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Abstract: This study presents the solution of the transient spatial problem of the impact of a moving
source of heat flux induced by laser radiation on the surface of a half-space using the superposition
principle and the method of transient functions. The solution is based on the Green’s function method,
according to which the influence function of a surface-concentrated heat source is found at the first
stage. The influence function has axial symmetry and the problem of finding the influence function is
axisymmetric. To find the Green’s function, Laplace and Fourier integral transforms are used. The
novelty of the obtained analytical solution is that the heat transfer at the free surface of the half-space
is taken into account. The Green’s function that was obtained is used to construct an analytical
solution to the moving heat-source problem in the integral form. The kernel of the advising integral
operator is the constructed Green’s function. The Gaussian distribution is used to calculate integrals
on spatial variables analytically. Gaussian law models the distribution of heat flux in the laser beam.
As a result, the corresponding integrals on the spatial variables can be calculated analytically. A
convenient formula that allows one to study the non-stationary temperature distribution when the
heat source moves along arbitrary trajectories is obtained. A numerical, analytical algorithm has
been developed and implemented that allows one to determine temperature distribution both on the
surface and on the depth of a half-space. For verification purposes, the results were compared with
the solution obtained using FEM.

Keywords: 3D printing; selective laser melting; additive manufacturing; concentrated load; moving
load; heat flow; transient function; Gaussian distribution

1. Introduction

Additive manufacturing is an alternative way of producing finished products of
different geometries and purposes. In contrast to traditional methods of producing, the
process of creating geometry by 3D printing methods with metal–powder compositions is
accompanied by high-intensity heating of the synthesized material. Emerging temperature
fields can have a significant impact on the microstructure and properties of the material,
as well as on the magnitude and nature of the residual stresses and strains [1–3]. The
use of analytical methods for solving temperature problems has a significant advantage
over numerical methods. The analytical solution provides significantly faster and more
accurate results. In addition, it simplifies the investigation into the influence of various
problem parameters on the thermal heating process. This makes it possible to predict and
identify areas of high temperature at the design stage [4,5]. During the three-dimensional
printing process, the material experiences significant temperature fluctuations which result
in undesirable thermal stresses and residual stresses [6].

It is possible to use hyperbolic-type equations to solve this problem. Various aspects
of research into solutions of such equations are presented in papers [7–10]. However,
constructing a solution to the parabolic heat-conduction equation is significantly simpler.
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In addition, the results obtained were compared with the solution of the test problem
using the finite element method. A good coincidence of the obtained results was revealed.
Therefore, the parabolic-type heat-conduction equation was used in the work.

In this paper, we have developed an analytical method for determining the thermal
field created in a semi-infinite body by a moving heat source distributed over the heating
spot by a symmetric Gaussian distribution function. The solution is based on the Green’s
function method, according to which the influence function of a surface-concentrated
heat source (Green’s function) is found first. In [7–9], the influence function method has
been used to solve non-stationary contact problems for shells and solid bodies. In [10],
the authors used Green’s functions in the contact problem for a spherical shell and an
absolutely solid surface. The shell was created using additive technologies. Comparison
with experimental results has been carried out, and a good coincidence of the obtained
results has been shown. In [11,12], Green’s functions have been used to solve problems of
moving surface loading on an elastic half-space and also in analytical studies of peculiarities
of solutions of non-stationary contact problems [13–16].

In this paper, the problem of constructing the influence function of a surface heat
source is solved using integral Fourier and Laplace transforms. In this case, the obtained
solution allows us to take into account the heat transfer at the surface, which is a new result.
Then, using the superposition principle, the solution of the original problem is determined.

By now, there is a fairly large number of publications on the study of the temperature
field induced by a moving heat source. Works such as [17,18] solve stationary problems
about a moving heat source. The Green’s function for a volumetric heat source was
used. Similar problems, but in a non-stationary formulation, are considered in [19–23]. In
these works, the solution is constructed using analytical methods. However, a significant
drawback is the use of Green’s function for unbounded space in the solution. Thus, these
works automatically exclude the influence of the presence of a boundary surface, since
initially, when building the Green’s function, the problem is solved without boundary
conditions on the free surface of a half-space. Thus, for example, the influence of heat
exchange with the environment on the boundary surface is not taken into account.

The volumetric influence function is also used to describe the material welding
process [23–25]. Although the welding process is different from the 3D printing process,
the physical processes are very similar.

