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Abstract: Many authors have proposed fixed-point algorithms for obtaining a fixed point of G-
nonexpansive mappings without using inertial techniques. To improve convergence behavior, some
accelerated fixed-point methods have been introduced. The main aim of this paper is to use a
coordinate affine structure to create an accelerated fixed-point algorithm with an inertial technique
for a countable family of G-nonexpansive mappings in a Hilbert space with a symmetric directed
graph G and prove the weak convergence theorem of the proposed algorithm. As an application, we
apply our proposed algorithm to solve image restoration and convex minimization problems. The
numerical experiments show that our algorithm is more efficient than FBA, FISTA, Ishikawa iteration,
S-iteration, Noor iteration and SP-iteration.

Keywords: convex minimization; coordinate affine; G-nonexpansive; image restoration problem;
inertial techniques; weak convergence

1. Introduction

Let H be a real Hilbert space with the norm ‖ · ‖ and C be a nonempty closed convex
subset of H. A mapping T : C → C is said to be nonexpansive if it satisfies the following
symmetric contractive-type condition:

‖Tx− Ty‖ ≤ ‖x− y‖,

for all x, y ∈ C; see [1].
The notation of the set of all fixed points of T is F(T) := {x ∈ C : x = Tx}.
Many mathematicians have studied iterative schemes for finding the approximate

fixed-point theorem of nonexpansive mappings over many years; see [2,3]. One of these is
the Picard iteration process, which is well known and popular. Picard’s iteration process is
defined by

xn+1 = Txn,

where n ≥ 1 and an initial point x1 is randomly selected.
The iterative process of Picard has been developed extensively by many mathemati-

cians, as follows:
Mann iteration process [4] is defined by

xn+1 = (1− ρn)xn + ρnTxn, (1)

where n ≥ 1 and an initial point x1 is randomly selected and {ρn} is a sequence in [0, 1].
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Ishikawa iteration process [5] is defined by{
yn = (1− ζn)xn + ζnTxn,
xn+1 = (1− ρn)xn + ρnTyn,

(2)

where n ≥ 1 and an initial point x1 is randomly selected and {ζn}, {ρn} are sequences
in [0, 1].

S-iteration process [6] is defined by{
yn = (1− ζn)xn + ζnTxn,
xn+1 = (1− ρn)Txn + ρnTyn,

(3)

where n ≥ 1 and an initial point x1 is randomly selected and {ζn}, {ρn} are sequences
in [0, 1]. We know that the S-iteration process (3) is independent of Mann and Ishikawa
iterative schemes and converges quicker than both; see [6].

Noor iteration process [7] is defined by
zn = (1− ηn)xn + ηnTxn,
yn = (1− ζn)xn + ζnTzn,
xn+1 = (1− ρn)xn + ρnTyn,

(4)

where n ≥ 1 and an initial point x1 is randomly selected and {ηn}, {ζn}, {ρn} are sequences
in [0, 1]. We can see that Mann and Ishikawa iterations are special cases of the Noor iteration.

SP-iteration process [8] is defined by
zn = (1− ηn)xn + ηnTxn,
yn = (1− ζn)zn + ζnTzn,
xn+1 = (1− ρn)yn + ρnTyn,

(5)

where n ≥ 1 and an initial point x1 is randomly selected and {ηn}, {ζn}, {ρn} are sequences
in [0, 1]. We know that Mann, Ishikawa, Noor and SP-iterations are equivalent and the
SP-iteration converges faster than the other; see [8].

The fixed-point theory is a rapidly growing field of research because of its many
applications. It has been found that a self-map on a set admits a fixed point under specific
conditions. One of the recent generalizations is due to Jachymiski.

Jachymski [9] proved some generalizations of the Banach contraction principle in a
complete metric space endowed with a directed graph using a combination of fixed-point
theory and graph theory. In Banach spaces with a graph, Aleomraninejad et al. [10] pro-
posed an iterative scheme for G-contraction and G-nonexpansive mappings. G-monotone
nonexpansive multivalued mappings on hyperbolic metric spaces endowed with graphs
were defined by Alfuraidan and Khamsi [11]. On a Banach space with a directed graph,
Alfuraidan [12] showed the existence of fixed points of monotone nonexpansive map-
pings. For G-nonexpansive mappings in Hilbert spaces with a graph, Tiammee et al. [13]
demonstrated Browder’s convergence theorem and a strong convergence theorem of the
Halpern iterative scheme. The convergence theorem of the three-step iteration approach for
solving general variational inequality problems was investigated by Noor [7]. According
to [14–17], the three-step iterative method gives better numerical results than the one-step
and two-step approximate iterative methods. For approximating common fixed points of
a finite family of G-nonexpansive mappings, Suantai et al. [18] combined the shrinking
projection with the parallel monotone hybrid method. Additionally, they used a graph to
derive a strong convergence theorem in Hilbert spaces under certain conditions and applied
it to signal recovery. There is also research related to the application of some fixed-point
theorem on the directed graph representations of some chemical compounds; see [19,20].

