
����������
�������

Citation: Lu, J.; Xue, H.; Duan, X. An

Adaptive Moving Mesh Method

for Solving Optimal Control

Problems in Viscous Incompressible

Fluid. Symmetry 2022, 14, 707.

https://doi.org/10.3390/

sym14040707

Academic Editors: Alexander

Zaslavski and Mikhail Sheremet

Received: 8 March 2022

Accepted: 24 March 2022

Published: 31 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

An Adaptive Moving Mesh Method for Solving Optimal
Control Problems in Viscous Incompressible Fluid

Junxiang Lu 1,*,†, Hong Xue 1,† and Xianbao Duan 2,†

1 Department of Mathematics of School of Science, Xi’an Polytechnic University, Xi’an 710048, China;
xuehonghong@sohu.com

2 Department of Mathematics of School of Science, Xi’an University of Technology, Xi’an 710049, China;
xianbaoduan@hotmail.com

* Correspondence: jun-xianglu@163.com; Tel.: +86-1357-211-2415
† These authors contributed equally to this work.

Abstract: An adaptive moving mesh method for optimal control problems in viscous incompressible
fluid is proposed with the incompressible Navier–Stokes system used to describe the motion of the
fluid. The moving distance of nodes in the adopted mesh moving strategy is found by solving a
diffusion equation with source terms, and an algorithm that fully considers the characteristics of the
control problem is given with symmetry reduction to the incompressible Navier–Stokes equations.
Numerical examples are provided to show that the proposed algorithm can solve the optimal control
problem stably and efficiently on the premise of ensuring high precision.

Keywords: moving mesh method; optimal control problem; finite element method; Navier–Stokes
equation

1. Introduction

The optimal control problems constrained by PDEs play an increasingly important
role in engineering and have attracted widespread attention from many scholars. These
problems cover various fields, such as feedback control, the control of fluid flow and
optimal shape design [1–3]. The research on numerical methods for these problems has
been an active area in recent decades. To approximate the solutions of control problems,
the FEM (finite element method) proves to be a powerful method and has been used as the
main method in dealing with numerical analysis for optimal control problems [4–7].

Efficient numerical solutions to optimal control problems constrained by PDEs
involve many fields, and this is particularly true for fluid dynamics problems. Within the
context of optimal control problems, the flow control is crucial for various engineering
applications [8–10]. Therefore, flow control has become an increasingly active field and
has undergone much progress in its theoretical aspects [11–17].

From the perspective of numerical solutions only, effective discretization schemes for
the non-linear state equations are quite challenging, especially when considering practi-
cal industrial application problems. The finite element method is undoubtedly the most
appropriate tool to compute the flow control problems. Recently, there has been exten-
sive research in theoretical analysis and numerical approximation of the fluid dynamics
equations in the scientific literature [18,19].

Researchers have developed some results of the FEM for flow control problems [16,20].
There is also some research on state-constrained control problems constrained by fluid
dynamics equations [13,14]. In [11], Abergel and Temam studied first order optimality
conditions and gave a gradient algorithm. Wang obtained some theoretical results of state-
constrained optimal control problems for 3-D instantaneous fluid flow [21]. Gunzburger,
Hou and Svobodny first studied the FEM for optimal control problems about steady-state
fluid flow in [15]. Similar problems were discussed in [16]. However, most of those works
were based on a uniform mesh, which leads to a time-consuming procedure.
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Hydrodynamic problems generally involve interface tracking, shock waves, singulari-
ties of solutions, phase changes, and high vorticity or complex areas. When numerically
solving these problems, there is usually some form of spatial mesh, and mesh-dependent
methods were adopted. However, these methods are not so efficient when the solution
involves a large change in the local area [21,22]. It should be noted that there are usually
regularities in optimal control problems, and the singularities likely distribute to different
positions, which means that the uniform triangulation strategy may be inefficient. The
adaptive mesh method is more efficient to deal with in that case. This enables us to use as
few meshes as possible to solve the state equations using the adaptive mesh method [23–25].

Adaptive FEM, which was proposed by the pioneering work in [26], is becoming an
active field in scientific and engineer computations for its high efficiency among various
kinds of finite element methods.To achieve a higher accuracy and minimize the computa-
tional work as much as possible, adaptive FEM is undoubtedly a particularly appropriate
finite element tool in solving PDEs [27–32].

The adaptive mesh method usually divides the working domain uniformly first, and
then adds or deletes mesh nodes to locally refine or coarsen according to a posteriori
error estimation. This is the basic idea of the h-method, and many commercial software
programs are also based on this strategy. Another method is the p-method, which increases
the number of interpolation polynomials to improve the accuracy of the solution, most
commonly in the FEM.

