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Abstract: The Atangana–Baleanu fractional integral and multiplier transformations are two functions
successfully used separately in many recently published studies. They were previously combined
and the resulting function was applied for obtaining interesting new results concerning the theories
of differential subordination and fuzzy differential subordination. In the present investigation, a new
approach is taken by using the operator previously introduced by applying the Atangana–Baleanu
fractional integral to a multiplier transformation for introducing a new subclass of analytic functions.
Using the methods familiar to geometric function theory, certain geometrical properties of the newly
introduced class are obtained such as coefficient estimates, distortion theorems, closure theorems,
neighborhoods and the radii of starlikeness, convexity, and close-to-convexity of functions belonging
to the class. This class may have symmetric or assymetric properties. The results could prove
interesting for future studies due to the new applications of the operator and because the univalence
properties of the new subclass of functions could inspire further investigations having it as the
main focus.

Keywords: analytic functions; univalent functions; radii of starlikeness and convexity; neighborhood
property; multiplier transformation; Atangana–Baleanu fractional integral

MSC: 30C45; 30A20; 34A40

1. Introduction

Fractional calculus is used in many research fields due to its numerous and diverse
applications. Previous papers [1,2] discuss the history of fractional calculus and provide
references to its many applications in science and engineering. Applications of fractional
calculus are given in [3], where a novel fractional chaotic system including quadratic and
cubic nonlinearities is introduced and investigated by taking into account the Caputo
derivative for the fractional model and the fractional Routh–Hurwitz criteria for studying
the stability of the equilibrium points. Fractional calculus theory is used to investigate the
motion of a beam on an internally bent nanowire in [4] and a new and general fractional
formulation is presented in order to investigate the complex behaviours of a capacitor
microphone dynamical system in [5].

Owa [6] and Owa and Srivastava [7] applied fractional integral calculus for a function
that gives new possibilities in studying the function’s properties. Atangana and Baleanu [8]
generalized the fractional integral, which was studied by many researchers [9–13]. The frac-
tional integral was investigated in its relation to Mittag–Leffler functions by many authors
(see for example [14–16]), connected to Bessel functions and to different operators [17].

The definition given by Atangana–Baleanu can be extended to complex values of the
order of differentiation ν by using analytic continuation.

Introducing and studying new classes of univalent functions generates very interest-
ing results and we can find only a few, very recent studies regarding this, such as new
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subclasses for bi-univalent functions [18,19] and classes of functions introduced using
operators [20]. We have previously used fractional integrals for introducing new subclasses
of functions [21], and, motivated by the interesting results obtained, we have decided to
apply the operator introduced by applying the Atangana–Baleanu fractional integral to a
multiplier transformation for defining a new subclass of functions.

In the next section, a new subclass of analytic functions is introduced in Definition 4
after we present the notations and definitions used during our investigation. Properties
regarding coefficient inequalities for the functions contained in the newly introduced class
are obtained in Section 3 of the paper. Distortion bounds for functions from the class and
for their derivatives are given in Section 4, and properties regarding the closure of the class
are proven in Section 5, considering partial sums of functions from the class, with extreme
points of the class also being provided. In Section 6, inclusion relations are obtained for
certain values of the parameters involved and neighborhood properties are discussed,
while the radii of starlikeness, convexity, and close-to-convexity of the class are obtained in
Section 7 of the paper.

2. Preliminaries

H(U) represents the class of analytic functions in U = {z ∈ C : |z| < 1}, where the
open unit disc of the complex plane,H(a, n) represents the subclass ofH(U) of functions
having the form f (z) = a + anzn + an+1zn+1 + . . . and An = { f ∈ H(U) : f (z) =
z + an+1zn+1 + . . . , z ∈ U}, where A = A1.

The special class of starlike functions of the order α is defined as

S∗(α) =
{

f ∈ A : Re
z f ′(z)

f (z)
> α, 0 ≤ α < 1

}
and the class of convex functions of the order α is defined as

K(α) =
{

f ∈ A : Re
(

z f ′′(z)
f ′(z)

+ 1
)
> α, 0 ≤ α < 1

}
.

For introducing the used operator in this paper, the following previously known
results are necessary.

Definition 1 ([22]). For f ∈ A, m ∈ N∪{0}, α, l ≥ 0, the multiplier transformation I(m, α, l) f (z)
is defined by the following infinite series

I(m, α, l) f (z) := z +
∞

∑
k=2

(
1 + α(k− 1) + l

1 + l

)m
akzk.

We are reminded that the Riemann–Liouville fractional integral ([23]) is defined by
the following relation

RL
c Iν

z f (z) =
1

Γ(ν)

∫ z

c
(z− w)ν−1 f (w)dw, Re (ν) > 0,

which is used in the Atangana–Baleanu fractional integral.

Definition 2 ([24]). Let c be a fixed complex number and f be a complex function which is analytic
on an open star-domain D centered at c. The extended Atangana–Baleanu integral, denoted by
AB
c Iν

z f (z), is defined for any ν ∈ C and any z ∈ D\{c} by:

AB
c Iν

z f (z) =
1− ν

B(ν)
f (z) +

ν

B(ν)
RL
c Iν

z f (z). (1)

Proposition 1 ([24]). The extended Atangana–Baleanu integral proposed in Definition 2 is:
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An analytic function of both z ∈ D\{c} and ν ∈ C, provided f and B are analytic and B
is nonzero; identical to the original formula in real case when 0 < ν < 1 and c < z in R.