In work [24], the one-dimensional problem of the motion of a heat source is solved.
The author investigates the temperature distribution in the vicinity of a rectangular-shaped
source moving with constant velocity along the rod axis. The unsteady temperature field
from the moving heat source was constructed using a Fourier series. Approaches to solving
two- and three-dimensional problems using the apparatus of Fourier series and finite
integral transformations have been developed in [25,26]. Though the mathematical appa-
ratus used is rigorous, there remain questions concerning the control of the convergence
of the constructed decompositions. In addition, these works introduce some simplifying
provisions concerning the consideration of the influence of heat exchange on the surface.
In addition, the simplest variant of the heat-source motion, a uniform rectilinear motion, is
also considered.

In contrast to these works, this publication finds and uses a new function of the
influence of the surface heat source, taking into account the process of heat exchange with
the environment through the boundary surface. Previously, this function has not been
used in solving problems of this type. In addition, in all known works, as a rule, only
one simplest case of motion of a heat source —uniform rectilinear motion with a given
velocity along one of the axes of the coordinate system–is considered. In this paper, a
convenient formula has been obtained that allows for calculating the three-dimensional
unsteady temperature field induced by a moving source moving along any trajectory
arbitrarily dependent on time. It is an exact analytical solution without the use of any
simplifying assumptions.
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Thus, the method proposed in this work allows us to obtain the most accurate three-
dimensional temperature distribution when exposed to a laser emitter moving along
complex curves with varying speed, as happens in three-dimensional printing processes by
selective laser melting technology. Calculation examples are given. The obtained results are
compared with the results of numerical solutions by means of the finite element method. It
is shown that the analytical solution agrees well with the numerical one.

2. Problem Statement

Assume that at the initial time moment t = 0 at the origin of the rectangular Cartesian
coordinate system Oxyz related to the surface of the half-space z ≥ 0 heat source q begins
to act and moves across the surface of the half-space z = 0 according to an arbitrary law
in time (Figure 1). The flux density q is distributed over the heating spot of radius R; in
general, it can depend both on the radius r ∈ [0, R] and time:

q = q(x, y, t) = q(r, t)H(R− r), r =
√

x2 + y2, (1)

where H(·) is the Heaviside distribution.

Figure 1. Heating of a half-space by a moving heat source.

The coordinates of the heating spot center at the moments of time t > 0 are determined
by the parametric dependences:

x = ϕ(t), y = ψ(t). (2)

The medium filling the half-space is characterized by specific heat capacity c, mass den-
sity ρ, and thermal conductivity coefficient κ. Consider that the medium is homogeneous
and isotropic, and that the density and thermophysical constants are constants. Assume
also the absence of volumetric heat sources in the half-space. In this case, the temperature
distribution T(x, y, z, t) in the medium follows the thermal conductivity equation [27,28]:

∂T(x, y, z, t)
∂t

= a∆T(x, y, z, t), (3)

where a = κ
ρc denotes the diffusivity.

At the initial time moment (t = 0), the temperature at all points of the half-space vanishes:

T(x, y, z, 0) = 0. (4)



Symmetry 2022, 14, 650 4 of 11

The boundary conditions of the third kind are formulated on the surface of the half-
space [5,28]. Taking into account (1) and (2), one could formulate them as follows:

−κ
∂T(x, y, z, t)

∂z
+ βT(x, y, z, t)

∣∣∣∣
z=0

= q[x− ϕ(t), y− ψ(t), t]. (5)

The temperature is considered to be bounded at infinity:

T(r, t) = O(1), r → ∞. (6)

3. Solution Method

The problem of a concentrated heat source applied to the surface of a half-space can
be represented in the following form:

∂G(x,y,z,t)
∂t = a∆G(x, y, z, t),

G(x, y, z, 0) = 0, −κ
∂G(x,y,z,t)

∂z + βG(x, y, z, t)
∣∣∣
z=0

= δ(x)δ(y)δ(t),

G(x, y, z, t) = O(1), r =
√

x2 + y2 + z2 → ∞.

(7)

where δ(·) is the Dirac delta distribution.
The solution of problem (7) G(r, t) can be called the surface heat-source transient

function. Hereinafter, we refer to it simply as the surface transient function.
Based on the superposition principle [11–16], the solution of the initial problem (3)–(6)

can be considered as a convolution of the transient function with the right-hand side of the
boundary condition (5) for the variables x, y and for time:

T(x, y, z, t) =
t∫

0

∞∫
−∞

∞∫
−∞

G(x− ξ, y− ζ, z, t− τ)q[ξ − ϕ(τ), ζ − ψ(τ), τ]dξdζdτ. (8)