The p-method can be combined with the h-method, and the hp-method [33,34] is
obtained through a posteriori error estimation. The hp-method has been developed to
relative maturity; however, the implementation of this method is quite complicated, because
a posteriori error estimation depends heavily on certain assumptions of the solution, and
these assumptions may be difficult to obtain for many nonlinear problems. This work
considers another adaptive mesh method—namely, the r-method (moving mesh method).

Although the r-method is not as widely used as the h- or p-methods, it has also been
used in many fields and has achieved good results [35–40]. Although the r-method has
many promising features in solving complex problems, there are more problems that need
to be solved compared to the h-method and the p-method. The idea of the r-method is
to start with a given initial mesh, then move the nodes according to the characteristics of
the solution or region and keep the mesh topology and the number of nodes unchanged
during the solution process.

In the end, the nodes are concentrated in local areas, which usually have more drastic
solution changes or more complex geometric shapes. Therefore, the moving mesh method
could save computational effort while the same accuracy is achieved. These techniques
can be widely used in physics, mechanics, engineering and other fields and are applied to
various problems and algorithm selection, including solving various dynamic equations,
detonation simulation and other problems.

In order to solve the optimal control problems constrained by PDEs, we integrate the
sensitivity analysis results with the moving mesh strategy and take the incompressible
viscous fluid as an example. The structure of this study is the following: In Section 2, the
optimal control problem with a Navier–Stokes equation as the state constraint is given,
and sensitivity analysis results are obtained by the adjoint method. Section 3 presents an
improved moving mesh method. Section 4 presents an adaptive moving mesh method to
solve the optimal control problem, and a verification example is provided. A brief summary
is given in the last section.

2. Optimal Control Problem and Sensitivity Analysis

We assume that U and Y are two Hilbert spaces, and our goal is to find the minimum
value of the functional

J : Y × U → R (1)

constrained by
E(y, u) = 0, (2)
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where y ∈ Y and u ∈ U represent the state variable and the control variable, respectively. Y
depends on u—that is, y = y(u). Usually, there is y ∈ Yad ⊂ Y , u ∈ Uad ⊂ U . Yad and Uad
are admissible spaces. For steady problems, constraints (2) are PDEs with corresponding
boundary conditions. For the Navier–Stokes equations, the constraints (2) are:

−ν∆y + y · ∇y +∇p = f + uD, in Ω,
−div y = 0, in Ω,

y = g, on Γd,
y = uB, on Γc,

ν
∂y
∂n = pn, on Γn,

(3)

where Ω ⊂ Rd, d ∈ {2, 3} is the working area. The constraint variable y := (y, p) and the
speed y = (yi)

d
i=1 and pressure p are unknown. f is the volume force. ν is the viscosity

coefficient. g is a known function. The functions uD and uB are control variables. Γd
and Γc are both Dirichlet boundary conditions for speed, which can be homogeneous or
non-homogeneous; however, the meaning is different at the boundary. Non-homogeneous
on Γd generally means inflow or outflow, and homogeneous means that there is no slip
condition on the solid wall, while on the boundary Γc, non-homogeneous means the value
of the control variable. n represents the unit normal vector. The boundary of the region is
∂Ω := Γ = Γd ∪ Γc ∪ Γn.

The typical objective functional J in the optimal control problem is:

J (y, u) =
1
2

∫
Ωc
|y− yd|2dx +

α

2
‖u‖2

Ωc
, (4)

Equation (4) means the distance between the state Equation (2) to a given goal or
expectation of the state yd. In order for the problem to be well posed, we also include
the control in the cost functional, together with a Tikhonov regularization parameter α,
which is usually chosen a priori, and the control volume is Ωc ⊂ Ω. Equation (4) means
the distance between the state Equation (2) to a given goal or expectation of the state yd.
Similarly, we can define this distance as the target functional only on the boundary ∂Ω or
part of it.

Let V := H1(Ω)d, which means that the function itself and its first derivative belong
to the Sobolev space formed by the vector value function of L2(Ω). Let

Ỹ :=
{

ỹ ∈ V = H1(Ω)d : ỹ|Σd∪Σc
= 0

}
,

and

P := L2
0(Ω) =

{
p ∈ L2(Ω) :

∫
Ω

pdx = 0
}

.

