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Abstract: The present study elaborates on the thermal distribution and efficiency of a longitudinal
rectangular fin with exponentially varying temperature-dependent thermal conductivity and heat
transfer coefficient concerning internal heat generation. Also, the thermal distribution of a fin is
comparatively studied for both exponentially varying temperature-dependent thermal conductivity
and linearly varying temperature-dependent thermal conductivity. Further, the thermal distribution
of a longitudinal fin is examined by using ANSYS software with different fin materials. Many physical
mechanisms can be explained by ordinary differential equations (ODEs) with symmetrical behavior,
the significance of which varies based on the perspective. The governing equation of the considered
problem is reduced to a non-linear ODE with the assistance of dimensionless terms. The resultant
equation is solved analytically using the DTM-Pade approximant and is also solved numerically using
Runge-Kutta Fehlberg’s fourth-fifth (RKF-45) order method. The features of dimensionless parameters
influencing the fin efficiency and temperature profile are discussed through graphical representation
for exponentially and linearly varying temperature-dependent thermal conductivity. This study
ensures that the temperature field enhances for the higher magnitude of thermal conductivity
parameter, whereas it diminishes for diverse values of the thermo-geometric parameter. Also, greater
values of heat generation and heat transfer parameters enhance the temperature profile. Highlight:
Thermal distribution through a rectangular profiled straight fin is examined. Linear and non-linear
thermal properties are considered. The combined impact of conduction, convection, and internal heat
generation is taken for modeling the energy equation of the fin. Thermal simulation is performed for
Aluminum Alloy 6061 (AA 6061) and Cast Iron using ANSYS.

Keywords: longitudinal fin; thermal distribution; DTM-Pade approximant; internal heat generation

1. Introduction

The heat transfer process is significant when the temperature of different bodies or
parts of the same body varies. Convection of fluids, conduction in solids, and radiation
are the three modes of heat transfer. A higher heat transfer rate is generally essential in
industrial manufacturing processes. Traditional heat transfer methods are ineffective in
generating the essential heat transfer rate for industrial applications. The use of cooling
fluid, nanofluid, and hybrid nanofluids in the industrial sector is one of the techniques
for achieving a high heat transfer rate. Numerous investigations explained the role of
these kinds of liquids in the heat transfer process [1–7]. Usage of extended surfaces in
various mechanical and engineering applications seems to be another approach to enhance
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heat transfer rate. Extended surfaces or fins are frequently used in various engineering
systems to expand the heat transference area, dissipate heat generated inside the system,
and extend the system’s functioning. Fins are used in oil-carrying pipelines, computer
processor cooling, air conditioning, refrigeration, and air-cooled craft engines. Fins also
play a prominent role in solidification augmentation in the energy storage system [8,9].
Fins are divided into longitudinal, radial, and pin fins. To improve heat dissipation from a
heated main surface, a longitudinal fin of different profiles with a constant cross-sectional
area is extensively utilized in practice. This fin is most effective when used in a natural
convection setting with a low convection heat transfer coefficient. Motivated by these
properties, several researchers examined the heat transfer properties of longitudinal fins
with several influencing factors. Kundu [10] elaborated the comparative and unified
research on the longitudinal fin and discussed the thermal analysis with optimal design.
For a fin having a constant area with temperature variance, internal heat production, and
thermal conductivity, Aziz and Bouaziz [11] derived the analytically approximate with
very accurate solutions for temperature thermal distribution, fin efficiency, and optimal
fin parameter. Najafabadi et al. [12] investigated analytical solutions for the non-linear
differential equation (NLDE) model of a longitudinal fin with thermal conductivity and
heat production. In the presence of internal heat generation, Sowmya et al. [13,14] conferred
the thermal properties of longitudinal fin and moving rod owing to natural convection
and radiation.

On the other hand, due to differences in thickness, the longitudinal fin has variable
profiles depending on the shape. There are two techniques for solving fin optimization
issues. The initial step in solving an optimization issue is to choose a basic profile (triangular
or rectangular) and to calculate the fin dimensions. In reality, the rectangular profile is
commonly utilized in the heat exchanger system due to its ease of production. As a result,
additional research is being done to find the best size for these sorts. Recently, numerous
researchers deliberated the heat transference analysis via different fins with rectangular
profiles [15–19]. The study of fins for improving heat transmission has piqued the interest
of many scholars during the last decade. When a fin’s cross-section is tiny, the temperature
variation in the cross-section is correspondingly minimal. Then there is just a considerable
temperature variation in the direction of the fin’s length. Put another way, the temperature
distribution in the fin is a one-dimensional temperature field running parallel to the fin’s
length. Several researchers explored thermal distribution analysis in past decades by
considering different fins. Tarobi et al. [20] inspected the aspects of thermal distribution in
a radiative-convective fin having various profiles by employing the methodology of DTM
and elaborated on the fin’s efficiency. In recent years, many investigators have manifested
significant reports to discuss the features of temperature distribution through different
kinds of fins [21–25].

