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Abstract: In this work, we aim to study some qualitative properties of higher order nonlinear
difference equations. Specifically, we investigate local as well as global stability and boundedness of
solutions of this equation. In addition, we will provide solutions to a number of special cases of the
studied equation. Also, we present many numerical examples that support the results obtained. The
importance of the results lies in completing the results in the literature, which aims to develop the
theoretical side of the qualitative theory of difference equations.
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1. Introduction

Consider the difference equation

Ψl+1 = γ0Ψl−1 +
γ1Ψl−1Ψl−4

γ2Ψl−4 + γ3Ψl−2
, l = 0, 1, . . . , (1)

where the coefficients γk, k = 0, 1, 2, 3, are real numbers and the initial values Ψ−s, s =
0, 1, . . . , 4, are arbitrary positive real numbers. Recently, the study of qualitative properties,
such as stability, oscillation, symmetry, and periodicity of solutions of difference equations
has attracted the attention of many researchers. This interest is due to the fact that many
varied nonlinear phenomena that occur in engineering and the natural sciences are modeled
by using forms of difference equations. One such interesting model is the Riccati difference
equation

Ψl+1 =
a0 + a1Ψl
a2 + a3Ψl

,

where as and Ψ0 are real numbers, and s = 0, 1, 2, 3. The richness of Riccati equations’ dynamics
is well known [1], and a special instance of these equations gives the famous Beverton–Holt
model on the dynamics of exploited fish populations [2]. Kuruklis, et al. analyzed the behavior
of Pielou’s discrete logistic model in [3] as another example

Ψl+1 =
aΨl

1 + Ψl−1
,

where a ≤ 1. Pielou developed this equation as a discrete version of the delay logistic
differential equation in [4]. In Reference [5], the case a > 1 in Pielou’s equation was
considered. Stevic [6] studied the periodic character of the general equation

Ψl+1 =
g(Ψl , Ψl−1)

A + Ψl
,

where A, Ψ−1 and Ψ0 are positive real numbers and g : (0, ∞)2 → (0, ∞) is continuous and
satisfies
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g(u, v)− g(v, w) = (u− w)h(u, v, w)− A(u− v)

for some continuous function h : (0, ∞)3 → (0, ∞), such that

1
u

h(u, v, w)→ 0 as u, v, w→ ∞ and sup
1

A + u
h(u, v, w) < ∞.

The asymptotic properties of the nonnegative solutions of the equation

Ψl+1 = a +
Ψl−k

f (Ψl , Ψl−1, . . . , Ψl−k+1)

is investigated in [7], where a is a nonnegative real number and f is a continuous function,
nondecreasing in each variable and increasing in at least one. Elsayed [8] studied the
qualitative behavior of the solution of

Ψl+1 = aΨl +
bΨlΨl−1

cΨl−1 + dΨl−2
.

The behavior of solutions of

Ψl+1 =
aΨl−27

1 + Ψl−3Ψl−7Ψl−11Ψl−15Ψl−19Ψl−23

is examined by Ogul, et al. [9]. For more interesting results about techniques and devel-
opments in the study of the qualitative behavior of solutions of difference equations, see
also [10–18]. Also of interest in the study of difference equations is the field of symmetries,
as it has many applications in different branches of science [19–21].

The results in this paper are divided into two main parts. The first part studies the
local and global stability and boundedness of solutions to Equation (1). The second part
is concerned with finding solutions to Equation (1) in four special cases. It should be
noted that the study of the behavior of solutions of these equations contributes mainly to
the theoretical development of the qualitative theory of solutions to difference equations,
and this contributes to helping in the study of models resulting from various phenomena.
Moreover, the obtainment of solutions to nonlinear difference equations is not prevalent in
the works of most of the aforementioned researchers, who are only interested in studying
the behavior of solutions.

Next, we provide some definitions and theorems that are essential for presenting our
main results.