Therefore, it provides the analytic continuation of the original Atangana–Baleanu integral to
complex values of z and ν.

Applying the Atangana–Baleanu fractional integral for c = 0 to multiplier transforma-
tion, a new operator was defined:

Definition 3 ([25]). Let f ∈ A, m ∈ N∪{0}, α, l ≥ 0, ν ∈ C, and any z ∈ D\{0}. The
Atangana–Baleanu fractional integral associated with the multiplier transformation I(m, α, l) f is
defined by

AB
0 Iν

z (I(m, α, l) f (z)) =
1− ν

B(ν)
I(m, α, l) f (z) +

ν

B(ν)
RL
0 Iν

z I(m, α, l) f (z).

After a simple calculation, the following form is obtained for this operator:

AB
0 Iν

z (I(m, α, l) f (z)) =
1− ν

B(ν)
z +

ν

B(ν)Γ(ν + 2)
zν+1

+
1− ν

B(ν)

∞

∑
k=2

(
1 + α(k− 1) + l

l + 1

)m
akzk +

ν

B(ν)

∞

∑
k=2

(
1 + α(k− 1) + l

l + 1

)m Γ(k + 1)
Γ(ν + k + 1)

akzk+ν,

for the function f (z) = z + ∑∞
k=2 akzk ∈ A.

In this paper, we define a new class using the operator AB
0 Iν

z (I(m, α, l) f ).

Definition 4. A function f ∈ A is said to be in the class AB
0 I(m, α, l, ν, λ, µ, γ, β) if it satisfies

the following criterion:∣∣∣∣∣∣ λ(1− µ)
AB
0 Iν

z I(m,α,l) f (z)
z + µ(AB

0 Iν
z (I(m, α, l) f (z))′

λ(1− µ)
AB
0 Iν

z I(m,α,l) f (z)
z + µ(AB

0 Iν
z (I(m, α, l) f (z))′ − γ

∣∣∣∣∣∣ < β, (2)

where m ∈ N∪{0}, α, l, µ ≥ 0, ν ∈ C, λ ∈ N, γ ∈ C\{0}, 0 < β ≤ 1, z ∈ U\{0}.

We will study the properties of functions belonging to the defined class regarding
coefficient inequality, the distortion, growth, closure, neighborhood, radii of univalent
starlikeness, convexity, and close-to-convexity of the order δ, 0 ≤ δ < 1.

The symmetry properties of the functions used to define an equation or inequal-
ity could be investigated to obtain solutions with particular properties. Research about
the properties of symmetry for some functions associated with the concept of quantum
computing could also be made in a future paper.

3. Properties Regarding Coefficient Inequality

Theorem 1. The function f ∈ A belongs to the class AB
0 I(m, α, l, ν, λ, µ, γ, β) if, and only if,

∞

∑
k=2

(
1 + α(k− 1) + l

l + 1

)m[λ + (k− λ)µ

ν

+
(λ + (k + ν− λ)µ)Γ(k + 1)

(1− ν)Γ(ν + k + 1)

]
ak

≤ (β− 1)(λ + (1− λ)µ)

(β + 1)ν
− βγB(ν)

(β + 1)(1− ν)ν
− λ + (1 + ν− λ)µ

(1− ν)Γ(ν + 2)
, (3)

where m ∈ N∪{0}, α, l, µ ≥ 0, ν ∈ C, λ ∈ N, γ ∈ C− {0}, 0 < β ≤ 1, z ∈ U\{0}.
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Proof. Let f ∈ A. Assume that inequality (3) holds true. Taking into account that the
obtained formulas are long and come out of the page, we have to make some notations.
First, denote

L = λ(1− µ)
AB
0 Iν

z I(m, α, l) f (z)
z

+ µ(AB
0 Iν

z (I(m, α, l) f (z))′

=
(1− ν)(λ + µ− λµ)

B(ν)
+

ν(λ + µ− λµ + µν)

B(ν)Γ(ν + 2)
zν

+
1− ν

B(ν)

∞

∑
k=2

(
1 + α(k− 1) + l

l + 1

)m
(λ− λµ + kµ)akzk−1

+
ν

B(ν)

∞

∑
k=2

(
1 + α(k− 1) + l

l + 1

)m Γ(k + 1)
Γ(ν + k + 1)

(λ− λµ + kµ + µν)akzk+ν−1.

After making an easy calculation, we find that∣∣∣∣∣∣ λ(1− µ)
AB
0 Iν

z I(m,α,l) f (z)
z + µ(AB

0 Iν
z (I(m, α, l) f (z))′

λ(1− µ)
AB
0 Iν

z I(m,α,l) f (z)
z + µ(AB

0 Iν
z (I(m, α, l) f (z))′ − γ

∣∣∣∣∣∣ =
∣∣∣ L

L−γ

∣∣∣.
We make the notation

L̃ =
ν(λ + µ− λµ + µν)

B(ν)Γ(ν + 2)
|z|ν

+
1− ν

B(ν)

∞

∑
k=2

(
1 + α(k− 1) + l

l + 1

)m
(λ− λµ + kµ)ak|z|k−1

+
ν

B(ν)

∞

∑
k=2

(
1 + α(k− 1) + l

l + 1

)m Γ(k + 1)
Γ(ν + k + 1)

(λ− λµ + kµ + µν)ak|z|k+ν−1,

and applying properties of a modulus function, we get the inequality

∣∣∣ L
L−γ

∣∣∣ ≤ (1−ν)(λ+µ−λµ)
B(ν) + L̃

(1−ν)(λ+µ−λµ)
B(ν) − γ− L̃

≤ β.