Thus, the key point is to build the transient function of the surface source. To solve
this problem, let us apply to (7) the Laplace integral transform in time with a parameter
s and the Fourier integral transforms in spatial variables x and y with the corresponding
parameters p1 and p2:

a
∂2GFL

∂z2 −
(

s + ap2
)

GFL = 0, p2 = p2
1 + p2

2, (9)

−κ
∂GFL

∂z
+ βGFL

∣∣∣∣
z=0

= 1, GFL = O(1), z→ ∞. (10)

A bounded solution at z→ ∞ of Equation (9) is:

GFL = Ae−z
√

s/a +p2
. (11)

The constant A is found from the first boundary condition (10):

A =
1

β + κ
√

s/a + p2
. (12)

The result is:

GFL =
e−z
√

s/a +p2

β + κ
√

s/a + p2
. (13)
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To find the original, first inverse the Laplace transform:

GF =
1
κ


√

a
πt

e−
z2
4at −

βaerfc
(

z
2
√

at
+
√

atβ
κ

)
e

tβ2a
κ2 +

βz
κ

κ

e−p2ta. (14)

and then successively Fourier transforms.
Thus, we obtain the original surface transient function in the form:

G(x, y, z, t) =

 e−
z2
4at

4κa1/2 (πt)3/2 −β
e

tβ2a
κ2 +

βz
κ

4κ2πt
erfc

(
z

2
√

at
+

√
atβ
κ

)e−
x2+y2

4at . (15)

The solution of the moving heat-source problem is expressed by the triple integral (8)
and presents certain difficulties associated with calculating the double integral on spatial
variables, therefore we propose the following solution approach.

Let us move to a moving coordinate system connected with the center of the heating
spot in Formula (8). Thus, we have:

T(x, y, z, t) =
t∫

0

dτ

∞∫
−∞

∞∫
−∞

G(x− ξ − ϕ(τ), y− ζ − ψ(τ), z, t− τ)q(ξ, ζ, τ)dξdζ. (16)

Consider that the distribution of the heat flux q over the surface of the half-space is
independent of time and obeys the Gaussian distribution law:

q = q(ξ, ζ) =
Qe−

ξ2+ζ2

2σ2

2πσ2 , (17)

where Q—laser source power, σ—standard deviation.

Based on the property of the Gaussian function
∞∫
−∞

∞∫
−∞

q(ξ, ζ)dξdζ = Q.

By choosing one or another value of the standard deviation σ, one can adjust the
radius of the heating spot carrier.

Figure 2 shows the graphs of the function q(ξ/R, 0)/q0 , q0 = q(0, 0) at different
values of σ. The solid curve corresponds to σ = R/3 , hatch–σ = R/2 , dashed–σ = R.

Figure 2. Heat flux distributions at different values σ.

The figure shows that the value of σ should be taken as equal to R/3. This agrees
with the well-known rule of three sigma, according to which almost all values of a quantity
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with probability 0.9973 lie no further than three sigmas to either side of the mathematical
expectation in a normal distribution, which in this case is equal to zero.

Figure 3 shows the three-dimensional distribution q(ξ/R, ζ/R)/q0 when σ = R/3.

Figure 3. Spatial distribution of laser radiation flux at σ = R/3.

Note that the impact function G(x, y, z, t) is the product of two factors, the first of
which depends only on z and t, and the second depends on x, y and t:

G(x, y, z, t) = G1(z, t)G2(x, y, t),

G1(z, t) = e−
z2
4at

4κa1/2 (πt)3/2 −βe
tβ2a
κ2 +

βz
κ

4κ2πt erfc
(

z
2
√

at
+
√

atβ
κ

)
,

G2(x, y, t) = e−
x2+y2

4at .

(18)

Taking into account (18), let us represent Formula (16) in the form:

T(x, y, z, t) =
t∫

0
G1(z, t− τ)J(x, y, t, τ)dτ,

J(x, y, t, τ) =
∞∫
−∞

∞∫
−∞

G2(x− ϕ(τ)− ξ, y− ψ(τ)− ζ, t− τ)q(ξ, ζ)dξdζ.

(19)

Consider the integral J(x, y, t, τ):

J(x, y, t, τ) = Q
2πσ2

∞∫
−∞

∞∫
−∞

e−
(x−ϕ(τ)−ξ)2+(y−ψ(τ)−ζ)2

4a(t−τ) e−
ξ2+ζ2

2σ2 dξdζ =

= Q
2πσ2

∞∫
−∞

e−
(x−ϕ(τ)−ξ)2

4a(t−τ)
− ξ2

2σ2 dξ
∞∫
−∞

e−
(y−ψ(τ)−ζ)2

4a(t−τ)
− ζ2

2σ2 dζ.