The traditional fin analysis assumes constant conductivity and homogeneous convec-
tive heat transference coefficient over the fin surface. But in some instances, the fin creates
internal heat due to the presence of an electric current, such as in an electric filament, or
as a result of a chemical or atomic reaction that can be observed in an atomic reactor. The
internal heat generation may be invariable, but it is a function of temperature in a more
realistic situation. Two non-linear factors are included in the governing equation for a fin in
which both thermal conductivity and internal heat production are temperature dependent.
Even with one non-linear factor, the effective analytical solution for this framed differential
equation (DE) cannot be obtained easily. As a result, the non-linear fin equation has been
solved numerically or semi-analytically. Initially, Minkler and Rouleau [26] inspected a
convective fin with homogeneous internal heat production and established mathemati-
cal explanations for the thermal distribution. Later, numerous researchers explored the
numerical solutions for heat transfer analysis of different fins with internal heat genera-
tion [27–30]. Several researchers have recently derived more feature representations of
real-world problems using newly designed simulation studies. Symmetry is recognized
as such a method, and researchers obtained the symmetrical features of such a model
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utilizing mathematical norms. As a result, many investigators presented new operators
and models. Moreover, numerous physical processes in fluid dynamics, bio-modeling,
and physics are described using symmetrical ordinary differential equations (ODEs). The
DTM is an analytic approach used for solving the considered ODEs. In this technique,
the solution is expressed in Taylor’s series form. As a unique feature, this procedure can
be used effectively to the problem without requiring any linearization, perturbation, or
discretization. In addition, this technique delivers better accurate or precise responses.
In electric circuit analysis, Zhou [31] presented the DTM as a technique for addressing
both linear and non-linear initial value problems. Kundu and Lee [32] employed DTM to
assess the excessive heat transference aspects of annular fins when radiation effects were
considered. Moradi et al. [33] used the fundamental algorithm of DTM to investigate the
thermal performance of triangular fin with radiation and convection phenomenon. Several
studies have recently used DTM to investigate the heat transferal aspects of various liquids
through various geometries [34,35]. The DTM approach generates an analytical solution
in a power series for differential equations. Moreover, for high values of a space variable,
power series are typically insufficient. Pade approximants [36,37] are widely recognized
for manipulating polynomial approximation into rational polynomial functions. Several
researchers have recently used this DTM-Pade approximant method to solve different fluid
flow models [38–40].

According to the abovementioned literature, DTM is an effective methodology for
solving non-linear fin problems. The constant term in the boundary condition that appears
after the transformation is specified and determined by employing boundary conditions in
most research articles. In the present investigation, the Pade approximant technique is used
to achieve this value, and the DTM-Pade approximant technique offers desirable solutions
to heat transfer problems. The novelty of this investigation is to examine the temperature
distribution in a longitudinal rectangular fin with internal heat generation for linearly and
nonlinearly varying temperature-dependent thermal conductivity using the technique of
DTM-Pade approximant. More explicitly, exponentially varying temperature-dependent
thermal conductivity and linearly temperature-dependent thermal conductivity are taken
into account in this inspection for analyzing the nature of temperature distribution within
a straight fin. Also, the thermal distribution through a fin of material Aluminum Alloy
6061 (AA 6061) and Cast Iron is examined using ANSYS software.

2. Mathematical Formulation

A rectangular straight fin of length L, width W, thickness t with temperature-dependent
internal heat generation q∗(T), thermal conductivity k∗(T) whose faces are subjected to
convection heat transfer of coefficient h∗(T) at temperature T∞ is considered in this analysis
as shown in Figure 1. Since the cross-section’s temperature distribution is negligible and
changes significantly in the longitudinal direction, the nature of the current problem is
steady-state heat transfer. The thickness of a longitudinal fin t is comparatively lesser than
its width W and length L, so it is presumed that the thermal attribute over the fin’s thickness
and heat transference from its boundaries is insignificant compared to the heat-dissipation
at its adjacent region.

With all these norms, the governing equation for the thermal distribution of a fin is
given as (Aziz and Bouaziz [11]):

d
dx

[
k∗(T)A∗cr

dT
dx

]
− h∗(T)P(T − T∞) + A∗crq∗(T) = 0 (1)

The corresponding boundary conditions are specified as:

x = 0 ;
dT
dx

= 0,

T = Tb ; x = L.
(2)
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The temperature dispersion through a fin is investigated in this study by determining
two scenarios:

1. k∗(T) and h∗(T) are taken to be exponentially varying with temperature change.
2. k∗(T) varies linearly with temperature and h∗(T) exponentially varies with tempera-

ture change.