Several fixed-point algorithms have been introduced by many authors [7,9–18] for
finding a fixed point of G-nonexpansive mappings with no inertial technique. Among these
algorithms, we need those algorithms that are efficient for solving the problem. So, some
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accelerated fixed-point algorithms have been introduced to improve convergence behavior;
see [21–28]. Inspired by these works mentioned above, we employed a coordinate affine
structure to define an accelerated fixed-point algorithm with an inertial technique for a
countable family of G-nonexpansive mappings applied to image restoration and convex
minimization problems.

This paper is divided into four sections. The first section is the introduction. In
Section 2, we recall the basic concepts of mathematics, definitions, and lemmas that will
be used to prove the main results. In Section 3, we prove a weak convergence theorem of
an iterative scheme with the inertial step for finding a common fixed point of a countable
family of G-nonexpansive mappings. Furthermore, we apply our proposed method for
solving image restoration and convex minimization problems; see Section 4.

2. Preliminaries

The basic concepts of mathematics, definitions, and lemmas discussed in this section
are all important and useful in proving our main results.

Let X be a real normed space and C be a nonempty subset of X. Let4 = {(u, u) : u ∈
C}, where4 stands for the diagonal of the Cartesian product C× C. Consider a directed
graph G in which the set V(G) of its vertices corresponds to C, and the set E(G) of its edges
contains all loops, that is E(G) ⊇ 4. Assume that G does not have parallel edges. Then,
G = (V(G), E(G)). The conversion of a graph G is denoted by G−1. Thus, we have

E(G−1) = {(u, v) ∈ C× C : (v, u) ∈ E(G)}.

A graph G is said to be symmetric if (x, y) ∈ E(G); we have (y, x) ∈ E(G).
A graph G is said to be transitive if for any u, v, w ∈ V(G) such that (u, v), (v, w) ∈

E(G, ); then, (u, w) ∈ E(G).
Recall that a graph G is connected if there is a path between any two vertices of the

graph G. Readers might refer to [29] for additional information on some basic graph
concepts.

We say that a mapping T : C → C is said to be G-contraction [9] if T is edge preserving,
i.e., (Tu, Tv) ∈ E(G) for all (u, v) ∈ E(G), and there exists ρ ∈ [0, 1) such that

‖Tu− Tv‖ ≤ ρ‖u− v‖

for all (u, v) ∈ E(G), where ρ is called a contraction factor. If T is edge preserving, and

‖Tu− Tv‖ ≤ ‖u− v‖

for all (u, v) ∈ E(G), then T is said to be G-nonexpansive; see [13].
A mapping T : C → C is called G-demiclosed at 0 if for any sequence {un} ⊆ C,

(un, un+1) ∈ E(G), un ⇀ u and Tun → 0; then, Tu = 0.
To prove our main result, we need to introduce the concept of the coordinate affine of

the graph G = (V(G), E(G)). For any α, β ∈ R with α + β = 1, we say that E(G) is said to
be left coordinate affine if

α(x, y) + β(u, y) ∈ E(G)

for all (x, y), (u, y) ∈ E(G). Similar to this, E(G) is said to be right coordinate affine if

α(x, y) + β(x, z) ∈ E(G)

for all (x, y), (x, z) ∈ E(G).
If E(G) is both left and right coordinate affine, then E(G) is said to be coordinate affine.
The following lemmas are the fundamental results for proving our main theorem; see

also [21,30,31].
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Lemma 1 ([30]). Let {vn}, {wn} and {ϑn} ⊂ R+ such that

vn+1 ≤ (1 + ϑn)vn + wn,

where n ∈ N. If ∑∞
n=1 ϑn < ∞ and ∑∞

n=1 wn < ∞, then limn→∞ vn exists.