(20)
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After some transformations:

J(x, y, t, τ) = Q
2πσ2 e

− (x−ϕ(τ))2+(y−ψ(τ))2

2σ2+4a(t−τ)

∞∫
−∞

e
−
(

1
2σ2 +

1
4a(t−τ)

)(
ξ− σ2(x−ϕ(τ))

σ2+2a(t−τ)

)2

dξ
∞∫
−∞

e
−
(

1
2σ2 +

1
4a(t−τ)

)(
ζ− σ2(y−ψ(τ))

σ2+2a(t−τ)

)2

dζ.

(21)

Given the equality of
∞∫
−∞

e−a(ξ−b)2
dξ =

√
π√
a , a > 0, we obtain:

J(x, y, t, τ) =
2Qa(t− τ)

σ2 + 2a(t− τ)
e
− (x−ϕ(τ))2+(y−ψ(τ))2

2σ2+4a(t−τ) . (22)

Taking into account the heat transfer on the surface, the formula for the temperature
field induced by a moving laser source takes the form of a one-dimensional integral
over time:

T(x, y, z, t) =
Qa
2κ

t∫
0

f (x, y, z, t, τ)dτ, (23)

f (x, y, z, t, τ) =

= e
− (x−ϕ(τ))2+(y−ψ(τ))2

2σ2+4a(t−τ)

σ2+2a(t−τ)

 e
− z2

4a(t−τ)

π3/2
√

a(t−τ)
−βe

β2a
κ2 (t−τ)+

βz
κ

κπ erfc
(

z
2
√

a(t−τ)
+

β
√

a(t−τ)
κ

).
(24)

4. Results

Examine the case where the spot of the laser source of radius R = 32.5 microns and
power Q = 300 W moves along the surface of the half-space along a rectilinear segment
of length L along the axis X with a constant velocity v = 1600 mm/s. For this case, the
surface plot of the temperature distribution at the last moment of time is shown in Figure 4.
Temperature distribution over the surface along the trajectory of the spot on the surface for
the last moment of time is shown in Figure 5. It can be seen that the maximum temperature
corresponds to the exposure spot of the heating source. The maximum temperature is
reached at the centre of the heating spot, as the temperature decreases quite sharply away
from the centre. Figure 5 shows the surface temperature distribution along the path of the
surface heat source.

The graph of temperature distribution along the depth at the point of laser exposure
at the last moment of time is shown in Figure 6.

The graph in Figure 6 shows that the maximum temperature is noticeably lower at a
distance from the heat flux, but that there is no complete cooling.

Now, assume that the spot from the laser light source moves along a given complex
trajectory shown in Figure 7.
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Figure 4. Temperature distribution over the surface at the last moment of time.

Figure 5. Temperature distribution over the surface along the trajectory of the spot on the surface at
the last moment of time.

Figure 6. Temperature distribution along the depth at the last moment of time. The solid line
corresponds to x = L; the hatched line to x = 0.99 L; the dashed line to x = 0.77 L, where L is the length
of the trajectory. Blue line corresponds to numerical simulation.
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Figure 7. Trajectory of the spot on the surface.

Figures 8 and 9 show the results of calculations of the temperature distribution along
the trajectory of the spot on the surface at the last moment and in depth at various points at
the last moment of time.

The graph in Figure 8 shows that there are sharp temperature increases. This is due to
the fact that the laser source during the trajectory can cross or be in the vicinity of points
that have already been exposed to it.

Figure 8. Temperature distribution along the trajectory of the spot on the surface at the last moment
of time.
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Figure 9. Temperature distribution along the depth at the last moment of time. The solid line
corresponds to L; the hatched line to 0.99 L; the dashed line to 0.77 L. Blue line corresponds to
numerical simulation.

5. Conclusions

An analytical model for determining the temperature field arising in the process of
selective laser melting has been developed. The spatial transient problem of the impact of a
moving source of heat flux on the surface of a half-space is solved using the superposition
principle and the method of transient functions. The solution is constructed as a quadrature.
The kernel of the corresponding integral operator is the surface heat-source transient
function constructed using the Fourier and Laplace integral transforms. This mathematical
model makes it possible to determine the temperature distribution not only in the vicinity
of the heating spot on the surface of the half-space, but also along the depth, which is
important when modeling three-dimensional printing processes.

The developed solution method can be applied to solving problems of uncoupled
thermoelasticity to determine the residual temperature stresses under the influence of
mobile surface heat sources.

Calculation results are obtained for rectilinear and complex trajectory cases. The
results are shown in graphs.
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