Then, the weak form of the Navier–Stokes problem (3) is:

ν(∇y,∇ỹ)Ω + (y · ∇y, ỹ)Ω

−(p, div ỹ)Ω − ( f + uD, ỹ)Ω = 0, ∀ỹ ∈ Ỹ ,

−(div y, q)Ω = 0, ∀q ∈ P,

y = g, on Σd,

y = uB, on Σc,

(5)

where (·, ·)Ω represents the inner product of L2.
Let the area Ωh ⊂ Ω be a triangulation with h as the parameter Th, Ỹh ⊂ Ỹ and Ph ⊂ P

are two finite element spaces. Then, the finite element solution of problem (5) is:
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Find (ỹh, ph) ∈ Ỹh × Ph, such that
ν(∇yh,∇ỹh) + (yh · ∇yh, ỹh)

−(ph,∇ · ỹh) = ( fh, ỹh), ∀ỹh ∈ Ỹh,

(qh,∇ · yh) = 0, ∀qh ∈ Ph.

(6)

Let the Lagrange multiplier L = (l1, l2, l3, l4) ∈ Ỹ × P × L2(Γd)
d × L2(Γc)

d. Using
integration by parts, we have

L(y, u, L) =J (y, p, u) + ν(∇y,∇l1)Ω + (y · ∇y, l1)Ω

− (p, div l1)Ω − ( f + uD, l1)Ω

− (div y, l2)Ω + (y− g, l3)Γd

+ (y− uB, l4)Γc
.

(7)

Deriving the above equation in the direction (ỹ, q), we can obtain the weak form of
the adjoint problem:

ν(∇ỹ,∇l1)Ω + (y · ∇ỹ + ỹ · ∇y, l1)Ω − (div ỹ, l2)Ω

+(ỹ, l3)Γd
+ (ỹ, l4)Γc

= −Jy(y, p, u)ỹ, ∀ỹ ∈ V,

−(div l1, q)Ω = −Jp(y, p, u)q, ∀q ∈ P.

(8)

As l1 ∈ Ỹ , then using integration by parts, we have

ν(∇ỹ,∇l1)Ω = −(div(ν∇l1), ỹ)Ω

+ ν(∂nl1, ỹ)Γn∪Γd∪Γc
,

− (div ỹ, l2)Ω = (∇l2, ỹ)Ω − (l2n, ỹ)Γn∪Γd∪Γc
,

(y · ∇ỹ, l1)Ω = −(y · ∇l1, ỹ)Ω + ((y · n)l1, ỹ)Γn
.

(9)

Let l := l1, l̃ := l2, the adjoint problem can be written as follows:

−div(ν∇l)− y · ∇l + (∇y) · l +∇l̃

= −Jy(y, p, u), in Ω,

−div l = −Jp(y, p, u), in Ω,

l = 0, on Γd ∪ Γc,

ν
∂l
∂n
− l̃n + (y · n)l = 0, on Γn.

(10)

Deriving u on both sides of Equation (7), we find:

Ju(y, uD) = l. (11)

Combining the adjoint problem (10), the sensitivity analysis result of the objective
function about the control variable can be obtained from (11).

3. Moving Mesh Strategy

In our previous work, the moving mesh strategy was as follows [41]. Assume that the
finite element triangulation at time Ti is Ti, and the coordinate of the k-th node is Xi

k, then
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the coordinate of the k-th node at the moment of Ti+1 can be obtained by the following
relationship:

Xi+1
k = γξXi

k, (12)

where γ ≥ 0 is an adjustable parameter, and ξ is the amount of node movement, which is
obtained by solving the following diffusion problem that takes the solution of the Navier–
Stokes problem (3) as the source term:ξ̃t − µM∆ξ̃ = v, in Ω,

ξ̃ = 0, on ∂Ω,
(13)

whereM is the monitor function and v is the solution of Equation (3).
In the first equation of question (13), the right-hand term v reflects the effect of the

fluid required by the Navier–Stokes problem (3) on the movement of the mesh. Although
it is usually apt to appear with discontinuities and high vorticity where the flow velocity
is large, the change of the solution is not necessarily dramatic. The measure taken in [41]
is to introduce the gradient information of the solution in the monitor function. In prob-
lem (13), homogeneous Dirichilet boundary conditions forcing nodes could not move on
the boundary. In this work, the mesh moving equation is improved as:

ξt − µM∆ξ = Ju(y, uD), in Ω,
∂ξ

∂n
= 0, on ∂Ω.

(14)

In the moving mesh method, the monitor function plays a crucial role. In fact, the
selection and construction of the monitor function is critical in the moving mesh method.
A good monitor function can improve the accuracy of the solution or reduce the local error.
For the Navier–Stokes problem, there are some monitor functions that have been suggested
in existing works. For example, the monitor functions adopted in [42] are:

G =
√

1 + α1[η(vh)/ max η(vh)]
α2 , (15)

where α1 ∈ R, α2 > 2 are adjustable parameters, and η(vh) is the error |v− vh|1,Ω

η(vh) :=

√
∑

l:inner boundaries

∫
l
[∇v)h · nl ]

∣∣∣2
l
dl, (16)

[v]
∣∣
l = v

∣∣
l− − v

∣∣
l+ is the leap along the boundary l.