Case 1: Fin with exponential temperature-dependent k∗(T)
Here, k∗(T) and h∗(T) depend exponentially on the temperature change and are

mathematically expressed as (see Moradi and Ahmadikia [41]):

k∗(T) = k0ea0T and h∗(T) = h0eb0T , (3)

and q∗(T) is signified as:
q∗(T) = qa[1 + ψ(T − T∞)] (4)

For the sake of ease, the following non-dimensional terms are used.

θ =
T − T∞

Tb − T∞
, α2 =

PhbL2

ka A∗cr
, γ = ψ(Tb − T∞), X =

x
L

,

Q =
qa A∗cr

Phb(Tb − T∞)
, β = κ(Tb − T∞).

(5)

And Equation (3) is indicated as:

k∗(T) = kaeaθ and h∗(T) = hbebθ . (6)

where,
a = a0(Tb − T∞), ka = k0ea0T∞ ,

b = b0(Tb − T∞), hb = h0eh0T∞ .
(7)

Using the above Equation from (3) to (7), Equation (1) together with the boundary
conditions (2) can be derived as:

d
dX

[
eaθ dθ

dX

]
− α2θebθ + α2Q(1 + γ θ) = 0, (8)

Subjected to
dθ

dX
(0) = 0,

θ(1) = 1.
(9)

Case 2: Fin with linear temperature-dependent k∗(T)
Here, the thermal conductivity k∗(T) depends linearly on the temperature change,

and the h∗(T) depends exponentially on the temperature change and are mathematically
expressed as:

k∗(T) = ka[1 + κ(T − T∞)] and h∗(T) = h0eb0T . (10)

And Equation (10) is indicated as:

h∗(T) = hbebθ (11)

where,
b = b0(Tb − T∞), hb = h0eh0T∞ . (12)

Using the above Equation from (10) to (12) with Equation (5), Equation (1) together
with the boundary conditions (2) can be derived as:

d2θ

dX2 + βθ
d2θ

dX2 + β

(
dθ

dX

)2
− α2θebθ + α2Q(1 + γ θ) = 0 (13)
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Subjected to
dθ

dX
(0) = 0,

θ(1) = 1.
(14)Symmetry 2022, 14, x FOR PEER REVIEW 4 of 24 

 

 

 
Figure 1. Schematic representation of a longitudinal fin. 
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Figure 1. Schematic representation of a longitudinal fin.

3. The Fundamental Concept of DTM-Pade Approximant

Zhou [31] introduced and applied the idea of DTM to solve linear and non-linear initial
value problems in electric circuit investigation. This technique was later implemented
to achieve analytical solutions to the partial differential equation (PDE), ODE, and other
kinds of equations (see Moradi and Ahmadikia [41], Jawad [42]). Therefore, to derive
an analytical solution for the prescribed differential equation, the basic definitions and
preliminary results of DTM and Pade approximants are required and are found in the
literature Wang et al. [18], Boyd [43], Rashidi et al. [38], and Ismail et al. [44].

4. Solution Procedure with DTM-Pade Approximant

Case 1: Fin with Exponential k∗(T)
Equation (8) is transformed using the DTM technique as:

K
∑

s=0
F[s](K− s + 1)(K− s + 2) Θ[K− s + 2] + a

K
∑

s=0
(s + 1) Θ[s + 1]

K−s
∑

l=0
F[l](K− s− l + 1)Θ[K− s− l + 1]−

α2
K
∑

s=0
G[s]Θ[K− s] + α2Q(∆[K] + γ Θ[K]) = 0

(15)

The transformed function F [s], F [l] and G [s] of eaθ and ebθ in the Equation (15) are
evaluated using the basic properties of DTM (see Moradi and Ahmadikia [41]) and Θ[K] is
the differential transform of θ(X).