Considering values of z on a real axis and for z→ 1−, we find

∞

∑
k=2

(
1 + α(k− 1) + l

l + 1

)m[λ + (k− λ)µ

ν

+
(λ + (k + ν− λ)µ)Γ(k + 1)

(1− ν)Γ(ν + k + 1)

]
ak

≤ (β− 1)(λ + (1− λ)µ)

(β + 1)ν
− βγB(ν)

(β + 1)(1− ν)ν
− λ + (1 + ν− λ)µ

(1− ν)Γ(ν + 2)
.

Conversely, assume that f ∈ AB
0 I(m, α, l, ν, λ, µ, γ, β), then we get the following in-

equality, using the previous notation

Re

 λ(1− µ)
AB
0 Iν

z I(m,α,l) f (z)
z + µ(AB

0 Iν
z (I(m, α, l) f (z))′

λ(1− µ)
AB
0 Iν

z I(m,α,l) f (z)
z + µ(AB

0 Iν
z (I(m, α, l) f (z))′ − γ

 > −β,

written shortly as
Re
{

L
L−γ + β

}
> 0,
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equivalently with

Re
{
(β + 1)L− βγ

L− γ

}
> 0. (4)

Taking into account that Re(eiθ) = r and Re(−eiθ) ≥ −|eiθ | = −1, using the notation

Λ =
(1− ν)(λ + µ− λµ)

B(ν)
− ν(λ + µ− λµ + µν)

B(ν)Γ(ν + 2)
rν

−1− ν

B(ν)

∞

∑
k=2

(
1 + α(k− 1) + l

l + 1

)m
(λ− λµ + kµ)akrk−1

− ν

B(ν)

∞

∑
k=2

(
1 + α(k− 1) + l

l + 1

)m Γ(k + 1)
Γ(ν + k + 1)

(λ− λµ + kµ + µν)akrk+ν−1,

the inequality (4) becomes
(β + 1)Λ− βγ

Λ
> 0.

Considering r → 1− and applying the mean value theorem, we obtain the inequality
(3), and the proof is complete.

Corollary 1. The function f ∈AB
0 I(m, α, l, ν, λ, µ, γ, β) has the property

ak ≤
(β−1)(λ+(1−λ)µ)

(β+1)ν − βγB(ν)
(β+1)(1−ν)ν

− λ+(1+ν−λ)µ
(1−ν)Γ(ν+2)(

1+α(k−1)+l
l+1

)m[ λ+(k−λ)µ
ν + (λ+(k+ν−λ)µ)Γ(k+1)

(1−ν)Γ(ν+k+1)

] ,

k ≥ 2.

4. Properties Regarding Distortion

Theorem 2. The function f ∈ AB
0 I(m, α, l, ν, λ, µ, γ, β), with |z| = r < 1, has the property

r−
(β−1)(λ+(1−λ)µ)

(β+1)ν − βγB(ν)
(β+1)(1−ν)ν

− λ+(1+ν−λ)µ
(1−ν)Γ(ν+2)(

1+α+l
l+1

)m[ λ+(2−λ)µ
ν + 2(λ+(2+ν−λ)µ)

(1−ν)Γ(ν+3)

] r2 ≤ | f (z)|

≤ r +
(β−1)(λ+(1−λ)µ)

(β+1)ν − βγB(ν)
(β+1)(1−ν)ν

− λ+(1+ν−λ)µ
(1−ν)Γ(ν+2)(

1+α+l
l+1

)m[ λ+(2−λ)µ
ν + 2(λ+(2+ν−λ)µ)

(1−ν)Γ(ν+3)

] r2.

The equality holds for the function

f (z) = z +
(β−1)(λ+(1−λ)µ)

(β+1)ν − βγB(ν)
(β+1)(1−ν)ν

− λ+(1+ν−λ)µ
(1−ν)Γ(ν+2)(

1+α+l
l+1

)m[ λ+(2−λ)µ
ν + 2(λ+(2+ν−λ)µ)

(1−ν)Γ(ν+3)

] z2, z ∈ U.

