem (16) which is
different from (4) only in the right-hand-side (RHS):

maximizeF(x1, · · · , xn) = ∑n
j=1 wjyj

subject to α1x1 + α2x2 + · · ·+ αnxn ≤ b (> 0)
αj > 0, xj ≥ 0 j = 1, · · · , n

(16)

where yj denotes the jth largest element of the bag {x1, · · · , xn}.
We conclude on the basis of the proof of Theorem 1 that the optimal objective function

value to Problem (16) simply corresponds to:

F∗ = max
{

bw1

α(1)
,

b(w1 + w2)

α(1) + α(2)
, · · · ,

b ∑n
i=1 wi

∑n
i=1 α(i)

}
.

Example 1. Consider the following constrained OWA optimization problem presented by Coroianu
and Fullér [5]:

maximize F = 1
10 y1 +

4
10 y2 +

3
10 y3 +

2
10 y4

subject to x1 + 3x2 + 2x3 + x4 = 1
xi ≥ 0, i = 1, · · · , 4

where yj denotes the jth largest element of the bag {x1, · · · , xn}.

It follows that α(1) = 1, α(2) = 1, α(3) = 2, and α(4) = 3 from the set of coefficients
C = {1, 3, 2, 1}. Note that we break a tie arbitrarily and choose α(1) = 1. The extreme
point (1, 0, 0, 0) among the extreme points with one positive element (zeros elsewhere)
yields the highest objective function value of 1

10 ·
1

α(1) =
1

10 . Considering the extreme points
with two or three positive elements, we obtain the highest objective values, such as:

1
10 ·

1
α(1)+α(2) +

4
10 ·

1
α(1)+α(2) =

5
20 with α(1) + α(2) = 2 and

1
10 ·

1
∑3

i=1 α(i)
+ 4

10 ·
1

∑3
i=1 α(i)

+ 3
10 ·

1
∑3

i=1 α(i)
= 8

40 with ∑3
i=1 α(i) = 4, respectively.

Finally, we obtain the following objective function value for the extreme points with
all four positive elements:

1
10
· 1

∑4
i=1 α(i)

+
4
10
· 1

∑4
i=1 α(i)

+
3

10
· 1

∑4
i=1 α(i)

+
2

10
· 1

∑4
i=1 α(i)

=
10
70

with
4

∑
i=1

α(i) = 7.

Therefore, the optimal objective function value to the constrained OWA optimization
problem is F∗ = max

{
1

10 , 5
20 , 8

40 , 10
70

}
= 5

20 and the optimal extreme point is
(

1
2 , 0, 0, 1

2

)
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based on Corollary 1. Further, the weak inequality constraint incorporated to obtain
the result of this optimal solution is any one of {x1 ≥ x4 ≥ x2 ≥ x3}, {x1 ≥ x4 ≥ x3 ≥ x2},
{x4 ≥ x1 ≥ x2 ≥ x3}, and {x4 ≥ x1 ≥ x3 ≥ x2}. To illustrate, if we incorporate
{x1 ≥ x4 ≥ x2 ≥ x3} into the problem, it will be linearized as follows:

maximize F = 1
10 x1 +

4
10 x4 +

3
10 x2 +

2
10 x3

subject to x1 + 3x2 + 2x3 + x4 = 1
x1 ≥ x4 ≥ x2 ≥ x3
xi ≥ 0, i = 1, · · · , 4

where yj denotes the jth largest element of the bag {x1, · · · , xn}.
On the other hand, Corollary 2 indicates that the optimal solution to the minimized

version of the example is:

F∗ = min
{

1/10
3 , 1/10+4/10

5 , 1/10+4/10+3/10
6 , 1/10+4/10+3/10+2/10

7

}
= 1

30 .

with the optimal extreme point
(

0, 1
3 , 0, 0

)
.