Lemma 2 ([31]). For a real Hilbert space H, the following results hold:
(i) For any u, v ∈ H and γ ∈ [0, 1],

‖γu + (1− γ)v‖2 = γ‖u‖2 + (1− γ)‖v‖2 − γ(1− γ)‖u− v‖2.

(ii) For any u, v ∈ H,
‖u± v‖2 = ‖u‖2 ± 2〈u, v〉+ ‖v‖2.

Lemma 3 ([21]). Let {vn} and {µn} ⊂ R+ such that

vn+1 ≤ (1 + µn)vn + µnvn−1,

where n ∈ N. Then,

vn+1 ≤ M ·
n

∏
j=1

(1 + 2µj),

where M = max{v1, v2}. Furthermore, if ∑∞
n=1 µn < ∞, then {vn} is bounded.

Let {un} be a sequence in X. We write un ⇀ u to indicate that a sequence {un} con-
verges weakly to a point u ∈ H. Similarly, un → u will symbolize the strong convergence.
For v ∈ C, if there is a subsequence {unk} of {un} such that unk ⇀ v, then v is called a
weak cluster point of {un}. Let ωw(un) be the set of all weak cluster points of {un}.

The following lemma was proved by Moudafi and Al-Shemas; see [32].

Lemma 4 ([32]). Let {un} be a sequence in a real Hilbert space H such that there exists ∅ 6= Λ ⊂
H satisfying:
(i) For any p ∈ Λ, limn→∞ ‖un − p‖ exists.
(ii) Any weak cluster point of {un} ∈ Λ.
Then, there exists x∗ ∈ Λ such that un ⇀ x∗.

Let {Tn} and ψ be families of nonexpansive mappings of C into itself such that
∅ 6= F(ψ) ⊂ ∩∞

n=1F(Tn), where F(ψ) is the set of all common fixed points of each T ∈ ψ. A
sequence {Tn} satisfies the NST-condition (I) with ψ if, for any bounded sequence {un} in
C,

lim
n→∞

‖Tnun − un‖ = 0 implies lim
n→∞

‖Tun − un‖ = 0,

for all T ∈ ψ; see [33]. If ψ = {T}, then {Tn} satisfies the NST-condition (I) with T.
The forward–backward operator of lower semi-continuous and convex functions of

f , g : Rn → (−∞,+∞] has the following definition:
A forward-backward operator T is defined by T := proxλg(I − λ∇ f ) for λ > 0, where

∇ f is the gradient operator of function f and proxλgx := argminy∈H

{
g(y) + 1

2λ‖y− x‖2
}

(see [34,35]). Moreau [36] defined the operator proxλg as the proximity operator with
respect to λ and function g. Whenever λ ∈ (0, 2/L), we know that T is a nonexpansive
mapping and L is a Lipschitz constant of ∇ f . We have the following remark for the
definition of the proximity operator; see [37].

Remark 1. Let g : Rn → R be given by g(x) = λ‖x‖1. The proximity operator of g is evaluated
by the following formula

proxλ‖·‖1
(x) = (sign(xi)max(|xi| − λ, 0))n

i=1,
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where x = (x1, x2, . . . , xn) and ‖x‖1 = ∑n
i=1 |xi|.

The following lemma was proved by Bassaban et al.; see [22].

Lemma 5. Let H be a real Hilbert space and T be the forward–backward operator of f and g, where
g is a proper lower semi-continuous convex function from H into R ∪ {∞}, and f is a convex
differentiable function from H into R with gradient ∇ f being L-Lipschitz constant for some L > 0.
If {Tn} is the forward–backward operator of f and g such that an → a with a, an ∈ (0, 2/L), then
{Tn} satisfies the NST-condition (I) with T.

3. Main Results

In this section, we obtain a useful proposition and a weak convergence theorem of our
proposed algorithm by using the inertial technique.

Let C be a nonempty closed and convex subset of a real Hilbert space H with a directed
graph G = (V(G), E(G)) such that V(G) = C. Let {Tn} be a family of G-nonexpansive
mappings of C into itself such that ∅ 6= ∩∞

n=1F(Tn).
The following proposition is useful for our main theorem.