Proof. Considering f ∈ AB
0 I(m, α, l, ν, λ, µ, γ, β), taking account relation (3) and

∞

∑
k=2

(
1 + α(k− 1) + l

l + 1

)m[λ + (k− λ)µ

ν
+

(λ + (k + ν− λ)µ)Γ(k + 1)
(1− ν)Γ(ν + k + 1)

]
is increasing and positive for k ≥ 2, then we obtain(

1 + α + l
l + 1

)m[λ + (2− λ)µ

ν
+

2(λ + (2 + ν− λ)µ)

(1− ν)Γ(ν + 3)

] ∞

∑
k=2

ak
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≤
∞

∑
k=2

(
1 + α(k− 1) + l

l + 1

)m[λ + (k− λ)µ

ν
+

(λ + (k + ν− λ)µ)Γ(k + 1)
(1− ν)Γ(ν + k + 1)

]
ak

≤ (β− 1)(λ + (1− λ)µ)

(β + 1)ν
− βγB(ν)

(β + 1)(1− ν)ν
− λ + (1 + ν− λ)µ

(1− ν)Γ(ν + 2)
,

equivalently with

∞

∑
k=2

ak ≤
(β−1)(λ+(1−λ)µ)

(β+1)ν − βγB(ν)
(β+1)(1−ν)ν

− λ+(1+ν−λ)µ
(1−ν)Γ(ν+2)(

1+α+l
l+1

)m[ λ+(2−λ)µ
ν + 2(λ+(2+ν−λ)µ)

(1−ν)Γ(ν+3)

] . (5)

Applying the properties of the modulus function for

f (z) = z +
∞

∑
k=2

akzk,

we get

r− r2
∞

∑
k=2

ak ≤ r−
∞

∑
k=2

akrk ≤ |z| −
∞

∑
k=2

ak|z|k ≤ | f (z)|

≤ |z|+
∞

∑
k=2

ak|z|k ≤ r +
∞

∑
k=2

akrk ≤ r + r2
∞

∑
k=2

ak,

and considering relation (5), we obtain

r−
(β−1)(λ+(1−λ)µ)

(β+1)ν − βγB(ν)
(β+1)(1−ν)ν

− λ+(1+ν−λ)µ
(1−ν)Γ(ν+2)(

1+α+l
l+1

)m[ λ+(2−λ)µ
ν + 2(λ+(2+ν−λ)µ)

(1−ν)Γ(ν+3)

] r2 ≤ | f (z)|

≤ r +
(β−1)(λ+(1−λ)µ)

(β+1)ν − βγB(ν)
(β+1)(1−ν)ν

− λ+(1+ν−λ)µ
(1−ν)Γ(ν+2)(

1+α+l
l+1

)m[ λ+(2−λ)µ
ν + 2(λ+(2+ν−λ)µ)

(1−ν)Γ(ν+3)

] r2,

completing the proof.

Theorem 3. The function f ∈ AB
0 I(m, α, l, ν, λ, µ, γ, β), with |z| = r < 1, has the property

1−
2
[
(β−1)(λ+(1−λ)µ)

(β+1)ν − βγB(ν)
(β+1)(1−ν)ν

− λ+(1+ν−λ)µ
(1−ν)Γ(ν+2)

]
(

1+α+l
l+1

)m[ λ+(2−λ)µ
ν + 2(λ+(2+ν−λ)µ)

(1−ν)Γ(ν+3)

] r ≤ | f ′(z)|

≤ 1 +
2
[
(β−1)(λ+(1−λ)µ)

(β+1)ν − βγB(ν)
(β+1)(1−ν)ν

− λ+(1+ν−λ)µ
(1−ν)Γ(ν+2)

]
(

1+α+l
l+1

)m[ λ+(2−λ)µ
ν + 2(λ+(2+ν−λ)µ)

(1−ν)Γ(ν+3)

] r.

The equality holds for the function

f (z) = z +
(β−1)(λ+(1−λ)µ)

(β+1)ν − βγB(ν)
(β+1)(1−ν)ν

− λ+(1+ν−λ)µ
(1−ν)Γ(ν+2)(

1+α+l
l+1

)m[ λ+(2−λ)µ
ν + 2(λ+(2+ν−λ)µ)

(1−ν)Γ(ν+3)

] z2, z ∈ U.

Proof. Applying the properties of the modulus function for

f ′(z) = 1 +
∞

∑
k=2

kakzk−1,
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we obtain

1−
∞

∑
k=2

kak|z| ≤ 1−
∞

∑
k=2

kak|z|k−1 ≤ | f ′(z)| ≤ 1 +
∞

∑
k=2

kak|z|k−1 ≤ 1 +
∞

∑
k=2

kak|z|.

Using relation (5), we get

1−
2
[
(β−1)(λ+(1−λ)µ)

(β+1)ν − βγB(ν)
(β+1)(1−ν)ν

− λ+(1+ν−λ)µ
(1−ν)Γ(ν+2)

]
(

1+α+l
l+1

)m[ λ+(2−λ)µ
ν + 2(λ+(2+ν−λ)µ)

(1−ν)Γ(ν+3)

] r ≤ | f ′(z)|

≤ 1 +
2
[
(β−1)(λ+(1−λ)µ)

(β+1)ν − βγB(ν)
(β+1)(1−ν)ν

− λ+(1+ν−λ)µ
(1−ν)Γ(ν+2)

]
(

1+α+l
l+1

)m[ λ+(2−λ)µ
ν + 2(λ+(2+ν−λ)µ)

(1−ν)Γ(ν+3)

] r,

and the proof is complete.

