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Abstract: In this paper, we consider a class of degenerate elliptic equations with arbitrary power
degeneration. The issues about the existence, uniqueness, and smoothness of solutions of the semiperi-
odic Dirichlet problem for a class of degenerate elliptic equations with arbitrary power degeneration
are studied. The two-sided estimates for singular numbers (s-numbers) are obtained. Note that
estimates of singular numbers (s-numbers) show the rate of approximation of the found solutions by
finite-dimensional subspaces. Here, we also obtain estimates for the eigenvalues. We note that, in
this paper, apparently, two-sided estimates of singular numbers (s-numbers) for degenerate elliptic
operators are obtained for the first time. At the end of the paper, a symmetric operator is considered,
i.e., a self-adjoint case.

Keywords: degenarate elliptic operator; boundary value problem; singular numbers; power
degeneration; solution; uniqueness

1. Introduction

Let Ω = {(x, y) : −π < x < π, 0 < y < 1}. Consider the following problem

Lu = −k(y)uxx − uyy + a(y)ux + c(y)u = f (x, y) ∈ L2(Ω), (1)

u(−π, y) = u(π, y), ux(−π, y) = ux(π, y), (2)

u(x, 0) = u(x, 1) = 0, (3)

where a(y) and c(y) are piecewise continuous functions in [0, 1], k(y) > 0 as y ∈ (0, 1]
and k(0) = 0. Let C∞

0,π(Ω̄) be a class of infinitely differentiable finite functions in Ω̄ and
satisfying the conditions (2) and (3).

Closure of the operator L by the norm of L2(Ω) we also denote by L.
In the study of the smoothness and approximation properties of solutions of boundary

value problems for some nonlinear equations we encounter questions of the spectral
properties of linear degenerate elliptic equations. In contrast to elliptic operators, spectral
questions for degenerate elliptic operators are poorly understood. Known results on
this topic or those close to it in content are contained in the papers of M. Smirnov [1],
M. Keldysh [2], T. Kalmenov, M. Otelbaev [3], A.A. Nakhushev [4], G. Huang [5], A. Sbai,
Y. El hadfi [6], and others.

As is known, when studying the spectral properties of boundary value problems for
degenerate elliptic equations, a completely different situation arises compared to studying
the spectral properties of boundary value problems for elliptic equations. In this case,
the main difficulties are that the equation changes type and the solutions do not retain
their smoothness at degeneracy points. Therefore, in this case, various difficulties arise
related to the behavior of functions from the domain of the differential operator, and
these difficulties, in turn, affect the spectral characteristics of boundary value problems for
degenerate elliptic equations.
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It can be seen from the review of the literature that, in the general case, traditional
questions such as asymptotic behavior and estimates of eigenvalues are not sufficiently
studied in the general case. This paper is devoted to estimates of singular values (s-
numbers) and eigenvalues of the semiperiodic Dirichlet problem for a class of degenerate
elliptic equations with arbitrary power degeneration.

The results of this work are close to those of M.B. Muratbekov [7–10], where differential
operators of mixed and hyperbolic types were investigated. In contrast to the above papers,
here, we investigate previously unconsidered degenerate elliptic equations with an arbitrary
power-law degeneracy on the degeneracy line.

2. Results

Definition 1. The function u ∈ L2(Ω) is called a solution of (1)–(3) if there exists a sequence
{uk(x, y)}∞

k=1 ⊂ C∞
0,π(Ω) such that

‖uk − u‖2 → 0, ‖Luk − f ‖2 → 0 as k→ ∞.

W1
2 (Ω) is the Sobolev space with norm

‖u‖2,1,Ω =
[
‖ux‖2

2 + ‖uy‖2
2 + ‖u‖2

2

] 1
2 ,

where ‖ · ‖ is a norm of L2(Ω).

Theorem 1. Let a(y) and c(y) be piecewise continuous functions in [0, 1] and satisfying the
conditions

i)|a(y)| ≥ δ0 > 0, c(y) ≥ δ > 0.