After applying DTM to Equation (9), the transformed relation is given as;

Θ[0] = A, Θ[1] = 0,
∞
∑

r=0
Θ[r] = 1 (16)
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Substituting Equation (16) and K = 0, 1, 2, 3 . . . in Equation (15), The consecutive
approximants are derived as follows:

Θ[2] = 1
2eaA α2

(
−AγQ + AebA −Q

)
Θ[3] = 0

(17)

Θ[4] = − 1

24(eaA)
2 α4

 3A2γ2Q2a− 6A2γebAQa + A2γebAQb + 3A2
(

ebA
)2

a− A2
(

ebA
)2

b− Aγ2Q2+

6AγQ2a + 2AγebAQ− 6AebAQa + AebAQb− A
(

ebA
)2
− γQ2 + 3Q2a + ebAQ

 (18)

Θ[5] = 0 (19)

Θ[6] = − 1

720(eaA)
3 α6



−90A3γ2ebAQ2a2 − 3A3γ2ebAQ2b2 + 90A3γ
(
ebA)2Qa2 + 7A3γ

(
ebA)2Qb2 + 54A2γ2ebAQ2a−

8A2γ2ebAQ2b− 180A2γebAQ2a2 − 6A2γebAQ2b2 − 54A2γ
(
ebA)2Qa + 16A2γ

(
ebA)2Qb−

36A2(ebA)2Qab + 72AγebAQ2a− 14AγebAQ2b + 18AebAQ2ab + 90AγQ3a2 − 3Aγ2ebAQ2−

90AebAQ2a2 − 3AebAQ2b2 + 3Aγ
(
ebA)2Q− 36A

(
ebA)2Qa + 14A

(
ebA)2Qb + 18A3γ2ebAQ2ab−

36A3γ
(
ebA)2Qab + 36A2γebAQ2ab + 30Q3a2 + γ2Q3 − A

(
ebA)3

+
(
ebA)2Q− 30A3(ebA)3a2−

4A3(ebA)3b2 + Aγ3Q3 + 18A2(ebA)3a− 8A2(ebA)3b− 18γQ3a− 2γebAQ2 + 18ebAQ2a−

6ebAQ2b + 30A3γ3Q3a2 − 18A2γ3Q3a + 90A2γ2Q3a2 + 18A3(ebA)3ab + 90A2(ebA)2Qa2+

7A2(ebA)2Qb2 − 36Aγ2Q3a



(20)

And so on.
Where the constant A, which has to be evaluated by employing Equation (9). We have

developed a power series of order 6 utilizing Equations (16)–(20), which is expressed as:

θ(X) = A + 1
2eaA α2

(
−AγQ + AebA −Q

)
X2 − 1

24
(

eaA
)2 α4


3A2γ2Q2 a− 6A2γebA Qa + A2γebA Qb + 3A2

(
ebA

)2
a− A2

(
ebA

)2
b− Aγ2Q2+

6AγQ2 a + 2AγebA Q− 6AebA Qa + AebA Qb− A
(

ebA
)2
− γQ2 + 3Q2 a + ebA Q

X4−

1

720
(

eaA
)3 α6



−90A3γ2ebA Q2 a2 − 3A3γ2ebA Q2b2 + 90A3γ
(

ebA
)2

Qa2 + 7A3γ
(

ebA
)2

Qb2 + 54A2γ2ebA Q2 a− 8A2γ2ebA Q2b− 180A2γebA Q2 a2 − 6A2γebA Q2b2−

54A2γ
(

ebA
)2

Qa + 16A2γ
(

ebA
)2

Qb− 36A2
(

ebA
)2

Qab + 72AγebA Q2 a− 14AγebA Q2b + 18AebA Q2 ab + 90AγQ3 a2 − 3Aγ2ebA Q2 − 90AebA Q2 a2−

3AebA Q2b2 + 3Aγ
(

ebA
)2

Q− 36A
(

ebA
)2

Qa + 14A
(

ebA
)2

Qb + 18A3γ2ebA Q2 ab− 36A3γ
(

ebA
)2

Qab + 36A2γebA Q2 ab + 30Q3 a2 + γ2Q3 − A
(

ebA
)3

+
(

ebA
)2

Q− 30A3
(

ebA
)3

a2 − 4A3
(

ebA
)3

b2 + Aγ3Q3 + 18A2
(

ebA
)3

a− 8A2
(

ebA
)3

b− 18γQ3 a− 2γebA Q2 + 18ebA Q2 a− 6ebA Q2b+

30A3γ3Q3 a2 − 18A2γ3Q3 a + 90A2γ2Q3 a2 + 18A3
(

ebA
)3

ab + 90A2
(

ebA
)2

Qa2 + 7A2
(

ebA
)2

Qb2 − 36Aγ2Q3 a



X6

(21)

The A value is extracted by applying the Pade approximant to Equation (21) with
Equation (9). The constant value A = 0.9954320629, Q = 0.2, a = 1, α = 0.1, b = 1, γ = 0.1
are substituted in the series, we get

θ(X) = 0.9954320629 + 0.004570809020X2 − 0.000002873685247X4+
5.745191892× 10−9X6 + . . .