5. Properties Regarding Closure

Theorem 4. The function h, defined by

h(z) =
q

∑
p=1

µp fp(z), µp ≥ 0, z ∈ U,

where the functions fp ∈ AB
0 I(m, α, l, ν, λ, µ, γ, β), p = 1, 2, . . . , q, have the following form

fp(z) = z +
∞

∑
k=2

ak,pzk, ak,p ≥ 0, z ∈ U, (6)

belongs to the class AB
0 I(m, α, l, ν, λ, µ, γ, β), where

q

∑
p=1

µp = 1.

Proof. The function h can be written as

h(z) =
q

∑
p=1

µpz +
q

∑
p=1

∞

∑
k=2

µpak,pzk = z +
∞

∑
k=2

q

∑
p=1

µpak,pzk.

Taking into account that the functions fp, p = 1, 2, . . . , q, are contained in the class
AB
0 I(m, α, l, ν, λ, µ, γ, β), applying Theorem 1, we get

∞

∑
k=2

(
1 + α(k− 1) + l

l + 1

)m[λ + (k− λ)µ

ν

+
(λ + (k + ν− λ)µ)Γ(k + 1)

(1− ν)Γ(ν + k + 1)

]
ak,p

≤ (β− 1)(λ + (1− λ)µ)

(β + 1)ν
− βγB(ν)

(β + 1)(1− ν)ν
− λ + (1 + ν− λ)µ

(1− ν)Γ(ν + 2)
. (7)

In this condition, we have to prove that

∞

∑
k=2

(
1 + α(k− 1) + l

l + 1

)m[λ + (k− λ)µ

ν
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+
(λ + (k + ν− λ)µ)Γ(k + 1)

(1− ν)Γ(ν + k + 1)

]( q

∑
p=1

µpak,p

)

≤
q

∑
p=1

µp

∞

∑
k=2

(
1 + α(k− 1) + l

l + 1

)m[λ + (k− λ)µ

ν

+
(λ + (k + ν− λ)µ)Γ(k + 1)

(1− ν)Γ(ν + k + 1)

]
ak,p

≤
q

∑
p=1

µp

(
(β− 1)(λ + (1− λ)µ)

(β + 1)ν
− βγB(ν)

(β + 1)(1− ν)ν
− λ + (1 + ν− λ)µ

(1− ν)Γ(ν + 2)

)

=
(β− 1)(λ + (1− λ)µ)

(β + 1)ν
− βγB(ν)

(β + 1)(1− ν)ν
− λ + (1 + ν− λ)µ

(1− ν)Γ(ν + 2)
.

Hence, the proof is complete.

Corollary 2. The function h defined by

h(z) = (1− ξ) f1(z) + ξ f2(z), 0 ≤ ξ ≤ 1, z ∈ U,

where the functions fp, p = 1, 2, written as in relation (6) are contained in the class
AB
0 I(m, α, l, ν, λ, µ, γ, β), is contained in the class AB

0 I(m, α, l, ν, λ, µ, γ, β), too.

Theorem 5. Considering the functions

f1(z) = z,

and

fk(z) = z +
(β−1)(λ+(1−λ)µ)

(β+1)ν − βγB(ν)
(β+1)(1−ν)ν

− λ+(1+ν−λ)µ
(1−ν)Γ(ν+2)(

1+α(k−1)+l
l+1

)m[ λ+(k−λ)µ
ν + (λ+(k+ν−λ)µ)Γ(k+1)

(1−ν)Γ(ν+k+1)

] zk,

k ≥ 2, z ∈ U.
The function f is contained in the class AB

0 I(m, α, l, ν, λ, µ, γ, β) if, and only if, it has the
following form

f (z) = µ1 f1(z) +
∞

∑
k=2

µk fk(z), z ∈ U,

with µ1 ≥ 0, µk ≥ 0, k ≥ 2, and µ1 + ∑∞
k=2 µk = 1.

Proof. Letting the function

f (z) = µ1 f1(z) +
∞

∑
k=2

µk fk(z)

= z +
∞

∑
k=2

(β−1)(λ+(1−λ)µ)
(β+1)ν − βγB(ν)

(β+1)(1−ν)ν
− λ+(1+ν−λ)µ

(1−ν)Γ(ν+2)(
1+α(k−1)+l

l+1

)m[ λ+(k−λ)µ
ν + (λ+(k+ν−λ)µ)Γ(k+1)

(1−ν)Γ(ν+k+1)

]µkzk,

we get

∞

∑
k=2

(
1+α(k−1)+l

l+1

)m[ λ+(k−λ)µ
ν + (λ+(k+ν−λ)µ)Γ(k+1)

(1−ν)Γ(ν+k+1)

]
(β−1)(λ+(1−λ)µ)

(β+1)ν − βγB(ν)
(β+1)(1−ν)ν

− λ+(1+ν−λ)µ
(1−ν)Γ(ν+2)

·
(β−1)(λ+(1−λ)µ)

(β+1)ν − βγB(ν)
(β+1)(1−ν)ν

− λ+(1+ν−λ)µ
(1−ν)Γ(ν+2)(

1+α(k−1)+l
l+1

)m[ λ+(k−λ)µ
ν + (λ+(k+ν−λ)µ)Γ(k+1)

(1−ν)Γ(ν+k+1)

]µk
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=
∞

∑
k=2

µk = 1− µ1 ≤ 1.

Therefore, f ∈ AB
0 I(m, α, l, ν, λ, µ, γ, β).

