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Abstract: Based on the proposed generalized memristor, a new jerk system is proposed. The complex
dynamics of the system are investigated by means of bifurcation diagrams, Lyapunov exponents,
and MSampEn, and rich dynamics are observed. Moreover, the circuits of the generalized memristor
and the jerk system are physically implemented in the hardware level. The experimental results
show that the memristor circuit can generate “8”-shaped pinched hysteresis loops, and the observed
attractors match well with the numerical simulations results. In this paper, we summarize nonlinear
systems with memristors in the references. It indicates that there are two symmetry methods to
find a memristor model in nonlinear systems. However, some of them cannot be realized using the
memristor devices, although a memristor model can be found. For example, the famous Lorenz
system contains a memristor function, but it cannot be realized using the memristor device. The
principles regarding whether nonlinear systems with a memristor function can be realized using a
memristor device are discussed.

Keywords: jerk system; memristor; chaos; complexity; symmetry

1. Introduction

In 1971, the concept of the memristor was proposed by Chua [1], and it indicates
that the new element is the fourth basic circuit electron element, while the other three are
resistor, capacitor, and inductance. Then, in 1976, memristive devices and systems with
memristors were investigated [2]. However, the research regarding the memeristor did not
develop very far until 2008. In this year, a nanoscale TiO2 device that provides a method
for the physical realization of the memristor was reported by Strukov et al. [3]. Since
then, memristor performance has been simulated using the differential operator, and the
memristor simulators have been widely investigated and used in many different research
fields, such as nonlinear systems [4,5], storage [6], synapses [7], and neural networks [8].
Unlike the continuous memristors mentioned above, discrete memristors are designed based
on the difference operator. The discrete memristor can be used to model the discrete chaotic
maps. For instance, the Hénon map and Sine map are designed and investigated [9,10].

The jerk system is one of the simplest nonlinear systems for chaos. For instance, a jerk
system can be defined as [11]:

d3x
dt3 + β

d2x
dt2 + α

dx
dt

= f (x), (1)

where f (·) is a nonlinear function. Since f (·) has different choices and those jerk systems
have complex dynamical behaviors, it has attracted lots of research interest [12–15]. For
instance, multistability has been found when the system has different nonlinear functions
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and an image encryption application is carried out. Based on the memristor function, jerk
systems with memristors can be designed, and relevant studies can be found in Refs. [16–19].
Generally speaking, the generalized memristor uses one of the equations in the jerk system
and the memristor function is set in the nonlinear function f (·). Although there are many
nonlinear systems with memristors, it is still interesting to investigate how to introduce
a memristor in nonlinear systems. Since jerk systems are a recent hot topic [20], the gen-
eralized memristors in a jerk system is investigated. Moreover, it is necessary to analyze
complex dynamics of the designed system [21]. There are two methods to realize circuits of
the memristor chaotic system. The first method it to use the memristor module, while the
second method is to realize the system based on the equations, since those circuits in the
present research are complicated, and since it is necessary to investigate how to reduce elec-
tron components in the memristor-based jerk system. Finally, the conception of a memristor
chaotic system should be clear. Some of the systems are designed based on the memristor,
while the others only contain memristor functions. At present, the circuit realization of
different nonlinear chaotic systems is a hot topic [22], and the theory of how to design
circuits for nonlinear systems based on memristive devices deserves further study. Thus,
we need to figure out what is a real memristor chaotic system and discuss the difference
between a “memristor chaotic system” and a “chaotic system with memristor function”.

Motivated by the above discussions, in this paper, a third-order jerk system with a
generalized memristor is designed. The dynamics of the system are analyzed by means of
bifurcation diagrams and Lyapunov exponents (LEs). Meanwhile, the complexity of the
time series from the system is investigated by the multiscale SampEn (MSampEn) [23], and
circuit implementation of the system is carried out. Since it has already been indicated
that the nonlinear systems including the jerk system can contain memristors, we further
investigate those systems with memristors and try to summarize the rules behind them.
The rest of this paper is organized as follows. In Section 2, a generalized memristor is
proposed and a jerk system is designed based on the memristor. In Section 3, the dynamics
of the jerk system with memristors are investigated numerically, and the circuits for the
generalized memristor and the jerk system are designed and realized in the hardware
circuit. In Section 4, a discussion on the relationship between the generalized memristor
and nonlinear systems is carried out. Section 5 is the summary.