For the problems studied in this paper, we use the following monitor functions:

M =
√

1 + β1|Ju(y, uD)|+ β2E , (17)

where 0 < β1, β2 ∈ R are adjustable parameters—that is, the source term was replaced by
the sensitivity analysis result of the objective functional. The numerical example shows that
this choice could achieve better results. E is the residual-type a posteriori error estimation
of the Navier–Stokes problem,

E = h2
T‖ f ‖2

L2(T) + hT‖Jh(∂nu)‖2
L2(∂T∩Ω)

+ hT‖g− ∂nu‖2
L2(∂T∩ΓN), (18)

where ΓN is the Neumann boundary, hT = max diam(hE) (hE is the triangle), and Jh(·)
denotes the jumps. Assume T+, T− have a common side, n+ and n− are unit normal vectors
accordingly, then:

Jh(∂nu)
∣∣
E := ∇u

∣∣
T+
· n+ +∇u

∣∣
T−
· n−. (19)
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For more discussion on the a posteriori error estimation of the Navier–Stokes problem,
please refer to [43,44].

4. Numerical Algorithm and Numerical Example
4.1. Numerical Algorithm

Based on the results in the previous sections, we give the moving mesh method to
solve the optimal control problem constraints by the Navier–Stokes equation as follows:

I Divide the working domain Ω uniformly to obtain the initial triangulation T (0) and
the corresponding coordinates of the node is X(0). Then, solve the Navier–Stokes
problem (3) to obtain the solution v(0)h , p(0)h and the solution of the adjoint problem

(10) l(0). Obtain the value J (0)
u (y, uD). Select the appropriate parameters γ, β1, β2;

given the termination criteria tol;.
II If |J (i+1)

u (y, uD)−J (i)
u (y, uD)| > tol, then iterate as follows. Step i + 1 includes the

following items:

• The objective function M(i+1) is obtained by Equation (17); The mesh move
amount ξ(i+1) is obtained by Equation (14); Equation (12) moves the mesh node
to X(i+1).

• From X(i+1), we find the new triangulation T (i+1).

• Solve the Navier–Stokes problem (3) to obtain the solution v(i+1)
h , p(i+1)

h and

the solution of the adjoint problem (10) l(i+1). Find the values of J (i+1)
u (y, uD).

Calculate |J (i+1)
u (y, uD)−J (i)

u (y, uD)|.

4.2. Numerical Example

We consider the classical backstep flow with ν = 0.002 (i.e., Re = 500). Assume
that u = (0.25− (y− 0.5)2, 0.0)T on the inflow boundary, uy = 0, p = 0 on the outflow
boundary, and u = 0 on the rest of the boundaries. The computational domain of the
backstep problem is depicted in Figure 1. The target flow field with ν = 1 is shown in
Figure 2.
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Figure 1. The computational domain of the back-step problem.

Figure 2. The target flow field.

Figure 3 gives the initial triangulation, and Figure 4 shows the moving mesh produced
by the strategy we proposed.

Figure 1. The computational domain of the back-step problem.

Figure 2. The target flow field.

Figure 3 gives the initial triangulation, and Figure 4 shows the moving mesh produced
by the strategy we proposed.
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Figure 3. The initial mesh.

Figure 4. The mesh after moving.

The numerical solution without control is shown in Figure 5, and Figure 6 is the
controlled fluid flow.

Figure 5. The uncontrolled fluid flow.

Figure 6. The controlled fluid flow.

The value of the objective function without control is 1.05, while the valued of the
objective function after control is 5.2× 10−4. This means that the value of the objective
function has been reduced to about 0.5%.

It can be seen from the results that the mesh will be automatically focused on the place
where the solution change is relatively large. We also solved the problem with uniform
triangulation. To achieve the same numerical accuracy, the nodes need to be doubled and
the time-consumption increased by more than 1.5 times. This shows that the proposed
algorithm is efficient.

5. Conclusions

An adaptive moving mesh method for optimal control problems in viscous incom-
pressible fluid is proposed in this paper, and this is an effective method to solve classical
optimal control problems that are constrained by PDEs. The moving distance of the nodes
in the proposed strategy is achieved by solving the diffusion equation. An algorithm fully
considering the characteristics of the control problem is given.
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The fluid states is dominated by the incompressible Navier–Stokes equation in this
paper, and thus the proposed method and algorithm can easily generalize to other optimal
control problems that are constrained by PDEs. Finally, the numerical examples provided
show that the mesh can be concentrated in areas where the solution changes drastically,
and the points on the boundary are not forced to remain unchanged.
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