Proposition 1. Let x∗ ∈ ∩∞
n=1F(Tn) and x0, x1 ∈ C be such that (x0, x∗), (x1, x∗) ∈ E(G). Let

{xn} be a sequence generated by Algorithm 1. Suppose E(G) is symmetric, transitive and left
coordinate affine. Then, (xn, x∗), (yn, x∗), (zn, x∗), (xn, xn+1) ∈ E(G) for all n ∈ N.

Algorithm 1 (MSPA) A modified SP-algorithm

1: Initial. Take x0, x1 ∈ C are arbitary and n = 1, αn ∈ [a, b] ⊂ (0, 1), βn ∈ (0, 1), θn ≥ 0
and ∑∞

n=1 θn < ∞, where θn is called an inertial step size.
2: Step 1. yn, zn and xn+1 are computed by

yn = xn + θn(xn − xn−1),
zn = (1− βn)yn + βnTnyn,
xn+1 = (1− αn)zn + αnTnzn,

Then, n := n + 1 and go to Step 1.

Proof. We shall prove the results by using mathematical induction. From Algorithm 1, we
obtain

(y1, x∗) =
(
x1 + θ1(x1 − x0), x∗

)
=
(
(1 + θ1)x1 − θ1x0, x∗

)
= (1 + θ1)(x1, x∗)− θ1(x0, x∗).

Since (x0, x∗), (x1, x∗) ∈ E(G) and E(G) is left coordinate affine, we obtain (y1, x∗) ∈
E(G) and

(z1, x∗) =
(
(1− β1)y1 + β1T1y1, x∗

)
= (1− β1)(y1, x∗) + β1(T1y1, x∗).

Since (y1, x∗) ∈ E(G) and Tn is edge preserving, we obtain (z1, x∗) ∈ E(G). Next,
suppose that

(xk, x∗), (yk, x∗) and (zk, x∗) ∈ E(G) (6)

for k ∈ N. We shall show that (xk+1, x∗), (yk+1, x∗) and (zk+1, x∗) ∈ E(G). By Algorithm 1,
we obtain
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(xk+1, x∗) =
(
(1− αk)zk + αkTkzk, x∗

)
= (1− αk)(zk, x∗) + αk(Tkzk, x∗), (7)

(yk+1, x∗) = (xk+1 + θk+1(xk+1 − xk), x∗)

=
(
(1 + θk+1)xk+1 − θk+1xk, x∗

)
= (1 + θk+1)(xk+1, x∗)− θk+1(xk, x∗), (8)

and

(zk+1, x∗) =
(
(1− βk+1)yk+1 + βk+1Tk+1yk+1, x∗

)
= (1− βk+1)(yk+1, x∗) + βk+1(Tk+1yk+1, x∗). (9)

Since E(G) is left coordinate affine, Tn is edge preserving and from (6)–(9), we obtain
(xk+1, x∗), (yk+1, x∗) and (zk+1, x∗) ∈ E(G). By mathematical induction, we conclude
that (xn, x∗), (yn, x∗), (zn, x∗) ∈ E(G) for all n ∈ N. Since E(G) is symmetric, we obtain
(x∗, xn+1) ∈ E(G). Since (xn, x∗), (x∗, xn+1) ∈ E(G) and E(G) is transitive, we obtain
(xn, xn+1) ∈ E(G). The proof is now complete.

In the following theorem, we prove the weak convergence of G-nonexpansive mapping
by using Algorithm 1.

Theorem 1. Let C be a nonempty closed and convex subset of a real Hilbert space H with a
directed graph G = (V(G), E(G)) with V(G) = C and E(G) is symmetric, transitive and
left coordinate affine. Let x0, x1 ∈ C and {xn} be a sequence in H defined by Algorithm 1.
Suppose that {Tn} satisfies the NST-condition (I) with T such that ∅ 6= F(T) ⊂ ∩∞

n=1F(Tn) and
(x0, x∗), (x1, x∗) ∈ E(G) for all x∗ ∈ ∩∞

n=1F(Tn). Then, {xn} converges weakly to a point in
F(T).