2. The Generalized Memristor-Based Jerk System
2.1. The Generalized Memristor

Chua et al. [2] proposed the concept of the generalized memristor, and it is defined by:{
y(t) = g(x, h, t)h(t)
ẋ(t) = f (x, h, t)

, (2)

where h(t) and y(t) are the input and output of the memristor, respectively. x is the
internal state of the memristor, which is defined by the differential equation. Later, Ad-
hikari et al. [24] defined the memristor as:{

v = M(x1, x2, · · · , xn)i
ẋk = fk(x1, x2, · · · , xn; i),

(3)

where M(·) is the memristor function called memristance, xn are the state variables, i is the
current, and f (·) is the associated state equation. Meanwhile, they investigated the three
fingerprints of the memoristors.

Secondly, according to the definition of generalized memristor, we propose a general-
ized memristor, which is defined by:{

h = e(x− 1)y
ẋ = y

, (4)
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where h represents the output of the memristor, which can be the voltage (current), y is the
current (voltage), and x is the internal state variable of the memristive element, which can
be the electromagnetism (charge).

Suppose that the input of the memristor is given by:

y(t) = A sin(2π f t), (5)

then, the internal state variable of the memristor is calculated by:

x(t) =
∫ t
−∞ y(τ)dτ

=
∫ 0
−∞ y(τ)dτ +

∫ t
0 y(τ)dτ

= x(t0) +
A

2π f [1− cos(2π f t)]
, (6)

and the output of the memristor is denoted as:

h(t) = e(x− 1)y
= A

[
x(t0) +

A
2π f (1− cos(2π f t))− 1

]
sin(2π f t)

. (7)

Here, x(t0) is the initial condition of the generalized memristor.
Let A = 1, f = 0.2, f = 0.5, and f = 1; the input (y(t)) and output (h(t)) of the

memristor are shown in Figure 1a. Fix f = 0.2, A = 1, A = 2, and A = 4; the input (y(t))
and output (h(t)) of the memristor are illustrated in Figure 1b. It shows in Figure 1 that the
proposed generalized memristor shows typical “8”-shaped hysteresis curves. When the
frequency of the input signal increases, the internal area of the hysteresis curves decreases.
As a result, it shows that the designed electronic device is a generalized memristor.
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Figure 1. Relationship curves of the input and output of the generalized memristor. (a) A = 1,
f = 0.2, f = 0.5, and f = 1; (b) f = 0.2, A = 1, A = 2, and A = 4.

2.2. Model of the Jerk System with Memristor

A three-dimensional jerk system can be described by the following equations [11]:
ẋ = y
ẏ = z
ż = −bx− ey− cz + f (x)

, (8)

where x, y, and z are state variables, f (x) is the nonlinear function, and b, c, and e are the
positive real numbers. By introducing the proposed memristor to this system, we designed
a new jerk system, which can be defined as:

ẋ = y
ẏ = z
ż = −bx− cz + e(x− 1)y

, (9)
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where x, y, and z are state variables. Obviously, f (x) = exy, and the system contains the
generalized memristor as proposed in the above section.

For the proposed system, the volume shrinkage ratio is denoted as:

∇V =
∂ẋ
∂x

+
∂ẏ
∂y

+
∂ż
∂z

= −c; (10)

then, V(t) = V(0)e−ct. When c > 0, it can be found that the proposed system is a dissipative
system, and it converges to zero or the domain of attraction with a speed of e−ct.

The equilibrium point of system (9) is (x0, y0, z0) = (0, 0, 0); thus, the Jacobian matrix
at the equilibrium point is:

JE =

 0 1 0
0 0 1
−b −e −c

. (11)

Its characteristic polynomial is denoted as:

|λI − JE| = λ3 + cλ2 + eλ + b = 0. (12)

According to the Routh–Hurwitz criterion, if the real part of all the roots is negative,
then the equilibrium point is stable; otherwise, the equilibrium point is unstable. When
c > 0, b > 0, ce− b > 0, the characteristic equation has three negative real-part roots; thus,
the system is stable. When c > 0, b > 0, ce− b < 0, the zero equilibrium point is a saddle
node; accordingly, the equilibrium point is unstable. Specifically, suppose that c = 1, b = 1;
then, the value of the parameter e should be smaller than one.