Then there exists a unique solution u(x, y) of (1)–(3) such that

‖u‖2,1,Ω ≤ c‖ f ‖2

for all f ∈ L2(Ω), where c is a constant.

In what follows, the operator corresponding to problems (1)–(3) is denoted by L.

Definition 2. [11] Let A be a completely continuous linear operator and |A| =
√

A∗A. Any
eigenvalues of |A| are called s-numbers of A.

Any nonzero s-numbers of L−1 will be numbered in descending order, taking into
account their multiplicity, such that

sk(L−1) = λk(|L−1|), k = 1, 2, 3, ....

Theorem 2. Let the condition (i) be fulfilled. Then for the singular numbers (s-numbers) of L−1,
the following estimate

c−1 1
k
≤ sk ≤ c

1

k
1
2

, k = 1, 2, 3, ... (4)

holds, where c is any constant and sk is a singular number (s-numbers) of L−1.

Theorem 3. Let the condition (i) be fulfilled. Then for the eigenvalues of L−1, the following estimate

|λk| ≤
c · e 1

2

k
1
2

, k = 1, 2, 3, ...,

holds, where λk are the eigenvalues of the operator L−1.
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Example 1. Let the equation be given:

Lu = −y3uxx − uyy + (y2 + 1)ux + (y5 + 1)u = f (x, y) ∈ L2(Ω),

Let’s consider problems (2) and (3) for this equation. It is easy to check that all the conditions of
Theorems 1–3 are satisfied. Therefore, for this problem, there is a unique solution and for sk and λk
where the following estimates

1
2
· 1

k
≤ sk ≤ 2 · 1

k
1
2

, k = 1, 2, 3, ...;

|λk| ≤ 2 · e
1
2

k
1
2

, k = 1, 2, 3, ...

hold.

2.1. Auxiliary Lemmas

Lemma 1. The estimate
‖Lu‖2 ≥ c0‖u‖2 (5)

holds for all u ∈ D(L), where c0 > 0 is a constant.

Proof. Let C∞
0,π(Ω). Integrating by parts and taking into account the boundary conditions,

we have
< Lu, u >≥

∫
Ω

(u2
y + c(y)u2)dxdy +

∫
Ω

k(y)u2
xdxdy

and
< Lu, ux >=

∫
Ω

a(y)u2
xdxdy.

From these relations, we obtain (5) for any c0 using the Cauchy inequality with “ε”
and taking into account the condition (i). Lemma 1 is proved.

We denote the closure of the operator by ln such that

lnu(y) = −u′′ + (n2k(y) + ina(y) + c(y))u, n = 0,±1,±2, ...

defined on C∞
0 [0, 1], where C∞

0 [0, 1] is the set infinitely differentiable functions satisfying
the conditions (3).

Lemma 2. The estimates

‖lnu‖L2(0,1) ≥ c1(‖u′‖L2(0,1) + ‖u‖L2(0,1)); (6)

‖lnu‖L2(0,1) ≥ c2‖u‖C[0,1], (7)

hold for all u(y) ∈ D(ln), where c1 > 0 and c2 > 0 are constants.

Proof. Let’s compose the quadratic form (lnu, u), u ∈ C∞
0 [0, 1]. Integrating by parts,

we obtain

|(lnu, u)| =
∣∣∣∣∫ 1

0
(lnu)ūdy

∣∣∣∣ = ∣∣∣∣∫ 1

0
(u′2 + (n2k(y) + ina(y) + c(y))|u|2)dy

∣∣∣∣.
Hence, using the inequality |α+ iβ| ≥ max(|α|, |β|) (α, β ∈ R), the inequality Schwartz

and the Cauchy inequality with “ε > 0”, we obtain

c‖lnu‖2
L2(0,1) ≥ c3

∫ 1

0
(|u′|2 + c(y)|u|2)dy +

∫ 1

0
n2k(y)|u|2)dy. (8)
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From (8), taking into account k(y) ≥ 0 and the condition (i), we obtain

‖lnu‖2
L2(0,1) ≥ c1(‖u‖2

L2(0,1) + ‖u
′‖2

L2(0,1)) ≥ c1‖u‖2
W1

2 (0,1).