Proof. Let x∗ ∈ ∩∞
n=1F(Tn). By the definitions of yn and zn, we obtain

‖yn − x∗‖ = ‖xn + θn(xn − xn−1)− x∗‖
≤ ‖xn − x∗‖+ θn‖xn − xn−1‖ (10)

and

‖zn − x∗‖ = ‖(1− βn)yn − x∗ + βnx∗ + βnTnyn − βnx∗‖
= ‖(1− βn)(yn − x∗) + βn(Tnyn − x∗)‖
≤ (1− βn)‖yn − x∗‖+ βn‖Tnyn − x∗‖
= (1− βn)‖yn − x∗‖+ βn‖Tnyn − Tnx∗‖
≤ (1− βn)‖yn − x∗‖+ βn‖yn − x∗‖
= ‖yn − x∗‖. (11)

By the definition of xn+1 and (11), we obtain

‖xn+1 − x∗‖ = ‖(1− αn)zn − x∗ + αnx∗ + αnTnzn − αnx∗‖
= ‖(1− αn)(zn − x∗) + αn(Tnzn − x∗)‖
≤ (1− αn)‖zn − x∗‖+ αn‖Tnzn − x∗‖
≤ (1− αn)‖zn − x∗‖+ αn‖zn − x∗‖
= ‖zn − x∗‖
≤ ‖yn − x∗‖. (12)
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From (10)–(12), we obtain

‖xn+1 − x∗‖ ≤ ‖xn − x∗‖+ θn‖xn − xn−1‖
≤ (1 + θn)‖xn − x∗‖+ θn‖xn−1 − x∗‖. (13)

So, we obtain ‖xn+1 − x∗‖ ≤ M ·∏n
j=1(1 + 2θj), where M = max{‖x1 − x∗‖, ‖x2 −

x∗‖} from Lemma 3. Thus, {xn} is bounded because ∑∞
n=1 θn < ∞. Then,

∞

∑
n=1

θn‖xn − xn−1‖ < ∞. (14)

Note that {xn} being bounded implies that {yn} and {zn} are also bounded. By
Lemma 1 and (13), we find that limn→∞ ‖xn− x∗‖ exists. Then, we let limn→∞ ‖xn− x∗‖ =
a. From the boundedness of {yn} and (12), we obtain

lim inf
n→∞

‖yn − x∗‖ ≥ a. (15)

By (10) and (14), we obtain

lim sup
n→∞

‖yn − x∗‖ ≤ a. (16)

From (15) and (16), it follows that

lim
n→∞

‖yn − x∗‖ = a. (17)

Similarly, from (11), (12), (17) and the boundedness of {zn}, we obtain

lim sup
n→∞

‖zn − x∗‖ ≤ a and lim inf
n→∞

‖zn − x∗‖ ≥ a. (18)

From (18), we obtain that limn→∞ ‖zn − x∗‖ = a. It follows that limn→∞ ‖zn − x∗‖
exists. By the definition of xn+1 and Lemma 2 (i), we obtain

‖xn+1 − x∗‖2 = ‖(1− αn)(zn − x∗) + α(Tnzn − x∗)‖2

= (1− α)‖zn − x∗‖2 + α‖Tnzn − x∗‖2 − (1− αn)αn‖zn − Tnzn‖2

≤ (1− αn)‖zn − x∗‖2 + αn‖zn − x∗‖2 − (1− αn)αn‖zn − Tnzn‖2

= ‖zn − x∗‖2 − (1− αn)αn‖zn − Tnzn‖2

≤ (‖xn − x∗‖+ θn‖xn − xn−1‖)2 − (1− αn)αn‖zn − Tnzn‖2

= ‖xn − x∗‖2 + 2θn‖xn − x∗‖‖xn − xn−1‖+ θ2
n‖xn − xn−1‖2

− (1− αn)αn‖zn − Tnzn‖2. (19)

From (14) and (19), we obtain

‖zn − Tnzn‖ → 0. (20)

Since

‖xn+1 − zn‖ = ‖(1− αn)zn + αnTnzn − zn‖ = αn‖Tnzn − zn‖

and from (20), it follows that

‖xn+1 − zn‖ → 0. (21)

Since {zn} is bounded, (20), and {Tn} satisfies the NST-condition (I) with T, we
obtain that ‖zn − Tzn‖ → 0. Let ωw(zn) be the set of all weak cluster points of {zn}. Then,
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ωw ∈ F(T) by the demicloseness of I − T at 0. By Lemma 3, we conclude that there exists
x∗ ∈ F(T) such that zn ⇀ x∗ and it follows from (21) that xn ⇀ x∗. The proof is now
complete.

4. Applications

In this section, we are interested in applying our proposed method for solving a
convex minimization problem. Furthermore, we also compared the convergence behavior
of our proposed algorithm with the others and give some applications to solve the image
restoration problem.