Let I be some interval of real numbers and let g : Ik+1 → I, be a continuously
differentiable function, where k is a positive integer. Then for every set of initial values
Ψ−k, Ψ−k+1, . . . , Ψ0 ∈ I, the difference equation

Ψn+1 = g(Ψn, Ψn−1, . . . , Ψn−k), n = 0, 1, . . . , (2)

has a unique solution {Ψn}∞
n=−k. For more, see [5]. A point Ψ ∈ I is called an equilibrium

point of Equation (2) if Ψ = g(Ψ, Ψ, . . . , Ψ).

Definition 1. (i) The equilibrium point Ψ of Equation (2) is locally stable if for every ε > 0, there
exists δ > 0 such that for all Ψ−k, Ψ−k+1, . . . , Ψ−1, Ψ0 ∈ I with

∣∣Ψ−k −Ψ
∣∣+ ∣∣Ψ−k+1 −Ψ

∣∣+
· · ·+

∣∣Ψ0 −Ψ
∣∣ < δ, we have ∣∣Ψn −Ψ

∣∣ < ε for all n ≥ −k.

(ii) The equilibrium point Ψ of Equation (2) is locally asymptotically stable if Ψ is the locally stable
solution of Equation (2) and there exists γ > 0, such that for all Ψ−k, Ψ−k+1, . . . , Ψ−1, Ψ0 ∈ I with∣∣Ψ−k −Ψ

∣∣+ ∣∣Ψ−k+1 −Ψ
∣∣+ · · ·+ ∣∣Ψ0 −Ψ

∣∣ < γ,
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we have limn→∞ Ψn = Ψ.
(iii) The equilibrium point Ψ of Equation (2) is a global attractor if for all Ψ−k, Ψ−k+1, . . . , Ψ−1, Ψ0 ∈
I, we have

lim
n→∞

Ψn = Ψ.

(iv) The equilibrium point Ψ of Equation (2) is globally asymptotically stable if Ψ is locally stable,
and Ψ is also a global attractor of Equation (2).

Definition 2. The linearized Equation (2) of the equilibrium Ψ is the linear difference equation

yn+1 =
k

∑
i=0

∂g
∂Ψn−i

∣∣∣∣
(Ψ,Ψ,...,Ψ)

yn−i. (3)

Theorem 1. See [5]. Assume that p, q ∈ R and k ∈ {0, 1, 2, . . . }. Then

|p|+ |q| < 1,

is a sufficient condition for the asymptotic stability of the difference equation

Ψn+1 + pΨn + qΨn−k = 0, n = 0, 1, . . . .

Remark 1. Theorem 1 can be easily extended to a general linear equations of the form

Ψn+k + p1Ψn+k−1 + · · ·+ pkΨn = 0, n = 0, 1, . . . , (4)

where p1, p2, . . . , pk ∈ R and k ∈ {1, 2, . . . }. Then Equation (4) is asymptotically stable provided
that

k

∑
i=1
|pi| < 1.

Theorem 2. See [5]. Let [a, b] be an interval of real numbers and assume that

h : [a, b]3 → [a, b]

is a continuous function. Then the difference equation Ψn+1 = h(Ψn, Ψn−1, Ψn−2) has a unique
equilibrium Ψ ∈ [a, b] and every solution of this equation converges to Ψ if the following conditions
are satisfied:

(a) h(x, y, z) is non-decreasing in x and z in [a, b] for each y ∈ [a, b], and is non-increasing in
y ∈ [a, b] for each x and z in [a, b];

(b) If (m, M) ∈ [a, b]× [a, b] is a solution of the system

M = h(M, m, M) and m = h(m, M, m),

then
m = M.

2. Stability and Boundedness of Solutions

We study, in this section, the behavior of solution Equation (1). Namely, we investigate
the local and global stability, and boundedness of Equation (1).

The equilibrium point of Equation (1) is given by

Ψ = γ0Ψ +
γ1Ψ2

γ2Ψ + γ3Ψ
.

Therefore
Ψ2

(1− γ0)(γ2 + γ3) = γ1Ψ2.
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If (1− γ0)(γ2 + γ3) 6= γ1, then Ψ = 0 is unique equilibrium point. Now, we define
the function G : (0, ∞)→ (0, ∞) as

G(u, v, z) = γ0u +
γ1uz

γ2z + γ3v
.