3. An Extension of a Single Constrained OWA Aggregation Problem

In this section, we extend the development of Section 2 to solve the OWA aggregation
problem constrained by a range of incompletely specified arguments. Ahn [4] has dealt with
a similar topic in the context of the OWA optimization subject to a sum to unity constraint,
and here we extend it to the OWA optimization problem with variable coefficients. To
illustrate, consider the following constrained OWA optimization problem, which is different
from (16) in that the constraints representing order relations among the variables xjs
are incorporated:

maximizeF = ∑n
j=1 wjyj

subject to α1x1 + α2x2 + · · ·+ αnxn ≤ b
x1 ≥ 2x2 ≥ · · · ≥ nxn
xj ≥ 0, j = 1, · · · , n.

(17)

These order relation constraints ensure x1 to be the largest, x2 the second largest, . . . ,
and xn the least (ties can occur among the xjs), which leads to an equivalent LP problem
such that:

maximizeF = ∑n
j=1 wjxj

subject to α1x1 + α2x2 + · · ·+ αnxn ≤ b
x1 ≥ 2x2 ≥ · · · ≥ nxn, xj ≥ 0, j = 1, · · · , n.

(18)

(The order relation constraints of (18) are a special case of more general ones
{β1x1 ≥ β2x2 ≥ · · · ≥ βnxn}.)

Instead of obtaining a solution via an LP package, we attempt first to determine
the extreme points of the feasible region formed by the constraints and then to find
a closed solution. The feasible region formed by the order relation constraints of (18)
is characterized by the non-normalized extreme directions emanating from the origin,
D = (d1, d2, d3, · · · , dn), where:

d1 = (c, 0, · · · , 0), d2 =

(
c,

1
2

c, 0, · · · , 0
)

, d3 =

(
c,

1
2

c,
1
3

c, 0, · · · , 0
)

, · · · , dn =

(
c,

1
2

c,
1
3

c, · · · ,
1
n

c
)

.
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Therefore, the extreme points of the feasible region formed by the constraints in (18)
are simply the intersecting points of the halfspace and the non-normalized directions; to
find them, we solve:

α1c = b→ c = b
α1

for d1

α1c + α2

(
1
2 C
)
= b→ c = b

α1+
1
2 α2

for d2

α1c + α2

(
1
2 C
)
+ · · ·+ αn

(
1
n C
)
= b→ c = b

∑n
j=1

1
j αj

for dn.

The extreme points are determined by substituting each derived c into the correspond-
ing direction vector di, i = 1, · · · , n, which finally leads to E1 = (v1, v2, · · · , vn):

v1 =
(

b
α1

, 0, · · · , 0
)

, v2 =

(
b

α1+
1
2 α2

, b
2(α1+

1
2 α2)

, 0, · · · , 0
)

,

v3 =

(
b

α1+
1
2 α2+

1
3 α3

, b
2(α1+

1
2 α2+

1
3 α3)

, b
3(α1+

1
2 α2+

1
3 α3)

, 0, · · · , 0
)

,

. . .

vn =

(
b

∑n
j=1

1
j αj

, b
2 ∑n

j=1
1
j αj

, · · · , b
n ∑n

j=1
1
j αj

)
.

(19)

Remark 1. Let us reconsider the OWA optimization problem in (7) that was formulated to transform
the single constrained OWA optimization problem into the LP equivalent. Obviously, the OWA
optimization problem (7) is a special case of (18) with b = 1 and β j = 1 for all j. Therefore, the
extreme points of the constraints in (7) can be easily determined by replacing b with b = 1 and β j
with β j = 1 for all j in E1 in (19), which leads to the equivalent extreme points of (10).