Since the embedding operator of continuous functions on [0, 1] of the Sobolev space
W1

2 (0, 1) to C[0, 1] is bounded, it follows that

‖lnu‖L2(0,1) ≥ c1‖u‖C[0,1],

which is true for all u ∈ D(L).

Lemma 3. The operator ln is continuously invertible.

Proof. Taking into account (6), it is enough if we show the density of D(ln) in L2(Ω).
Assume the contrary. Consider that the set D(ln) is not density in L2(0, 1). Then there
exists a nonzero element w ∈ L2(0, 1), such that (lnu, w) = 0 for u ∈ D(ln). Hence,
since the set D(ln) is not density in L2(0, 1), we obtain that w is a solution of l∗nw =
−w′′ + (n2k(y) + ina(y) + c(y))w = 0. From this equality, it follows that w′′ ∈ L2(0, 1)
by virtue of the continuous coefficients on [0, 1]. Now we show that w(y) satisfies the
condition w(0) = w(1) = 0. Integrating by parts, we obtain

0 = (u, l∗nw) = (lnu, w)− u′(1)w̄(1) + u′(0)w̄(0)

for all u ∈ D(ln). The last equality holds if w(0) = w(1) = 0. Therefore, w ∈ D(ln). Then
we obtain

‖l∗nw‖L2(0,1) ≥ c1‖w‖L2(0,1)

which is the same as (6). It is show that w = 0. The resulting contradiction proves
Lemma 3.

Lemma 4. The following estimate holds for l−1
n

‖l−1
n ‖L2(0,1)→L2(0,1) ≤

1
|n|δ0

, n = ±1,±2, ....

Proof. Taking into account the condition (i), we obtain

|(lnu, u)| ≥
∣∣∣∣∫ 1

0
ina(y)|u|2dy

∣∣∣∣ ≥ |n|δ0‖u‖2
L2(0,1)

for any function u ∈ C∞
0 [0, 1]. Hence, using the Cauchy inequality, we obtain

‖lnu‖L2(0,1) ≥ |n|δ0‖u‖L2(0,1).

From the last estimate, it follows Lemma 4.

2.2. Proofs of Main Theorems

Proof of Theorem 1. The existence and continuity of l−1
n follows from Lemma 3. Let

un(y) = (l−1
n fn)(y). By direct verification, we make sure that the function

uk(x, y) =
k

∑
n=−k

un(y)einx =
k

∑
n=−k

(l−1
n fn)(y)einx (9)

is a solution of (1) with the right side

fk(x, y) =
k

∑
n=−k

fn(y)einx
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which satisfies the conditions (2) and (3). Moreover, the following equality

‖uk(x, y)‖2
L2(Ω) = 2π

k

∑
n=−k

‖un(y)‖2
2,

holds, where ‖ · ‖2 is a norm in L2(0, 1). Then from the estimate (6), it follows that

‖uk(x, y)‖2
L2(Ω) = 2π

k

∑
n=−k

‖un(y)‖2
2 ≤

≤ 1
c1

2π
k

∑
n=−k

‖lnu‖2
L2(0,1) ≤

1
c1

2π
k

∑
n=−k

‖ fn(y)‖2
L2(0,1) = c‖ fk(x, y)‖2

L2(Ω), (10)

where c = 1
c1

, c1 > 0.

From Lemma 4, we have

‖∂uk(x, y)
∂x

‖2
L2(Ω) = ‖

∂

∂x

k

∑
n=−k

(l−1
n fn)(y)einx)‖2

L2(Ω) = ‖in
k

∑
n=−k

(l−1
n fn)(y)einx‖2

L2(0,1) ≤

≤
k

∑
n=−k

|n|2‖l−1
n ‖2

L2(0,1)→L2(0,1)‖ fn‖2
L2(0,1) ≤

1
δ2

0

k

∑
n=−k

‖ fn‖2
L2(0,1) =

1
δ2

0
‖ fk(x, y)‖2

L2(Ω). (11)