Hence, we obtain

Gu(u, v, z) = γ0 +
γ1uz

γ2z + γ3v
,

Gv(u, v, z) = − γ3γ1uz

(γ2z + γ3v)2 ,

Gz(u, v, z) =
γ3γ1uz

(γ2z + γ3v)2 ,

where Gu, Gv and Gz are partial derivatives of G.
It follows that

Gu(Ψ, Ψ, Ψ) = γ0 +
γ1

γ2 + γ3
,

Gv(Ψ, Ψ, Ψ) = − γ3γ1

(γ2 + γ3)
2 ,

Gz(Ψ, Ψ, Ψ) =
γ3γ1

(γ2 + γ3)
2 .

Therefore, the linearized form of Equation (1) becomes

Vl+1 =

(
γ0 +

γ1

γ2 + γ3

)
Vl−1 −

γ3γ1

(γ2 + γ3)
2 Vl−2 +

γ3γ1

(γ2 + γ3)
2 Vl−4.

Theorem 3. Assume that

γ1γ2 + 3γ3γ1 < (1− γ0)(γ2 + γ3)
2.

Then the unique equilibrium point Ψ = 0 of (1) is locally asymptotically stable.

Proof. In view of [15] (Theorem 1.1.1), we see that Ψ is locally asymptotically stable if∣∣∣∣γ0 +
γ1

γ2 + γ3

∣∣∣∣+
∣∣∣∣∣ γ3γ1

(γ2 + γ3)
2

∣∣∣∣∣+
∣∣∣∣∣ γ3γ1

(γ2 + γ3)
2

∣∣∣∣∣ < 1.

Hence

1− γ0 >
γ1

γ2 + γ3
+

γ3γ1

(γ2 + γ3)
2 +

γ3γ1

(γ2 + γ3)
2

>
γ1γ2 + 3γ3γ1

(γ2 + γ3)
2 .

Then, it follows that

γ1γ2 + 3γ3γ1 < (1− γ0)(γ2 + γ3)
2.

This means that the proof is complete.

Theorem 4. If γ2(1− γ0) 6= γ1, then the unique equilibrium point of Equation (1) is globally
asymptotically stable.
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Proof. We define the function f : [p, q]3 → [p, q] as f (u, v, z) = γ0u + γ1uz
γ2z+γ3v , where p, q

are positive real numbers. It is easy to see the function f increasing in u, z and decreasing
in v. Next, taking (m, M) as the solution to the system

M = f (M, m, M),

m = f (m, M, m)

we therefore get

M = γ0M +
γ1M2

γ2M + γ3m
,

m = γ0m +
γ1m2

γ2m + γ3M
.

Consequently,

M(1− γ0)(γ2M + γ3m) = γ1M2,

m(1− γ0)(γ2m + γ3M) = γ1m2.

Then,

(1− γ0)γ2M2 + M(1− γ0)γ3m = γ1M2,

(1− γ0)γ2m2 + m(1− γ0)γ3M = γ1m2.

Therefore, we have

(1− γ0)γ2

(
M2 −m2

)
= γ1

(
M2 −m2

)
.

This implies that M = m if (1 − γ0)γ2 6= γ1. Thus, the equilibrium point Ψ of
Equation (1) is a global attractor. This means that the proof is complete.

Theorem 5. All solutions of Equation (1) are bounded when

γ0 +
γ1

γ2
< 1. (5)

Proof. Assume that {Ψl}∞
l=−4 is a solution of Equation (1). From Equation (5), we obtain

Ψl+1 ≤ Ψl−1 for l ≥ 0.

This means that the sequence {Ψl}∞
l=−4 is decreasing and hence it is bounded from

above by m = max{Ψ−4, Ψ−3, Ψ−2, Ψ−1, Ψ0}. This means that the proof is complete.

In the following, we present some numerical simulations to confirm the results of
this section.

Example 1. Assume that γ0 = 0.4, γ1 = 0.4, γ2 = 0.9, and γ3 = 1, with initial condition
Ψ−4 = 10, Ψ−3 = 5, Ψ−2 = 2, Ψ−1 = 9,and Ψ0 = 9. See Figure 1.
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Figure 1. This figure shows the local stability equilibrium point of Equation (1) with Ψ−4 = 0.1, Ψ−3 = 0.5,
Ψ−2 = 0.2, Ψ−1 = 0.4, Ψ0 = 0.1 if γ0, γ1, γ2, γ1 satisfies the condition of Theorem 1.