Consider the following constrained OWA optimization problem in which other types
of incomplete input arguments representing order relations among the xjs are incorporated:

maximizeF = ∑n
j=1 wjxj

subject to α1x1 + α2x2 + · · ·+ αnxn ≤ b
x1 − x2 ≥ x2 − x3 ≥ · · · ≥ xn−2 − xn−1 ≥ xn−1 − xn,
xn−1 − xn ≥ xn xj ≥ 0, j = 1, · · · , n

(20)

A feasible region formed by the order relation constraints in (20) is characterized by
the non-normalized extreme directions emanating from the origin, D = (d1, d2, d3, · · · , dn)
where d1 = (c, 0, · · · , 0), d2 = (2c, c, 0, · · · , 0), d3 = (3c, 2c, c, 0, · · · , 0),· · · ,
dn = (nc, (n− 1)c, (n− 2)c, · · · , c). Therefore, the extreme points of the feasible region
that is formed by the constraints in (20) are simply the intersecting points of the halfspace
and the non-normalized direction; to find them, we solve:

α1c = b→ c = b
α1

for d1

2α1c + α2c = b→ c = b
2α1+α2

for d2

· · ·
nα1c + (n− 1)α2c + · · ·+ αnc = b→ c = b

∑n
j=1(n−j+1)αj

for dn.
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The extreme points are determined by substituting each derived c into the correspond-
ing direction vector di, i = 1, · · · , n, which finally leads to E2 = (v1, v2, · · · , vn):

v1 =
(

b
α1

, 0, · · · , 0
)

,

v2 =
(

2b
2α1+α2

, 2b
2α1+α2

, 0, · · · , 0
)

,

v3 =
(

3b
3α1+2α2+α3

, 3b
3α1+2α2+α3

, 3b
3α1+2α2+α3

, 0, · · · , 0
)

,
. . .

vn =

(
nb

∑n
j=1(n−j+1)αj

, (n−1)b
∑n

j=1(n−j+1)αj
, · · · , nb

∑n
j=1(n−j+1)αj

)
(21)

Example 2. Consider the following constrained OWA optimization problem:

maximize F = 1
10 y1 +

4
10 y2 +

3
10 y3 +

2
10 y4

subject to x1 + 3x2 + 2x3 + x4 = 1
x1 ≥ 2x2 ≥ 3x3 ≥ 4x4
xi ≥ 0, i = 1, · · · , 4

where yj denotes the jth largest element of the bag {x1, · · · , xn}.

The extreme points of the constraints in the example are determined by E1:

E1 =


1
0
0
0

2
5
1
5
0
0

6
19
3

19
2

19
0

12
41
6

41
4

41
3

41

.

Each extreme point clearly represents the order relations of variables such that x1 is
the largest, x2 is the second largest, x3 is the third largest, and x4 is the least, which thus
leads to an equivalent linearized objective function of F = 1

10 x1 +
4

10 x2 +
3

10 x3 +
2

10 x4 since
y1 = x1, y2 = x2, y3 = x3, and y4 = x4. The optimal objective function value is simply
determined by:

F∗ = max{c·E1} = max{0.1, 0.12, 0.126, 0.132} = 0.132 where c =

(
1
10

,
4

10
,

3
10

,
2
10

)
.

4. Concluding Remarks

The constrained OWA aggregation attempts to solve the OWA optimization problem
subject to multiple constraints. In this paper, we present a new intuitive approach to solve
the OWA optimization problem with a single constraint with variable coefficients. Al-
though this problem was previously dealt with by Coroianu and Fullér [5], our approach is
distinct from theirs in that we linearize the nonlinear problem by additionally incorporating
symmetric weak inequalities. Exploiting the extreme points of the feasible region of each
linearized problem reveals interesting properties that eventually lead to theories and corol-
laries. These results are easy to understand compared to theirs and readily expandable to
include other order preserving constraints. To this end, we deal with the OWA optimization
problem constrained by a range of incompletely specified variables and find optimal closed
solutions that can be readily applied to solve the constrained OWA optimization problem.

Future research topics include the constrained OWA optimization problem with various
types of constraints, for example, bounded variables, a convex sequence of variables, etc.
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