Conversely, suppose that f ∈ AB
0 I(m, α, l, ν, λ, µ, γ, β).

Setting

µk =

(
1+α(k−1)+l

l+1

)m[ λ+(k−λ)µ
ν + (λ+(k+ν−λ)µ)Γ(k+1)

(1−ν)Γ(ν+k+1)

]
(β−1)(λ+(1−λ)µ)

(β+1)ν − βγB(ν)
(β+1)(1−ν)ν

− λ+(1+ν−λ)µ
(1−ν)Γ(ν+2)

ak,

and having

µ1 = 1−
∞

∑
k=2

µk,

we get

f (z) = µ1 f1(z) +
∞

∑
k=2

µk fk(z).

Hence, the proof is complete.

Corollary 3. The extreme points of the class AB
0 I(m, α, l, ν, λ, µ, γ, β) are the functions

f1(z) = z,

and

fk(z) = z +
(β−1)(λ+(1−λ)µ)

(β+1)ν − βγB(ν)
(β+1)(1−ν)ν

− λ+(1+ν−λ)µ
(1−ν)Γ(ν+2)(

1+α(k−1)+l
l+1

)m[ λ+(k−λ)µ
ν + (λ+(k+ν−λ)µ)Γ(k+1)

(1−ν)Γ(ν+k+1)

] zk,

k ≥ 2, z ∈ U.

6. Properties Regarding Inclusion and Neighborhood

The δ- neighborhood of a function f ∈ A is defined by

Nδ( f ) = {g ∈ A : g(z) = z +
∞

∑
k=2

bkzk and
∞

∑
k=2

k|ak − bk| ≤ δ}, (8)

and for a particular function e(z) = z, we have

Nδ(e) = {g ∈ A : g(z) = z +
∞

∑
k=2

bkzk and
∞

∑
k=2

k|bk| ≤ δ}. (9)

A function f ∈ A is contained in the class AB
0 Iζ(m, α, l, ν, λ, µ, γ, β) if there exists a

function h ∈ AB
0 I(m, α, l, ν, λ, µ, γ, β), such that∣∣∣∣ f (z)

h(z)
− 1
∣∣∣∣ < 1− ζ, z ∈ U, 0 ≤ ζ < 1. (10)

Theorem 6. For

δ =
2
[
(β−1)(λ+(1−λ)µ)

(β+1)ν − βγB(ν)
(β+1)(1−ν)ν

− λ+(1+ν−λ)µ
(1−ν)Γ(ν+2)

]
(

1+α+l
l+1

)m[ λ+(2−λ)µ
ν + 2(λ+(2+ν−λ)µ)

(1−ν)Γ(ν+3)

] ,

then
AB
0 I(m, α, l, ν, λ, µ, γ, β) ⊂ Nδ(e).
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Proof. Let f ∈ AB
0 I(m, α, l, ν, λ, µ, γ, β). Using Theorem 1 and taking into account that

∞

∑
k=2

(
1 + α(k− 1) + l

l + 1

)m[λ + (k− λ)µ

ν
+

(λ + (k + ν− λ)µ)Γ(k + 1)
(1− ν)Γ(ν + k + 1)

]

≥
∞

∑
k=2

(
1 + α + l

l + 1

)m[λ + (2− λ)µ

ν
+

2(λ + (2 + ν− λ)µ)

(1− ν)Γ(ν + 3)

]
,

for k ≥ 2, we get(
1 + α + l

l + 1

)m[λ + (2− λ)µ

ν
+

2(λ + (2 + ν− λ)µ)

(1− ν)Γ(ν + 3)

] ∞

∑
k=2

ak

≤
∞

∑
k=2

(
1 + α(k− 1) + l

l + 1

)m[λ + (k− λ)µ

ν
+

(λ + (k + ν− λ)µ)Γ(k + 1)
(1− ν)Γ(ν + k + 1)

]
ak

≤ (β− 1)(λ + (1− λ)µ)

(β + 1)ν
− βγB(ν)

(β + 1)(1− ν)ν
− λ + (1 + ν− λ)µ

(1− ν)Γ(ν + 2)
,

which implies

∞

∑
k=2

ak ≤
(β−1)(λ+(1−λ)µ)

(β+1)ν − βγB(ν)
(β+1)(1−ν)ν

− λ+(1+ν−λ)µ
(1−ν)Γ(ν+2)(

1+α+l
l+1

)m[ λ+(2−λ)µ
ν + 2(λ+(2+ν−λ)µ)

(1−ν)Γ(ν+3)

] . (11)

Applying Theorem 1 in conjunction with (11), we get

∞

∑
k=2

kak ≤
2
[
(β−1)(λ+(1−λ)µ)

(β+1)ν − βγB(ν)
(β+1)(1−ν)ν

− λ+(1+ν−λ)µ
(1−ν)Γ(ν+2)

]
(

1+α+l
l+1

)m[ λ+(2−λ)µ
ν + 2(λ+(2+ν−λ)µ)

(1−ν)Γ(ν+3)

] = δ,

by virtue of (8), we obtain f ∈ Nδ(e), which completes the proof.