Example 2. Assume that γ0 = 0.5, γ1 = 0.4, γ2 = 0.9, and γ3 = 1, with initial condition
IC1: Ψ−4 = 9, Ψ−3 = 4, Ψ−2 = 6, Ψ−1 = 8, and Ψ0 = 4.
IC2: Ψ−4 = 13, Ψ−3 = 8, Ψ−2 = 10, Ψ−1 = 12, and Ψ0 = 8.
IC3: Ψ−4 = 17, Ψ−3 = 12, Ψ−2 = 14, Ψ−1 = 16, and Ψ0 = 12.
See Figure 2.

Figure 2. This figure shows global stability of equilibrium points of Equation (1) with IC1-IC3 if
γ0, γ1, γ2, γ3 satisfies the condition of Theorem 2.

Example 3. Assume that γ0 = 0.5, γ1 = 1, γ2 = 0.5, and γ3 = 1, with initial condition
Ψ−4 = 10, Ψ−3 = 5, Ψ−2 = 7, Ψ−1 = 9, and Ψ0 = 5. See Figure 3.



Symmetry 2022, 14, 641 7 of 18

Figure 3. Unbounded solution of Equation (1).

3. Solutions of Some Particular Cases

The section introduces solve four particular cases of difference Equation (1).

3.1. Case 1: Ψl+1 = Ψl−1 +
Ψl−1Ψl−4

Ψl−4+Ψl−2

Next, we present the solution of difference equation

Ψl+1 = Ψl−1 +
Ψl−1Ψl−4

Ψl−4 + Ψl−2
, l = 0, 1, . . . . (6)

Theorem 6. If {Ψl}∞
l=1 is the solution to difference Equation (6), then this solution is obtained by

the given formulas

Ψ6l−5 =

D
l−1

∏
k=1

((Xk+2Yk)B+(Xk+Yk)D)(XkC+YkE)
l

∏
k=1

(Xk A+YkC)

l−1

∏
k=1

((Xk+Yk)B+Zk D)
(

YkC+ Xk
2 E

) l

∏
k=1

(
Yk A+

Xk
2 C

) ,

Ψ6l−4 =

E
l−1

∏
k=1

((Xk+2Yk)A+(Xk+Yk)C)((Xk+2Yk)kC+(Xk+Yk)E)
l

∏
k=1

(Xk B+Yk D)

l

∏
k=1

(
Yk B+ Xk

2 D
) l−1

∏
k=1

((Xk+Yk)A+ZkC)((Xk+Yk)C+ZkE)

,

Ψ6l−3 =

D
l−1

∏
k=1

((Xk+2Yk)B+(Xk+Yk)D)

l

∏
k=1

(Xk A+YkC)(XkC+YkE)

l−1

∏
k=1

((Xk+Yk)B+Zk D)

l

∏
k=1

(
YkC+ Xk

2 E
)(

Yk A+
Xk
2 C

) ,
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Ψ6l−2 =

E
l−1

∏
k=1

((Xk+2Yk)C+(Xk+Yk)E)
l

∏
k=1

((Xk+2Yk)A+(Xk+Yk)C)(Xk B+Yk D)

l

∏
k=1

((Xk+Yk)A+ZkC)
(

Yk B+ Xk
2 D

) l−1

∏
k=1

((Xk+Yk)C+ZkE)