4.1. Convex Minimization Problems

Our proposed method will be used to solve a convex minimization problem of the
sum of two convex and lower semicontinuous functions f , g : Rn → (−∞,+∞]. So, we
consider the following convex minimization problem: min

(
f (x) + g(x)

)
x ∈ Rn. It is well

known that x∗ is a minimizer of (22) if and only if x∗ = Tx∗, where T = proxρg(I − ρ∇ f );
see Proposition 3.1 (iii) [35]. It is also known that T is nonexpansive if ρ ∈ (0, 2/L) when
L is a Lipschitz constant of ∇ f . Over the past two decades, several algorithms have been
introduced for solving the problem (22). A simple and classical algorithm is the forward–
backward algorithm (FBA), which was introduced by Lions, P.L. and B. Mercier [23].

The forward–backward algorithm (FBA) is defined by{
yn = xn − γ∇ f xn,
xn+1 = xn + ρn(Jγ∂gyn − xn),

(22)

where n ≥ 1, x0 ∈ H and L is a Lipschitz constant of∇ f , γ ∈ (0, 2/L), δ = 2− (γL/2) and
{ρn} is a sequence in [0, δ] such that ∑n∈N ρn(δ− ρn) = +∞. A technique for improving
speed and giving a better convergence behavior of the algorithms was introduced firstly by
Polyak [38] by adding an inertial step. Since then, many authors have employed the inertial
technique to accelerate their algorithms for various kinds of problems; see [21,22,24–28].
The performance of FBA can be improved using an iterative method with the inertial steps
described below.

A fast iterative shrinkage-thresholding algorithm (FISTA) [27] is defined by
yn = Txn,

tn+1 =
1+
√

1+4t2
n

2 ,
θn = tn−1

tn+1
,

xn+1 = yn + θn(yn − yn−1),

(23)

where n ≥ 1, t1 = 1, x1 = y0 ∈ Rn, T := prox 1
L g(I − 1

L∇ f ) and θn is the inertial step size.
The FISTA was suggested by Beck and Teboulle [27]. They proved the convergence rate of
the FISTA and applied the FISTA to the image restoration problem [27]. The inertial step
size θn of the FISTA was firstly introduced by Nesterov [39].

A new accelerated proximal gradient algorithm (nAGA) [28] is defined by{
yn = xn + µn(xn − xn−1),
xn+1 = Tn[(1− ρn)yn + ρnTnyn],

(24)

where n ≥ 1, Tn is the forward–backward operator of f and g with an ∈ (0, 2/L) and
{µn}, {ρn} are sequences in (0, 1) and ‖xn−xn−1‖2

µn
→ 0. The nAGA was introduced for

proving a convergence theorem by Verma and Shukla [28]. The nonsmooth convex mini-
mization problem with sparsity, including regularizers, was solved using this method for
the multitask learning framework.

The convergence of Algorithm 2 is obtained using the convergence result of Algorithm 1,
as shown in the following theorem.
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Algorithm 2 (FBMSPA) A forward–backward modified SP-algorithm

1: Initial. Take x0, x1 ∈ C are arbitary and n = 1, αn ∈ [a, b] ⊂ (0, 1), βn ∈ (0, 1), θn ≥ 0
and ∑∞

n=1 θn < ∞.
2: Step 1. yn, zn and xn+1 are computed by

yn = xn + θn(xn − xn−1),
zn = (1− βn)yn + βn proxang(I − an∇ f )yn,
xn+1 = (1− αn)zn + αn proxang(I − an∇ f )zn,

Then, n := n + 1 and go to Step 1.

Theorem 2. For f , g : Rn → (−∞, ∞], g is a convex function and f is a smooth convex function
with a gradient having a Lipschitz constant L. Let an ∈ (0, 2/L) be such that {an} converges
to a and let T := proxag(I − a∇ f ) and Tn := proxang(I − an∇ f ) and let {xn} be a sequence
generated by Algorithm 2, where βn, αn and θn are the same as in Algorithm 1. Then, the following
holds:

(i) ‖xn+1 − x∗‖ ≤ M · ∏n
j=1(1 + 2θj), where M = max{‖x1 − x∗‖, ‖x2 − x∗‖} and

x∗ ∈ Argmin( f + g);
(ii) {xn} converges weakly to a point in Argmin( f + g).