Theorem 7. If h ∈ AB
0 I(m, α, l, ν, λ, µ, γ, β) and

ζ = 1− δ

2

(
1−

(β−1)(λ+(1−λ)µ)
(β+1)ν − βγB(ν)

(β+1)(1−ν)ν
− λ+(1+ν−λ)µ

(1−ν)Γ(ν+2)

( 1+α+l
l+1 )

m[ λ+(2−λ)µ
ν +

2(λ+(2+ν−λ)µ)
(1−ν)Γ(ν+3)

]
) (12)

then
Nδ(h) ⊂ AB

0 Iζ(m, α, l, ν, λ, µ, γ, β).

Proof. Consider f ∈ Nδ(h), relation (8)

∞

∑
k=2

k|ak − bk| ≤ δ,

implies
∞

∑
k=2
|ak − bk| ≤

δ

2
. (13)

Using relation (11), considering that h ∈ AB
0 I(m, α, l, ν, λ, µ, γ, β), we get

∞

∑
k=2

bk ≤
(β−1)(λ+(1−λ)µ)

(β+1)ν − βγB(ν)
(β+1)(1−ν)ν

− λ+(1+ν−λ)µ
(1−ν)Γ(ν+2)(

1+α+l
l+1

)m[ λ+(2−λ)µ
ν + 2(λ+(2+ν−λ)µ)

(1−ν)Γ(ν+3)

] . (14)
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Using (13) and (14), we have∣∣∣∣ f (z)
h(z)

− 1
∣∣∣∣ ≤ ∑∞

k=2 |ak − bk|
1−∑∞

k=2 bk
≤

δ

2

(
1−

(β−1)(λ+(1−λ)µ)
(β+1)ν − βγB(ν)

(β+1)(1−ν)ν
− λ+(1+ν−λ)µ

(1−ν)Γ(ν+2)

( 1+α+l
l+1 )

m[ λ+(2−λ)µ
ν +

2(λ+(2+ν−λ)µ)
(1−ν)Γ(ν+3)

]
) = 1− ζ.

By relation (10), we obtain f ∈ AB
0 Iζ(m, α, l, ν, λ, µ, γ, β), where ζ is given by (12).

7. Properties Regarding Radii of Starlikeness, Convexity, and Close-to-Convexity

Theorem 8. The function f ∈ AB
0 I(m, α, l, ν, λ, µ, γ, β) is analytic starlike of order δ, 0 ≤ δ < 1,

in |z| < r1, with

r1 = inf
k


(1− δ)

(
1+α(k−1)+l

l+1

)m[ λ+(k−λ)µ
ν + (λ+(k+ν−λ)µ)Γ(k+1)

(1−ν)Γ(ν+k+1)

]
(k− δ)

[
(β−1)(λ+(1−λ)µ)

(β+1)ν − βγB(ν)
(β+1)(1−ν)ν

− λ+(1+ν−λ)µ
(1−ν)Γ(ν+2)

]


1
k−1

.

Proof. It is sufficient to prove that∣∣∣∣ z f ′(z)
f (z)

− 1
∣∣∣∣ ≤ 1− δ, |z| < r1.

Since ∣∣∣∣ z f ′(z)
f (z)

− 1
∣∣∣∣ =

∣∣∣∣∣∑∞
k=2(k− 1)akzk−1

1 + ∑∞
k=2 akzk−1

∣∣∣∣∣ ≤ ∑∞
k=2(k− 1)ak|z|k−1

1−∑∞
k=2 ak|z|k−1 ,

we have to show that
∑∞

k=2(k− 1)ak|z|k−1

1−∑∞
k=2 ak|z|k−1 ≤ 1− δ,

equivalently to
∞

∑
k=2

(k− δ)ak|z|k−1 ≤ 1− δ.

Applying Theorem 1, we get

|z|k−1 ≤
(1− δ)

(
1+α(k−1)+l

l+1

)m[ λ+(k−λ)µ
ν + (λ+(k+ν−λ)µ)Γ(k+1)

(1−ν)Γ(ν+k+1)

]
(k− δ)

[
(β−1)(λ+(1−λ)µ)

(β+1)ν − βγB(ν)
(β+1)(1−ν)ν

− λ+(1+ν−λ)µ
(1−ν)Γ(ν+2)

] ,

or

|z| ≤


(1− δ)

(
1+α(k−1)+l

l+1

)m[ λ+(k−λ)µ
ν + (λ+(k+ν−λ)µ)Γ(k+1)

(1−ν)Γ(ν+k+1)

]
(k− δ)

[
(β−1)(λ+(1−λ)µ)

(β+1)ν − βγB(ν)
(β+1)(1−ν)ν

− λ+(1+ν−λ)µ
(1−ν)Γ(ν+2)

]


1
k−1

.

Hence, the proof is complete.

Theorem 9. The function f ∈ AB
0 I(m, α, l, ν, λ, µ, γ, β) is analytic convex of order δ, 0 ≤ δ ≤ 1,

in |z| < r2, with

r2 = inf
k


(1− δ)

(
1+α(k−1)+l

l+1

)m[ λ+(k−λ)µ
ν + (λ+(k+ν−λ)µ)Γ(k+1)

(1−ν)Γ(ν+k+1)

]
k(k− δ)

[
(β−1)(λ+(1−λ)µ)

(β+1)ν − βγB(ν)
(β+1)(1−ν)ν

− λ+(1+ν−λ)µ
(1−ν)Γ(ν+2)

]


1
k−1

.
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Proof. It is sufficient to prove that∣∣∣∣ z f ′′(z)
f ′(z)

∣∣∣∣ ≤ 1− δ, |z| < r2.