3. Dynamics and Circuit Implementation

There are three parameters in the system, namely, b, c, and e. Since the parameter e
belongs to the memristor, we fix it as e = 0.5 and investigate the complex dynamics of
the system with the variation of b and c. In this paper, bifurcation diagrams, Lyapunov
exponents (LEs), phase diagrams, and multiscale SampEn are employed to analyze the
complex dynamics of the system.

3.1. Dynamical Behaviours
3.1.1. Bifurcation Analysis

Fix c = 1, e = 0.5 and vary b from 0.4 to 1, with a step size of 0.0024. A bifurcation
diagram and its corresponding LEs are shown in Figure 2. This shows that the jerk system
enters chaos with period-doubling bifurcation. When b > 0.88, the system becomes
too chaotic and the corresponding maximum Lyapunov exponents are larger than zero.
The phase diagrams of the system, with c = 1, e = 0.5, and different b, including b = 0.7,
b = 0.818, b = 0.88, and b = 1, are illustrated in Figure 3. It shows that there are periodically
one, periodically two, and periodically four circles with symmetrical structures and chaotic
attractors, and it also shows the period-doubling bifurcation of the system with the increase
of the parameter b.

(a) (b)(a) (b)

Figure 2. Dynamics of the memristor-based jerk system with the parameter b. (a) bifurcation diagram;
(b) LEs.
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(a) (b)

(c) (d)

(a) (b)

(c) (d)

Figure 3. Phase diagrams of the system with c = 1, e = 0.5, and different b. (a) b = 0.7; (b) b = 0.818;
(c) b = 0.88; (d) b = 1.

Fix b = 1, e = 0.5, and vary c from 1 to 1.3 with a step size of 0.0012. Bifurcation
diagrams and the corresponding LEs with the variation of parameter c are shown in
Figure 4. According to Figure 4, the bifurcation is period-doubling with the decrease of
parameter c, and the system becomes chaotic when c < 1.1. Meanwhile, phase diagrams of
the system with b = 1, e = 0.5, and different c, including c = 1.05, c = 1.1, c = 1.15, and
c = 1.3, are shown in Figure 5. It shows that the system has different states with different
parameter c.

(a) (b)(a) (b)

Figure 4. Dynamics of the memristor-based jerk system with the parameter c. (a) bifurcation diagram;
(b) LEs.

According to the above dynamical analysis, it shows that the system has rich dynamics
with the variation of parameters b and c. The system is chaotic when the parameters b and
c take values near one, while the system becomes too periodic with the decrease of b and
the increase of c. In the next section, the complexity of the system is analyzed by employing
the multiscale sample entropy (MSampEn) algorithm.
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(a) (b)

(c) (d)

(a) (b)

(c) (d)

Figure 5. Phase diagrams of the system with b = 1, e = 0.5, and different c. (a) c = 1.05; (b) c = 1.1;
(c) c = 1.15; (d) c = 1.3.

3.1.2. Complexity Analysis

SampEn [23] is a complexity measure for nonlinear time series. When the measure
result is larger, the complexity of the time series is higher, which means that the original
system is more complex. The SampEn of a nonlinear time series can be estimated by the
following steps.

Step 1: For a given time series {x(i), i = 0, 1, 2, · · · , N− 1} of length N and embedding
dimension m, the m-dimensional phase-space reconstruction is expressed as:

X(i) = [x(i), x(i + 1), · · · , x(i + m− 1)], (13)

where i = 0, 1, 2, · · · , N −m.
Step 2: Define the Euclidean distance between the vector X(i) and vector X(j) as:

d[X(i), X(j)] = Max
k=0→m−1

{|X(i + k)− X(j + k)|}. (14)

Step 3: For a given similarity r, count the number of d[X(i), X(j)] < r, where i =
0, 1, 2, · · · , N −m, j = 0, 1, 2, · · · , N −m, and i 6= j. If d[X(i), X(j)] < r, then φm

r (i, j) = 0;
otherwise, φm

r (i, j) = 0. The average value of φm(i) can be calculated as:

φm(i) =
1

N −m

N−m

∑
j=0,i 6=j

φm
r (i, j). (15)

Then, we have:

Φm(r) =
1

N −m + 1

N−m

∑
i=0

φm(i). (16)

Step 4: Similarly, change m to m + 1, repeat steps one to three, and obtain Φm+1(r).
Then, SampEn is defined as [23,25]:

SampEn(m, r, x) = −ln
Φm+1(r)

Φm(r)
. (17)

In this paper, we set m = 2 and r = 0.2SD, where SD means the standard deviation of
the original time series.
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Based on the SampEn algorithm, MSampEn is described as follows.
Step 1: For a one-dimensional time sequence {x(i), i = 0, 1, 2, · · · , N − 1} of length N,

its coarse-grained time series under scale factor τ is constructed as [25]:

Yτ(i, j) = x(i + τ · (j− 1)), (18)

where j = 0, 1, 2, · · · , N − 1, 1 ≤ j ≤ [N/τ], and [·] denotes the floor function.
Step 2: MSampEn is calculated by:

MSampEn(x, τ) =
1
15

25

∑
τ=11

SampEn(m, r, Yτ(i, :)). (19)

The complexity of the jerk system is analyzed and the analysis results are illustrated
in Figures 6 and 7.

Figure 6. MSampEn complexity of the system with different parameters. (a) the parameter b varying;
(b) the parameter c varying.

Firstly, the complexity of the system with the variation of parameters b and c are
estimated, and the results are shown in Figure 6a,b, respectively. For Figure 6a, c = 1,
e = 0.5, and vary b from 0.4 to 1 with a step size of 0.0024, while for Figure 6b, b = 1, e = 0.5,
and vary c from 1 to 1.3 with a step size of 0.0012. This shows that the high complexity
intervals of the system are b ∈ [0.9, 1] and c ∈ [1, 1.1]. Obviously, the trend of the MSampEn
analysis results match well with the corresponding Lyapunov exponents, but it is more
intuitional. For the real encryption applications, one can choose system parameters when
the system has a MSampEn estimate value larger than 0.2.

Secondly, let e = 0.1, b vary from 0.75 to 1 with a step size of 0.0025, and c vary from 1
to 1.15 with a step size of 0.0015; the complexity analysis result in the parameter plane b–c
is illustrated in Figure 7. Thus, we have an overall view of the high complexity region of
the jerk system, and it shows that the system has high complexity in the top left corner of
the parameter plane.

Figure 7. MSampEn complexity of the system in the parameter plane b–c.
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3.2. Circuit Implementation

It is important to realize the system in the hardware to verify the existence of chaos.
In this section, circuit implementation of the proposed jerk system is carried out.

3.2.1. Circuit Design of the Memristor

The circuit of the memristor is shown in Figure 8, where Rm1 = Rm4 = 10 KΩ, Rm2 =
Rm3 = 20 KΩ and Cm1 = 100 nF. The operational amplifier is AD711KN, the multiplier is
AD633JN, and the operation voltage is±15 V. According to Figure 8, the port characteristics
can be described by the following equation:{

h(t) = − Rm4
Rm2

x(t)y(t)− Rm4
Rm3

y(t)
ẋ(t) = − 1

Rm1Cm1
y(t)

. (20)

Meanwhile, the voltage–current characteristic curves of the port for the memristor
are shown in Figure 9. Obviously, it shows the “8”-shaped curve, which indicates that the
realized circuit is a equivalent circuit of the memristor. Moreover, it shows that there exists
a memristor in the proposed jerk system.

+

-

Rm1

Rm2

Cm1

y(t) Um1

+

-

Rm4

Um2
h(t)

x(t)

Rm3

M1M1

+

-

Rm1

Rm2

Cm1

y(t) Um1

+

-

Rm4

Um2
h(t)

x(t)

Rm3

M1

Figure 8. Circuit of the generalized memristor.

(a) (b)(a) (b)

Figure 9. The voltage–current characteristic curves of the port for the memristor. (a) time series;
(b) V–I curve.