Proof. We know that T and {Tn} are nonexpansive operators, and F(T) = ∩∞
n=1F(Tn) =

Argmin( f + g) for all n; see Proposition 26.1 in [34]. By Lemma 5, we find that {Tn} satisfies
the NST-condition (I) with T. From Theorem 1, we obtain the required result directly by
putting G = Rn ×Rn, the complete graph, on Rn.

4.2. The Image Restoration Problem

We can describe the image restoration problem as a simple linear model

Bx = c + u, (25)

where B ∈ Rm×n and c ∈ Rm×1 are known, u is an additive noise vector, and x is the “true”
image. In image restoration problems, the blurred image is represented by c, and x ∈ Rn×1

is the unknown true image. In these problems, the blur operator is described by the matrix
B. The problem of finding the original image x∗ ∈ Rn×1 from the noisy image and observed
blurred is called an image restoration problem. There are several methods that have been
proposed for finding the solution of problem (25); see, for instance, [40–43].

A new method for the estimation a solution of (25), called the least absolute shrinkage
and selection operator (LASSO), was proposed by Tibshirani [44] as follows:

min
x

{
‖Bx− c‖2

2 + λ‖x‖1

}
, (26)

where λ > 0 is called a regularization parameter and ‖ · ‖1 is an l1-norm defined by ‖x‖1 =

∑n
i=1 |xi|. The LASSO can also be applied to solve image and regression problems [27,44], etc.

Due to the size of the matrix B and x along with their members, the model (26) has the
computational cost of the multiplication Bx and ‖x‖1 for solving the RGB image restoration
problem. In order to solve this issue, many mathematicians in this field have used the 2-D
fast Fourier transform for true RGB image transformation. Therefore, the model (26) was
slightly modified using the 2-D fast Fourier transform as follows:

min
x

{
‖Bx− C‖2

2 + λ‖Wx‖1

}
(27)

where λ is a positive regularization parameter, R is the blurring matrix, W is the 2-D fast
Fourier transform, B is the blurring operation with B = RW and C ∈ Rm×n is the observed
blurred and noisy image of size m× n.
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We apply Algorithm 2 to solve the image restoration problem (27) by using Theorem 2
when f (x) = ‖Bx− C‖2

2 and g(x) = λ‖Wx‖1. Then, we compare Algorithm 2’s deblurring
to that of FISTA and FBA. In this experiment, we consider the true RGB images, Suan Dok
temple and Aranyawiwek temple of size 5002, as the original images. We blur the images
with a Gaussian blur of size 92 and σ = 4, where σ is the standard deviation. To evaluate
the performance of these methods, we utilize the peak signal-to-noise ratio (PSNR) [45] to
measure the efficiency of these methods when PSNR(xn) is defined by

PSNR(xn) = 10log10

(
2552

MSE

)
,

where a monotic image with 8 bits/pixel has a maximum gray level of 255 and MSE =
1
N ‖xn − x∗‖2

2 = 1
N ∑N

i=1 |xn(i)− x∗(i)|2, xn(i) and x∗(i) are the i-th samples in image xn
and x∗, respectively, N is the number of image samples and x∗ is the original image. We can
see that a higher PSNR indicates better a deblurring image quality. For these experiments,
we set λ = 5× 10−5 and the original image was the blurred image. The Lipchitz constant L
is calculated using the matrix BT B as the maximum eigenvalues.

The parameters of Algorithm 2, FISTA, FBA, Ishikawa iteration, S-iteration, Noor
iteration and SP-iteration are the same as in Table 1.

Table 1. Methods and their setting controls.

Methods Setting

Algorithm 2 αn = 0.9, βn = 0.5, c = 1/L, θn = n/(n + 1) if
1 ≤ n ≤ 500, and 1/2n otherwise

FISTA t1 = 1, tn+1 = (1 +
√

1 + 4t2
n)/2,

θn = (tn − 1)/tn+1

FBA ρn = 0.9, γ = 1/L

Ishikawa iteration ρn = 0.9, ζn = 0.5, c = 1/L

S-iteration ρn = 0.9, ζn = 0.5, c = 1/L

Noor iteration ρn = 0.9, ζn = 0.5, ηn = 0.5, c = 1/L

SP-iteration ρn = 0.9, ζn = 0.5, ηn = 0.5, c = 1/L

Note that all of the parameters in Table 1 satisfy the convergence theorems for each
method. The convergence of the sequence {xn} generated by Algorithm 2 to the original
image x∗ is guaranteed by Theorem 2. However, the PSNR value is used to measure the
convergence behavior of this sequence. It is known that PSNR is a suitable measurement
for image restoration problems.