Similarly, using estimates (6) and (7), we obtain

‖∂uk(x, y)
∂y

‖2
L2(Ω) + ‖uk‖2

L2(Ω) = ‖
∂

∂y

k

∑
n=−k

(l−1
n fn)(y)einx)‖2

L2(Ω)+

+‖
k

∑
n=−k

(l−1
n fn)(y)einx)‖2

2 ≤
1
c1

k

∑
n=−k

‖ fn‖2
L2(0,1)+

+
k

∑
n=−k

1
c1
‖ fn‖2

L2(0,1) ≤ c0‖ fk(x, y)‖2
L2(Ω), (12)

where c0 = 2
c1

, c1 > 0.
It is known that the set of functions

fk(x, y) =
k

∑
n=−k

fn(y)einx (k = 1, 2, ...)

is dense in L2(Ω). Therefore, we can assume that ‖ fk(x, y)− f (x, y)‖L2(Ω) → 0 as k→ ∞.
Then the sequence { fk}∞

k=1 is fundamental, and by virtue of estimates (10)–(12)

‖uk(x, y)− um(x, y)‖2,1,Ω ≤ c0‖ fk(x, y)− fm(x, y)‖L2(Ω) → 0

as k, m → ∞. Hence, since the space W1
2 (Ω) is complete, it follows that the sequence

{uk(x, y)}∞
k=−∞ has the limit u(x, y), for which, by virtue of (10)–(12), the estimate

‖u‖2,1,Ω ≤ c0‖ f ‖2,Ω

holds, where c0 > 0 is a constant.

Hence, and from (9), it follows that if f (x, y) =
∞
∑

k=−∞
fk(y) · einx then u(x, y) = L−1 f =

∞
∑

k=−∞
l−1
n fk(y) · einx is a solution of (1)–(3).
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Let us introduce the sets

M = {u ∈ L2(Ω) : ‖Lu‖2,Ω + ‖u‖2,Ω ≤ 1},

M̃c = {u ∈ L2(Ω) : (‖ux‖2
2,Ω + ‖uy‖2

2,Ω + ‖u‖2
2,Ω)

1
2 ≤ c},

Ṁc−1 = {u ∈ L2(Ω); (‖uxx‖2
2,Ω + ‖uyy‖2

2,Ω + ‖ux‖2
2,Ω + ‖uy‖2

2,Ω + ‖u‖2
2,Ω)

1
2 ≤ c−1},

where c = max
y∈[0,1]

{k(y), |a(y)|, c(y), c0}, and ‖ · ‖2,Ω is a norm in L2(Ω).

The following lemma holds

Lemma 5. Let condition (i) be satisfied. Then for some constant c1 > 1, the inclusions

Ṁc−1 ⊆ M ⊆ M̃c

hold.

Proof. Let u(x, y) ∈ Ṁc−1 . Then, taking into account condition (i), we obtain

‖Lu‖2
2,Ω + ‖u‖2

2,Ω ≤ c2(‖uxx‖2
2,Ω + ‖uyy‖2

2,Ω + ‖ux‖2
2,Ω + ‖uy‖2

2,Ω + ‖u‖2
2,Ω)

1
2 ≤ c−1

2 c2 ≤ 1,

where c2 = max
y∈[0,1]

{|k(y)|, |a(y)|, |c(y)|}.

Hence, we have Ṁc−1 ⊆ M.
Let u ∈ M. Then it follows from Theorem 1 that

(‖ux‖2
2,Ω + ‖uy‖2

2,Ω + ‖u‖2
2,Ω)

1
2 ≤ c(‖Lu‖2

2,Ω + ‖u‖2
2,Ω) ≤ c,

i.e., M ⊆ M̃c.

Definition 3. [11] The Kolmogorov k-width of a set M in L2(Ω) is called the quantity

dk = inf
{yk}

sup
u∈M

inf
v∈yk
‖u− v‖L2(Ω),

where {yk} are the sets of all subspaces in L2(Ω) whose dimensions do not exceed k.