(22)

Case 2: Fin with Linear k∗(T)
Equation (13) is transformed using the DTM technique as:

(K + 1)(K + 2)Θ[K + 2] + β
K
∑

s=0
(s + 1)Θ[s + 1] (K− s + 1)Θ[K− s + 1] + β

K
∑

s=0
Θ[K− s](s + 1)(s + 2)Θ[s + 2]−

α2
K
∑

s=0
G[s]Θ[K− s] + α2 Q (γ Θ[K] + ∆[K]) = 0

(23)
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applying DTM to Equation (14) yields

Θ[0] = B, Θ[1] = 0,
∞
∑

r=0
Θ[r] = 1 (24)

Substituting Equation (24) and K = 0, 1, 2, 3 . . . in Equation (23), The consecutive
approximants are derived as follows:

Θ[2] =
1

2(Bβ + 1)
α2
(
−BγQ + BebB −Q

)
(25)

Θ[3] = 0 (26)

Θ[4] =
1

24(Bβ + 1)3

[
α4
(
−BγQ + BebB −Q

)(
B2ebBbβ + 2BγQβ + BebBb− 2BebBβ−Qγ + 3Qβ + ebB

)]
(27)

Θ[5] = 0 (28)

Θ[6] =
1

720(Bβ + 1)5



α6
(

BγQ− BebB + Q
)



−
(
ebB)2

+ 3B3ebBQb2β2 + 3B2γebBQb2 + 56B2γebBQβ2 + 6B2ebBQb2β−

12B2ebBQbβ2 + 8BγebBQb− 32BγebBQβ− 6BebBQbβ− 4B4(ebB)2b2β2−

8B3(ebB)2b2β + 10B3(ebB)2bβ2 − 28B2γ2Q2β2 + 2B2(ebB)2bβ + 16Bγ2Q2β−

72BγQ2β2 + 3BebBQb2 + 72BebBQβ2 + 3B4γebBQb2β2 + 6B3γebBQb2β−

10B3γebBQbβ2 − 2B2γebBQbβ− 4B2(ebB)2b2 − 28B2(ebB)2
β2 − 8B

(
ebB)2b+

16B
(
ebB)2

β + 18γQ2β + 2γebBQ + 6ebBQb− 18ebBQβ− 45Q2β2 − γ2Q2





(29)

And so on.
Where the constant B, which has to be evaluated by employing Equation (14). We have

developed a power series of order 6 utilizing Equations (24)–(29), which is expressed as:

θ(X) = A + 1
2(Bβ+1) α2(−BγQ + BebB −Q

)
X2 + 1

24(Bβ+1)3

[
α4(−BγQ + BebB −Q

)( B2ebBbβ + 2BγQβ + BebBb− 2BebB β

−Qγ + 3Qβ + ebB

)]
X4+

1
720(Bβ+1)5


α6(BγQ− BebB + Q

)


−
(
ebB)2

+ 3B3ebBQb2β2 + 3B2γebBQb2 + 56B2γebBQβ2 + 6B2ebBQb2β−
12B2ebBQbβ2 + 8BγebBQb− 32BγebBQβ− 6BebBQbβ− 4B4(ebB)2b2β2−
8B3(ebB)2b2β + 10B3(ebB)2bβ2 − 28B2γ2Q2β2 + 2B2(ebB)2bβ + 16Bγ2Q2β−
72BγQ2β2 + 3BebBQb2 + 72BebBQβ2 + 3B4γebBQb2β2 + 6B3γebBQb2β−
10B3γebBQbβ2 − 2B2γebBQbβ− 4B2(ebB)2b2 − 28B2(ebB)2

β2 − 8B
(
ebB)2b+

16B
(
ebB)2

β + 18γQ2β + 2γebBQ + 6ebBQb− 18ebBQβ− 45Q2β2 − γ2Q2




X6 + . . .

(30)

The B value is extracted by applying the Pade approximant to Equation (30) with
Equation (14). The constant value B = 0.9888654429, Q = 0.2, β = 0.1, α = 0.1, b = 1,
γ = 0.1 are substituted in the series, we get

θ(X) = 0.9888654429 + 0.01109520280X2 + 0.00003921518999X4+
1.73779481310−7X6 + . . .

(31)

5. Fin Efficiency

Fin efficiency is stated as the ratio of the fin heat transference rate to the rate that it
would be if the complete fin were maintained at the base temperature and is mathematically
expressed as:

η =
k∗A∗cr

dT
dx x=L

Ph∗L(Tb − T∞)
(32)
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The dimensionless form of fin efficiency is expressed as:

η =
ea−bθ′(1)

α2 (33)

6. Result and Discussion

The significant consequence of several dimensionless variables, namely thermal con-
ductivity parameter β, thermo-geometric parameter α, internal heat generation variable
γ, and heat transfer parameter Q on the thermal dispersal of a longitudinal rectangular
fin with exponential temperature-dependent heat transfer coefficient is examined by con-
sidering two cases of thermal conductivity. In the first case, it is taken to be exponential
temperature-dependent, whereas in the other case, it is linearly dependent on temperature.
The significance of these pertinent parameters on the non-dimensional temperature profile
θ is explained in this section via graphical representation for both the aforementioned cases
by using the DTM-Pade and RKF-45 methods.