The following experiments show the efficacy of the blurring results of Suan Dok and
Aranyavivek temples at the 500th iteration of Algorithms 2, FISTA, FBA, Ishikawa iteration,
S-iteration, Noor iteration and SP-iteration using PSNR as our measurement, shown in
tables and figures as follows.

It is observed from Figures 1 and 2 that the graph of PSNR of Algorithm 2 is higher
than that of FISTA FBA, Ishikawa iteration, S-iteration, Noor iteration and SP-iteration
which shows that Algorithm 2 gives a better performance than the others.

The efficiency of each algorithm for image restoration is shown in Tables 2–5 for
different number of iterations. The value of PSNR of Algorithm 2 is shown to be higher
than that of FISTA, FBA, Ishikawa iteration, S-iteration, Noor iteration and SP-iteration.
Thus, Algorithm 2 has a better convergence behavior than the others.

We show the original images, blurred images, and deblurred images by Algorithm 2,
FISTA, FBA, Ishikawa iteration, S-iteration, Noor iteration and SP-iteration for Suan Dok
(Figure 3) and Aranyawiwek temples (Figure 4).
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Figure 1. The graphs of PSNR of each algorithm for Suan Dok temple.

Figure 2. The graphs of PSNR of each algorithm for Aranyawiwek temple.
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Table 2. The values of PSNR for Algorithm 2, FISTA, FBA of Suan Dok temple.

No. Iterations Algorithm 2 FISTA FBA

1 20.41801 20.36432 20.27827

5 21.56154 21.13340 20.64981

10 22.81140 22.00081 20.96027

25 24.54825 23.73266 21.56257

100 27.80053 26.71268 22.93002

250 30.21461 29.28515 23.92280

500 31.57117 31.21182 24.66522

Table 3. The values of PSNR for Ishikawa iteration, S-iteration, Noor iteration and SP-iteration of
Suan Dok temple.

No. Iterations Ishikawa
Iteration S-Iteration Noor Iteration SP-Iteration

1 20.41010 20.42585 20.43611 20.47630

5 21.04951 21.08759 21.12646 21.23160

10 21.54370 21.59831 21.65780 21.80965

25 22.44491 22.51817 22.59948 22.79284

100 23.98112 24.05696 24.14345 24.33880

250 24.97654 25.05383 25.14335 25.43583

500 25.75882 25.84223 25.93954 26.16025

Table 4. The values of PSNR for Algorithm 2, FISTA and FBA of Aranyawiwek temple.

No. Iterations Algorithm 2 FISTA FBA

1 20.62485 20.57077 20.48543

5 21.85350 21.37734 20.86196

10 23.31840 22.35583 21.19050

25 25.29317 24.39293 21.85570

100 28.86437 27.75046 23.44804

250 31.32694 30.48999 24.60734

500 32.66988 32.43108 25.45769

Table 5. The values of PSNR for Algorithm 2, Ishikawa iteration, S-iteration, Noor iteration and
SP-iteration of Aranyawiwek temple.

No. Iterations Ishikawa
Iteration S-Iteration Noor Iteration SP-Iteration

1 20.61695 20.63272 20.64371 20.65791

5 21.28692 21.32823 21.37058 21.46923

10 21.83445 21.89601 21.96356 21.12342

25 22.87547 22.96182 22.057648 22.27264

100 24.64759 24.76190 24.86123 25.06857

250 25.81261 25.89987 26.00121 26.20981

500 26.96400 26.78725 26.89572 27.11590
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Figure 3. Results for Suan Dok temple’s deblurring image.

Figure 4. Results for Aranyawiwek temples’s deblurring image.
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5. Conclusions

In this study, we used a coordinate affine structure to propose an accelerated fixed-
point algorithm with an inertial technique for a countable family of G-nonexpansive
mappings in a Hilbert space with a symmetric directed graph G. Moreover, we proved
the weak convergence theorem of the proposed algorithm under some suitable conditions.
Then, we compared the convergence behavior of our proposed algorithm with FISTA, FBA,
Ishikawa iteration, S-iteration, Noor iteration and SP-iteration. We also applied our results
to image restoration and convex minimization problems. We found that Algorithm 2 gave
the best results out of all of them.
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