3.2.2. Hardware Circuit Implementation of the Jerk System

The chaotic system is realized in the hardware circuit, and the jerk chaotic circuit with
memristor function is shown in Figure 10, where the electronic components in the shadow
area provide the function of a memristor, and U3 is the reverse proportional operational
amplifier. As a result, the equations of the circuit are given by:

ẋ = y
R1C1

ẏ = z
R2C2

ż = − z
R3C3
− x

R8C3
− 1

C3
(− 1

R7
xy + R5

R4R6
y)

. (21)

The experimental platform is given in Figure 11. When R1 = R2 = R3 = R5 = R6 = R8
= 10 kΩ, R4 = R7 = 20 kΩ, C1 = C2 = C3 = 100 nF. The operational amplifier is AD711KN,
the multiplier is AD633JN, and the operation voltage is ±15 V. The chaotic attractors
obtained are shown in Figure 12.
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The designed circuit contains the memristor circuit, as shown in Figure 10, but it
has a resistance R8 and a capacitance C3 connected with it; thus, it does not work like
the usual-sense nonlinear memristor circuit. Moreover, the chaotic analog circuits can
generate real chaos while the corresponding digital implementation has the finite precision
effect. For computer software (Multisim, Spice, and Psim)-based analog circuit simulations,
they are essentially another kind of digital results. Generally, digital solutions and analog
solutions should agree well with each other since they are both models of the original
systems. In the next section, we will give an in-depth exploration of the difference between
a “memristor chaotic system” and a “chaotic system with memristor function”.

+

-

+

-

+

-

+

-

R4

R1

R3

R5

R6

R2

R8

C1C2

C3

R7

U1U2U3

U4

M1

Memristive Device

x

y

-y

z+

-

+

-

+

-

+

-

R4

R1

R3

R5

R6

R2

R8

C1C2

C3

R7

U1U2U3

U4

M1

Memristive Device

x

y

-y

z

Figure 10. The jerk chaotic circuit with memristor function.

Memristive moduleR1

C1U1

U2

U3

C2

C3 R3

R5

R6

R4

R7

R8

M1

+15V

–15V
R2

GND

vx

GND

vy
vz

(a) (b)

U4

Figure 11. The experimental platform. (a) results in the oscilloscope; (b) the realized real circuit.
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(a) (b) (c)(a) (b) (c)

Figure 12. Phase diagrams captured from the real circuit. (a) x–y plane; (b) x–z plane; (c) y–z plane.

4. Nonlinear Systems with Memristor
4.1. Modeling Using the Generalized Memristor

In fact, there many nonlinear systems can be modeled based on the generalized
memristor. However, some issues should be discussed. Firstly, two more examples are
presented. The first example is that the proposed jerk system can also be modeled by
another memristor, which is: {

h = exy
ẋ = y

, (22)

and the system is given by: 
ẋ = y
ẏ = z
ż = −bx− cz− ey + h

. (23)

Although the modeling is different, the final circuit is the same as is shown in Figure 10.
The second example is the Lorenz system, which can be modeled by a generalized memris-
tor. Here, we take the simplified Lorenz system [26] as an example of the system modeling
process. The system is given by:

ẋ = 10(y− x)
ẏ = (24− 4c)x− xz + cy
ż = xy− 8z/3

(24)

According to the definition of the generalized memristor, the system contains a gener-
alized memristor, which is defined by:{

ẋ = 10(y− x)
h = xy

. (25)

Remark 1. Suppose that x(t) and y(t) are the state variables of the nonlinear differential equation,
and we have ẋ(t) = f (x, y, t); if the system has an item g(x, y, t)y(t) in another equation of the
system, the system can be modeled by using the generalized memristor.

However, it should be noted that this kind of modeling of nonlinear systems is not the
natural way for the real memristor-based system. As we can see, the state variable x is the
internal states of the memristor; it is not reasonable for it to act as a variable in the system,
except in the memristive system. For those systems, they indeed have a memristor in the
circuit; however, the so-called memristor only has the function of a memristor.

Remark 2. In those memristor-based jerk systems, the memristor is defined by:{
h(t) = g(x)y
ẋ = y

. (26)
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Obviously, ẋ = y is one of the equations of the jerk system, and g(x)y belongs to the nonlinear
function of the jerk system.