Also, the effect of parameters on fin efficiency η is debriefed graphically. Table 1
is developed to compare the results of the current DTM-Pade solution for temperature
profile with the existing literature (Languri et al. [45]) to authenticate the correctness of the
solution. As per the tabulated result, there is an appropriate consistency between the result
of the present work and those in Languri et al. [45], signifying that the solution obtained by
the proposed technique is accurate. Tables 2 and 3 are constructed to endorse the results
achieved from the DTM-Pade and RKF-45 schemes for exponential temperature-dependent
and linearly temperature-dependent thermal conductivity, respectively, and are close to each
other. The present work is validated graphically with the existing work (Sun and Li [46]) as
exhibited in Figure 2 by considering the values of the parameters a = −1, b = 0, α = 1.6,
Q = γ = 0 and the graph shows the excellent agreement with the existing work.

Table 1. Comparison of θ(X) obtained by DTM-Pade with existing literature (Languri et al. [45]) with
constant values of β = 0, Q = 0, α = 0.5, b = 0, γ = 0.

θ(X)

X HPM
(Languri et al. [45])

VIM
(Languri et al. [45]) DTM-Pade Error

0 0.886819 0.886819 0.886818 0.000001

0.2 0.891257 0.891257 0.891256 0.000001

0.4 0.904614 0.904614 0.904614 0.000000

0.6 0.927026 0.927026 0.927026 0.000000

0.8 0.958715 0.958715 0.958715 0.000000

1.0 1.000000 1.000000 1.000000 0.000000

Table 2. Comparison of θ(X) for a = −1, a = 0 and a = 1 with constant values of Q = 0.8,
α = 1, b = 1, γ = 0.5 obtained by RKF-45 and DTM-Pade.

θ(X)

X
a = −1 a = 0 a = 1

RKF-45 Present Result %Error RKF-45 Present Result %Error RKF-45 Present Result %Error

0 0.651268 0.647021 0.4247 0.726859 0.724623 0.2236 0.825904 0.825302 0.0602

0.1 0.653087 0.648719 0.4368 0.728928 0.726658 0.2270 0.827560 0.826954 0.0606

0.2 0.658660 0.653921 0.4739 0.735203 0.732824 0.2379 0.832539 0.831920 0.0619

0.3 0.668357 0.662962 0.5395 0.745885 0.743321 0.2564 0.840872 0.840234 0.0638

0.4 0.682846 0.676443 0.6403 0.761322 0.758489 0.2833 0.852614 0.851948 0.0666

0.5 0.703190 0.695290 0.7900 0.782032 0.778828 0.3204 0.867838 0.867136 0.0702
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Table 3. Comparison of θ(X) for b = −1, b = 0 and b = 1 with constant values of Q = 0.8,
α = 1, γ = 0.5, β = 0.1 obtained by RKF-45 and DTM-Pade.

θ(X)

X
b = −1 b = 0 b = 1

RKF-45 Present Result %Error RKF-45 Present Result %Error RKF-45 PresentResult %Error

0 1.445973 1.445763 0.0210 1.073794 1.073862 0.0068 0.735737 0.733681 0.2056

0.1 1.441440 1.441231 0.0209 1.073090 1.073158 0.0068 0.737796 0.735710 0.2086

0.2 1.427851 1.427642 0.0209 1.070976 1.071045 0.0069 0.744036 0.741857 0.2179

0.3 1.405233 1.405026 0.0207 1.067438 1.067508 0.0070 0.754636 0.752300 0.2336

0.4 1.373631 1.373427 0.0204 1.062457 1.062528 0.0071 0.769912 0.767346 0.2566

0.5 1.333109 1.332909 0.0200 1.056002 1.056075 0.0073 0.790323 0.787444 0.2879
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Figure 2. Validation of the present analysis with existing work (Sun and Li [46]) for a = −1, b = 0,
α = 1.6, Q = γ = 0.