Lemma 6. Let condition (i) be satisfied. Then the estimates

c−1ḋk ≤ dk ≤ cd̃k, k = 1, 2, ... (13)

hold, where c > 0 is any constant, and d̃k, dk, and ḋk are the k-widths of the M̃c, M, Ṁc−1 sets,
respectively.

Proof. The proof of this lemma follows from Lemma 5 and the properties of the Kol-
mogorov k-widths.

Let us introduce the functions

N(λ) = ∑
dk>λ

1, Ñ(λ) = ∑
d̃k>λ

1, Ṅ(λ) = ∑
ḋk>λ

1,

equal, respectively, to the number of widths dk(M), where d̃k and ḋk are greater than λ > 0.
From (10), it follows the following inequalities

Ṅ(cλ) ≤ N(λ) ≤ Ñ(c−1λ).
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Proof of Theorem 2. It is known that the estimates [12,13]

c−1λ−2 ≤ Ñ(λ) ≤ cλ−2, (14)

c−1λ−1 ≤ N(λ) ≤ cλ−1 (15)

hold for the functions Ñ(λ) and N(λ). Let λ = d̃k. Then Ñ(d̃k) = k. Therefore, from (14)
and (15), it follows that

c−1 1√
k
≤ d̃k ≤ c

1√
k

, c−1 1
k
≤ ḋk ≤ c

1
k

(16)

respectively. Hence, taking into account estimates (16) and the equality sk(L−1) = dk,
we obtain

c−1 1
k
≤ sk ≤ c

1

k
1
2

, k = 1, 2, 3, ...

Proof of Theorem 3. It follows from Theorem 1 and equality (13) that if λ is an eigenvalue
of L−1, then λ is an eigenvalue of one of the operators l−1

n (n = 0,±1,±2, ...) and vice versa.
Consequently, it follows from equality (13) that the operator L−1 has an infinite number of
eigenvalues, where the last statement follows from the fact that the operator l−1

n as n = 0,
i.e., operator l−1

0 (l0 = d2

dy2 + c(y)) is a self-adjoint and compact operator. Now, using the

estimate (4) and the Weyl inequality [11], as well as the inequality ek · k! ≥ kk, k = 1, 2, 3, ...,
we obtain

|λk|k ≤
k

∏
j=1
|λj| ≤

k

∏
j=1

sj ≤
ck · e 1

2 k

k
1
2 k

.

Hence,

|λk| ≤
c · e 1

2

k
1
2

.

3. Conclusions

In conclusion, we consider the self-adjoint case. Let a(y) ≡ 0. Consider the operator

Lu = −k(y)uxx − uyy + c(y)u

initially defined on C∞
0,π(Ω̄), where C∞

0,π(Ω̄) is the set consisting of infinitely differentiable
functions and satisfying conditions (2) and (3).

It is easy to check that a closure of the operator L in L2(Ω) is self-adjoint and this
operator satisfies the following estimate

c−1
∞

∑
n=−∞

λ−
1
2 mes(y ∈ [0, 1] : (n2 + c(y)) ≤ c−1λ−1) ≤ N(λ) ≤

≤ c
∞

∑
n=−∞

λ−1mes(y ∈ [0, 1] : (k(y)n2 + c(y)) ≤ c−1λ−2),

where c > 0 is a constant number, and N(λ) = ∑
λk>λ

1, where λk are the eigenvalues of L−1.

This statement is proved by repeating the calculation and reasoning used in the proof
of Theorems 1–3 of this paper and Theorem 1.4 of [14].

Regarding the results of this paper, the following results are obtained for a class of
degenerate elliptic operators:
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• bounded invertibility is proved;
• the two-sided estimates of singular numbers (s-numbers) are obtained;
• the estimate of the eigenvalues is obtained.

The results obtained in this paper make it possible to study the non-linear degenerate
operator of elliptic type

Lu = −k(y)uxx − uyy + a(x, y, u)ux + c(x, y, u)u,

where u ∈ D(L), and D(L) is the domain of L.
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