Remark 3. There are many chaotic systems, for example, the Lorenz system, that contain general-
ized memristors.

Remark 4. The output and input of the generalized memristor circuit in the above nonlinear
systems could not be the voltage and current pair, but could be voltage and voltage pair or current
and current pair. This depends on how the circuit of the generalized memristor is designed.

Remark 5. Suppose that a nonlinear system can satisfy the following three rules; then, the system
could be realized by the memristor element theoretically. The three rules are: (1) it has an equation
given by ẋ(t) = f (x, y, t); (2) there is only an item g(x, y, t)y(t) in one of the other equations;
(3) the variable “x" should not be observed in the system, except f (x, y, t) and g(x, y, t)y(t).

Suppose that there is a nonlinear system which is defined by:
ẋ = ay
ẏ = −b(x + g(z)y)
ż = f (y, z)

, (27)

where
{

h(t) = −g(z)y
ż = f (y, z)

is the generalized memristor, and g(z) and f (y, z) are the nonlin-

ear functions.
According to Remark 5, the internal state variable z only exists in the generalized

memristor; thus, this system can be designed by the memristor circuit and the resulting
circuit is given by Figure 13. According to the Kirchhoff law, the nonlinear function of the
circuit is given by: 

dVc
dt = 1

C iL
diL
dt = − 1

L [Vc − g(z)iM]
dz
dt = f̃ (iM, z)

, (28)

where f̃ (iM, z) = f (iL, z). If we let Vc = x, iL = y, iM = −y, a = 1/C, and b = 1/L, we can
obtain the target system. Since the equations g(z) and f̃ (iM, z) have many different choices,
Equation (26) has many different kinds of forms. For instance, B. Muthuswamy et al. [27]
analyzed different kinds of nonlinear systems based on this circuit. Moreover, let us check
the proposed jerk system; if b = 0, then it can be realized using a memristor. Otherwise,
its circuit cannot be realized by using the memristor device since there is an item −bx.

Moreover, the Lorenz system contains the memristor function
{

ẋ = 10(y− x)
h = xy

, but it

has items containing “x” in each of the equations. Thus, it cannot be realized using the
memristor device. In conclusion, some of the nonlinear systems can be designed based on
the memristor element.

Vc
iL

V
M

C

L

+

-V
L

+

-

+-

iM

Figure 13. A memristor circuit for the nonlinear system.
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As shown in the above analysis, it illustrates two methods for the circuit design of
nonlinear systems. Namely, the first method is to design a memristor circuit or to introduce
a memristor to the system, while the second method is to make the system contain a
memristor function. Essentially, the circuit of the nonlinear system from method one is
still same as the traditional method, while the second method uses the memristor electron
component to realize the system. However, the second method has more limitations.

4.2. Further Discussions

Firstly, there are many different kinds of memristors proposed in the existing references.
Table 1 summarizes some memristors with different kinds of equations, such as piecewise-
linear nonlinearity, absolute value, linear function, sine function, and square function.
Meanwhile, the Knowm memristor is also considered for comparison. The i− v hysteresis
loops observed in the Knowm memristor are not as smooth as those that are simulated.

Table 1. The characters of different kinds of memristors.

Type Reference Equations

Piecewise-linear Ref. [28] M(q) = dϕ(q)
dq =

{
a, |q| < 1
b, |q| > 1

Absolute value Ref. [29]


i(t) = W(ϕ)v(t)
W(ϕ) = −a + b|ϕ(t)|
ϕ̇(t) = v(t)

Linear function Ref. [30]
{

ẋ1(t) = x2(t)
h(t) = [x1(t)− 1]x2(t)

Ref. [31]
{

ẋ = um
fm = (1 + x)um

Sine function Ref. [32] W(ϕ) = dq(ϕ)/dϕ = cosh(ϕ)
Square function Ref. [33] W(ϕ) = dq(ϕ)/dϕ = a + 3bϕ2