Figure 3 illustrates the nature of thermal distribution θ for diverse α (1, 1.1, 1.2, 1.3)
values. This figure manifests that θ declines significantly with the impact of various α values.
When the magnitude of α upsurges, the convective heat transferal through the fin escalates,
causing the fin temperature to drop. This results in a high heat transmission rate at the base
due to the augmentation in the heat transfer ratio of convection to conduction (hb/kb). As
an impact, the temperature through the fin decreases as α augments. Thus, when the fin
convective heat transfer improves, more heat transfer occurs by conduction through the fin,
and as a result, the rate of heat transfer is augmented. The thermo-geometric parameter α is
substantial in assessing the amount of heat transmission from the fin since it accounted for
the consequences of temperature reduction on heat transfer. The impact of dimensionless
parameters γ ( 0.1, 0.3, 0.5, 0.7) on thermal distribution θ is portrayed in Figure 4. Here,
θ enhances gradually for enhanced values of γ in the case of exponential temperature-
dependent thermal conductivity. As these variable upsurges, the heat generation develops
as a stronger function of the local fin temperature, resulting in an elevated temperature
in the fin. Figure 5 exemplifies the behavior of θ with an increase of dimensionless heat
transfer parameter Q (0.2, 0.4, 0.6, 0.8) values. It is noted from this figure that enrichment
in the scale of Q upsurges the thermal distribution θ.
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Case 1: Exponential thermal conductivity and Exponential heat transfer coefficient.
Since the fin must disperse a large quantity of heat to the ambient fluid, excess heat

production causes an improvement in the non-dimensional temperature. As demonstrated
by the equations derived in this research, the consequence of internal heating on the heat
transfer features of fins is substantially determined by the generation number Q, with
the lower the generation number signifying higher heat transfer. Figure 6 manifests the
deviation in the thermal distribution θ for diverse values of a (−2, −1, 0, 1). As the
a (−2, −1, 0, 1) increases, θ enhances remarkably for exponential k∗(T). Figure 7 displays
the thermal dispersal deviations with the impact of b ( −1, 0, 1, 2). The temperature
distribution decreases for higher values of b (−1, 0, 1, 2). Physically, with the increase
of b (−2, −1, 0, 1), the heat conduction coefficient of the fin upsurges, and consequently,
the thermal resistance in the fin declines. Thus, even for the small temperature gradient,
the large heat flow is generated by a fin. The features of non-dimensional parameters
and their impact on fin efficiency η are represented via Figures 8–10. The significant
values of the fin efficiency show the performance of the heat exchanger, and better values
of fin efficiency represent the better-quality performance of the fin. The major impact of
α ( 0.6, 0.7, 0.8) and Q on η is shown in Figure 8. Here, the efficiency of fin diminutions with
an upsurge of α with increased Q values in the case of exponential temperature-dependent
thermal conductivity. Figure 9 reveals the consequence of Q ( 0.70, 0.75, 0.80) on η for
increased values of α. In this figure, fin efficiency enriches for the enhanced magnitude of
Q ( 0.70, 0.75, 0.80). Figure 10 shows the influence of b ( −1, 0, 1) on η with diverse values
of Q. Fin efficiency enhances for the greater magnitude of Q, and it decreases for different
upsurge values of b ( −1, 0, 1). Figures 11–15 elucidate the behavior of the temperature
field with the significant influence of several non-dimensionless coefficients for linearly
temperature-dependent thermal conductivity. Figure 11 is plotted to describe the impact
of α (0.8, 1.0, 1.2, 1.4) on θ. Here, higher α values decline θ for linearly temperature-
dependent thermal conductivity. As the value of α increases, the convective heat transfer
through the fin rises monotonically, while the temperature of the fin declines. As a result,
the base possesses a high rate of heat transmission. The heat transfer ratio of convection to
conduction (hb/kb) improves towards the fin base. Consequently, when the fin convective
heat transfer improves, more heat is transferred by conduction in the fin, boosting the
rate of heat transmission. The aspect of thermal distribution θ for enhancing values of
dimensionless internal heat generation parameter γ (0, 0.2, 0.4, 0.6) is depicted in Figure 12.
As the magnitude of γ heightens, θ of the fin improves remarkably. The effect of dimensionless
heat transfer parameter Q on the behavior of θ is illustrated via Figure 13. Here, the thermal
distribution θ upsurges for improved values of Q (0.1, 0.3, 0.5, 0.7) in the case of linearly
temperature-dependent k∗(T). Furthermore, the lower generation number causes the higher
heat transfer. Figure 14 reveals the deviation in the thermal distribution θ of the fin with the
influence of the thermal conductivity parameter β. This figure denotes that rising values of
β (0, 0.2, 0.4, 0.6) is accountable for the augmentation of θ. Enhancement in β enriches
heat conduction from the fin base, and the temperature inside the fin increases. Physically,
the tendency of the fin to conduct heat significantly upsurge as this parameter intensifies so
does the local fin temperature. The thermal distribution deviation for increasing magnitude
of b ( −1, 0, 1, 2) is exhibited in Figure 15. As the b ( −1, 0, 1, 2) values increase, the
temperature inside the fin decreases for linearly temperature-dependent k∗(T). Figure 16
portrays the comparison of temperature distribution in a longitudinal fin for exponential
temperature-dependent and linearly temperature-dependent thermal conductivity with
the impact of Q (0.2, 0.3, 0.4, 0.5). Thermal distribution is more in a fin with exponential
temperature-dependent. compared to a fin with linearly temperature-dependent k∗(T) for
a higher magnitude of Q (0.2, 0.3, 0.4, 0.5).