Since ∣∣∣∣ z f ′′(z)
f ′(z)

∣∣∣∣ =
∣∣∣∣∣∑∞

k=2 k(k− 1)akzk−1

1 + ∑∞
k=2 kakzk−1

∣∣∣∣∣ ≤ ∑∞
k=2 k(k− 1)ak|z|k−1

1−∑∞
k=2 kak|z|k−1 ,

we have to show that
∑∞

k=2 k(k− 1)ak|z|k−1

1−∑∞
k=2 kak|z|k−1 ≤ 1− δ,

∞

∑
k=2

k(k− δ)ak|z|k−1 ≤ 1− δ,

and applying Theorem 1, we get

|z|k−1 ≤
(1− δ)

(
1+α(k−1)+l

l+1

)m[ λ+(k−λ)µ
ν + (λ+(k+ν−λ)µ)Γ(k+1)

(1−ν)Γ(ν+k+1)

]
k(k− δ)

[
(β−1)(λ+(1−λ)µ)

(β+1)ν − βγB(ν)
(β+1)(1−ν)ν

− λ+(1+ν−λ)µ
(1−ν)Γ(ν+2)

] ,

or

|z| ≤


(1− δ)

(
1+α(k−1)+l

l+1

)m[ λ+(k−λ)µ
ν + (λ+(k+ν−λ)µ)Γ(k+1)

(1−ν)Γ(ν+k+1)

]
k(k− δ)

[
(β−1)(λ+(1−λ)µ)

(β+1)ν − βγB(ν)
(β+1)(1−ν)ν

− λ+(1+ν−λ)µ
(1−ν)Γ(ν+2)

]


1
k−1

,

and the proof is complete.

Theorem 10. The function f ∈ AB
0 I(m, α, l, ν, λ, µ, γ, β) is analytic close-to-convex of order δ,

0 ≤ δ < 1, in |z| < r3, with

r3 = inf
k


(1− δ)

(
1+α(k−1)+l

l+1

)m[ λ+(k−λ)µ
ν + (λ+(k+ν−λ)µ)Γ(k+1)

(1−ν)Γ(ν+k+1)

]
k
[
(β−1)(λ+(1−λ)µ)

(β+1)ν − βγB(ν)
(β+1)(1−ν)ν

− λ+(1+ν−λ)µ
(1−ν)Γ(ν+2)

]


1
k−1

.

Proof. It is sufficient to show that

| f ′(z)− 1| ≤ 1− δ, |z| < r3.

Then

| f ′(z)− 1| =
∣∣∣∣∣ ∞

∑
k=2

kakzk−1

∣∣∣∣∣ ≤ ∞

∑
k=2

kak|z|k−1.

Thus, | f ′(z)− 1| ≤ 1− δ if ∑∞
k=2

kak
1−δ |z|

k−1 ≤ 1. Using Theorem 1, the inequality holds
true if

|z|k−1 ≤
(1− δ)

(
1+α(k−1)+l

l+1

)m[ λ+(k−λ)µ
ν + (λ+(k+ν−λ)µ)Γ(k+1)

(1−ν)Γ(ν+k+1)

]
k
[
(β−1)(λ+(1−λ)µ)

(β+1)ν − βγB(ν)
(β+1)(1−ν)ν

− λ+(1+ν−λ)µ
(1−ν)Γ(ν+2)

]
or

|z| ≤


(1− δ)

(
1+α(k−1)+l

l+1

)m[ λ+(k−λ)µ
ν + (λ+(k+ν−λ)µ)Γ(k+1)

(1−ν)Γ(ν+k+1)

]
k
[
(β−1)(λ+(1−λ)µ)

(β+1)ν − βγB(ν)
(β+1)(1−ν)ν

− λ+(1+ν−λ)µ
(1−ν)Γ(ν+2)

]


1
k−1

.

Hence, the proof is complete.
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8. Conclusions

A new topic is addressed in this paper concerning the operator defined in [25] by apply-
ing the Atangana–Baleanu fractional integral for multiplier transformation and presented
in Definition 3. This operator was previously used for obtaining differential subordina-
tion and fuzzy differential subordination results, and it is used now for introducing and
studying a new subclass of functions given in Definition 4. The interesting coefficient
estimates obtained in Section 3 of this paper regarding functions from this class could
inspire future investigations for studying the Fekete–Szegö problem related to this class,
as seen in some very recent papers, [26,27] or a certain order Hankel determinant as done
in [28,29]. In Section 4, distortion properties are obtained for the functions from this class
and for the derivatives which, connected to the results regarding starlikeness, convexity,
and close-to-convexity shown in Section 7, could inspire future studies concerning the
geometrical properties of the new subclass of functions. Partial sums of functions from the
class are considered in Section 5, proving closure properties of the class; certain inclusion
relations concerning the class are proved in Section 6.
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28. Breaz, V.D.; Cătaş, A.; Cotîrlă, L. On the Upper Bound of the Third Hankel Determinant for Certain Class of Analytic Functions
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