Ref. [34]
{

ẋ = y
h = (x2 − 2)y

Ref. [35]
{

i = αz2v
ż = −βv− λz + kvz

Cubic function Ref. [36] g(vR) = a0 + avR + bv2
R + cv3

R
Higher-order Ref. [37] q(φ) = aφ5 + bφ3 + cφ + d

Knowm memristor Ref. [38] G(φ) =
φ

RON
+

1−φ
ROFF

, fitted curve
Ref. [39] i− v characteristic curves presented

Generally, those memristors can be defined by:{
h(t) = g(x)y
ẋ = f (y)

, (29)

which means the ideal memristor. The main consideration to use this kind of “simple"
memristor is to simplify the circuit implementation in real applications. However, a few
memristors are defined by: {

h(t) = g(x)y
ẋ = f (x, y)

. (30)

For example, Ref. [35] proposed a memristor which is defined in this form.
Table 2 shows some similar jerk systems which also contain memristors. Those systems

have a similar structure to the system proposed in this paper. Since the variable x or x1
also appears in the third equation of those systems, according to Remark 2, those systems
cannot be realized using a memristor device related to the given memristor functions.
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Table 2. Nonlinear systems with memristor functions.

Reference System Proposed Memristor Function

Ref. [19]


ẋ = y
ẏ = z
ż = −ax− cz + y2 + h

{
h = b(x− 1)y
ẋ = y

Ref. [40]


ẋ = y
ẏ = z
ż = −x− z + h

{
h = (1− x2)y
ẋ = y

Ref. [41]


ẋ = y
ẏ = z
ż = −bx− z + h

{
h = (a− x2)y
ẋ = y

Table 3 shows nonlinear systems with memristor devices, where the systems have
the same memristor function. According to Remark 2, those systems can be realized using
the memristor device. In fact, those systems are realized using an analog circuit [42–44].
Firstly, there is an item “W(x4)x1” or “W(ω)x”, which contains the memristor function.
Secondly, the variable x4 or ω just appears in the function W(·). Thirdly, although the
memristor functions are the same, defined by W(ϕ) = a + 3bϕ2, those systems are different.
The system in Ref. [42] is proposed based on the Lorenz system, the system in Ref. [43] is
designed based on Chua’s system, while the system in Ref. [44] is derived from a memristor
circuit. As a result, it shows that there are many different kinds of memristor systems.

Table 3. Nonlinear systems with memristor devices.

Reference System Proposed

Ref. [42]


ẋ = α(y− x)
ẏ = −xz + βy− ρW(ω)x
ż = xy− γz
ẇ = x

Ref. [43]


ẋ1 = α[x2 − x1 + εx1 −W(x4)x1]
ẋ2 = x1 − x2 + x3
ẋ3 = −βx2
ẋ4 = x1

Ref. [44]


ẋ = α(z−W(ω)x)
ẏ = βy− z
ż = y− x− ξz
ẇ = x

Until now, memristor-based nonlinear systems have been widely investigated. This
paper indicates the fact that there exist two kinds of memristor-based nonlinear systems,
namely, nonlinear systems with a memristor device and nonlinear systems with a memristor
equation. Of course, those nonlinear systems with a memristor device have memristor
equations. The main difference is that the nonlinear systems with a memristor device can
be realized using a memristor device, while nonlinear systems with a memristor equation
cannot be. As far as we know, there are many systems that contain memristor equations.
How to investigate the effect of those memristor equations to the dynamics of nonlinear
systems merits further discussion.

5. Conclusions

In this paper, a new jerk system which contains a memristor function is proposed and
analyzed. The characteristics of the memristor and the dynamics of the jerk system are
investigated. It shows that the proposed generalized memristor satisfies the definition of
the memristor, and that the jerk system has rich dynamical behaviours. The operational
amplifiers and multipliers are used to construct the hardware circuit of the memristor and
the proposed jerk system. The realization results show that the memristor can generate the
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“8”-shaped pinched hysteresis loops, and chaotic attractors are observed in the oscilloscope.
Compared with the circuit designed in other references, the circuit in this paper is simpler
since it has fewer electronic components. Finally, we found that there are many nonlinear
systems that contain memristor equations, but not all of them can be realized using the
memristor device. As for future work, we hold the opinion that there are two aspects
which deserve further study. The first aspect is to find more systems to explore the
boundary between the nonlinear systems and the generalized memristors. The second is
to discuss the relationship between the nonlinearity of the system and nonlinearity in the
memristor equation.
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