Case 2: Linear thermal conductivity and Exponential heat transfer coefficient.
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7. Inspecting the Thermal Behavior of a Longitudinal Fin Using ANSYS

ANSYS is a general-purpose software package that affords a cost-effective approach to
inspecting the better performance of mechanical and fluid models or processes in a virtual
environment. This software implements governing equations for corresponding problems
to study the behavior of problems and solves them efficiently. The obtained results are
presented in tabular or graphical forms.

To inspect the thermal behavior, a longitudinal fin is modeled with the following
assumptions:

• Since aluminum is an excellent thermal and electrical conductor, Aluminum Alloy
6061 (AA 6061) and Cast Iron with constant thermal conductivity 300 W/m K and
55 W/m K are taken as fin materials.

• One-dimensional heat conduction is considered along the longitudinal direction.
• The convective heat transfer coefficient (39.9 W/m2 K) is considered over the complete

fin surface.
• The temperature at the fin base is 550 K, and the ambient temperature is 283 K.



Symmetry 2022, 14, 690 16 of 20

The temperature distribution of a longitudinal fin made up of AA 6061, and Cast Iron
can be assessed with an ANSYS workbench. For the longitudinal fin made up of AA 6061,
the maximum temperature at the prime surface is 550 K. By contrast, the minimum tem-
perature is 545.58 K observed at the end of the fin, and 548.9 K is the average temperature.
From this analysis, it is found that the extreme temperature of 550 K is at the source, and
the minimum temperature of 527.28 K will be at the end of the fin for the fin of material
Cast Iron. It is also noticed that the average temperature through the fin is 544.33 K. The
temperature gradually decreases from one end to another end, that is from base to tip end
based on the given heat transfer coefficient as shown in Figures 17–20.
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8. Final Remarks

The temperature dispersal of a longitudinal rectangular fin with exponential temperature-
dependent heat transfer coefficient and internal heat generation is inspected by considering
exponential temperature-dependent k∗(T) with the aid of the DTM-Pade approximant. The
significant results of the present scrutiny are as follows:

• Enhancement in the scale of thermo-geometric parameters reduces temperature dis-
persal in a fin for both cases.

• Temperature distribution enriches for a larger magnitude of thermal conductivity
parameter in the case of linear temperature-dependent thermal conductivity.
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• Larger values of the internal heat generation and heat transfer parameter upsurge the
thermal distribution in both cases.

• The efficiency of a fin varies with prescribed non-dimensional thermal parameters
under internal heat generation.

• The thermal distribution of a longitudinal fin is studied using ANSYS software by
considering the material of the fin body as AA 6061 and Cast Iron. The temperature is
higher at the base, decreasing monotonically towards the fin tip.

• The analytical solution and numerical results obtained by the DTM-Pade approximant
afford higher accuracy than other techniques.
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Nomenclature

t Fin’s thickness (m)
X Length (dimensionless)
A∗cr Fin’s cross-sectional area

(
m2)

ka Thermal conductivity at ambient temperature
(

W m−1 K−1
)

Q Dimensionless heat transfer
b0 Exponential indexes of convection heat transfer coefficient
β Variable thermal conductivity(dimensionless)

h∗ Convective heat transfer coefficient
(

W m−2 K−1
)

α Thermo-geometric parameter
θ Non-dimensional temperature
a0 Exponential indexes of thermal conductivity
x Fin axial distance (m)

κ Thermal conductivity variation parameter
(

K−1
)

Tb Base temperature (K)
W Width (m)
L Length (m)
T∞ Ambient temperature (K)
q∗(T) Uniform internal heat generation

(
W m−3 )

hb Heat transfer coefficient at the fin’s base
(

W m−2 K−1
)

η Fin efficiency

k∗(T) Thermal conductivity
(

W m−1 K−1
)

h0 Reference value of convection heat transfer coefficient
(

W m−2 K−1
)

γ Dimensionless internal heat generation parameter

k0 Reference values of thermal Conductivity
(

W m−1 K−1
)

P Perimeter (m)
T Temperature (K)
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