,

Ψ6l−1 =

D
l

∏
k=1

((Xk+2Yk)B+(Xk+Yk)D)(Xk A+YkC)(XkC+YkE)

l

∏
k=1

((Xk+Yk)B+Zk D)
(

YkC+ Xk
2 E

)(
Yk A+

Xk
2 C

) ,

Ψ6l =

E
l

∏
k=1

((Xk+2Yk)kC+(Xk+Yk)E)((Xk+2Yk)A+(Xk+Yk)C)(Xk B+Yk D)

l

∏
k=1

(
Yk B+ Xk

2 D
)
((Xk+Yk)A+ZkC)((Xk+Yk)C+ZkE)

,

where Ψ−4 = A, Ψ−3 = B, Ψ−2 = C, Ψ−1 = D, Ψ0 = E, and the sequences {Xl}∞
l=1, {Yl}∞

l=1,
and {Yl}∞

l=1 are obtained by the following relations, for k ≥ 2,

Xk = 2Zk−1 + 2Xk−1 + 2Yk−1,

Yk = 2Xk−1 + 3Yk−1,

Zk =
k

∑
j=1

Xj,

Xk
2
−Yk + Zk−1 = 0,

Yk + Xk−1 + Yk−1 − Xk = 0,

Yk +
Xk
2
− Zk = 0,

and so

{Xl}∞
l=1 = {2, 10, 58, 338, . . . },

{Yl}∞
l=1 = {1, 7, 41, 239, . . . },

{Zl}∞
l=1 = {2, 12, 70, 408, . . . }.

Proof. It is easy to see that the result holds if l = 1. Next, assume that l > 0 and the
assumption holds for l − 1, which is

Ψ6l−11 =

D
l−2

∏
k=1

((Xk+2Yk)B+(Xk+Yk)D)(XkC+YkE)
l−1

∏
k=1

(Xk A+YkC)

l−2

∏
k=1

((Xk+Yk)B+Zk D)
(

YkC+ Xk
2 E

) l−1

∏
k=1

(
Yk A+

Xk
2 C

) ,

Ψ6l−10 =

E
l−2

∏
k=1

((Xk+2Yk)A+(Xk+Yk)C)((Xk+2Yk)kC+(Xk+Yk)E)
l−1

∏
k=1

(Xk B+Yk D)

l−1

∏
k=1

(
Yk B+ Xk

2 D
) l−2

∏
k=1

((Xk+Yk)A+ZkC)((Xk+Yk)C+ZkE)

,



Symmetry 2022, 14, 641 9 of 18

Ψ6l−9 =

D
l−2

∏
k=1

((Xk+2Yk)B+(Xk+Yk)D)

l−1

∏
k=1

(Xk A+YkC)(XkC+YkE)

l−2

∏
k=1

((Xk+Yk)B+Zk D)

l−1

∏
k=1

(
YkC+ Xk

2 E
)(

Yk A+
Xk
2 C

) ,

Ψ6l−8 =

E
l−2

∏
k=1

((Xk+2Yk)C+(Xk+Yk)E)
l−1

∏
k=1

((Xk+2Yk)A+(Xk+Yk)C)(Xk B+Yk D)

l−1

∏
k=1

((Xk+Yk)A+ZkC)
(

Yk B+ Xk
2 D

) l−2

∏
k=1

((Xk+Yk)C+ZkE)

,

Ψ6l−7 =

D
l−1

∏
k=1

((Xk+2Yk)B+(Xk+Yk)D)(Xk A+YkC)(XkC+YkE)

l−1

∏
k=1

((Xk+Yk)B+Zk D)
(

YkC+ Xk
2 E

)(
Yk A+

Xk
2 C

) ,

Ψ6l−6 =

E
l−1

∏
k=1

((Xk+2Yk)kC+(Xk+Yk)E)((Xk+2Yk)A+(Xk+Yk)C)(Xk B+Yk D)

l−1

∏
k=1

(
Yk B+ Xk

2 D
)
((Xk+Yk)A+ZkC)((Xk+Yk)C+ZkE)

.

From the formula of difference Equation (6),

Ψ6l−7 +
Ψ6l−7Ψ6l−10

Ψ6l−10 + Ψ6l−8
.

After substitution and some simple computation, we obtain

Ψ6l−5 =

D
l−1

∏
k=1

((Xk+2Yk)B+(Xk+Yk)D)(Xk A+YkC)(XkC+YkE)
(

Yl A+
Xl
2 C+(Xl−1+Yl−1)A+Zl−1C

)
l−1

∏
k=1

((Xk+Yk)B+Zk D)
(

YkC+ Xk
2 E

) l

∏
k=1

(
Yk A+

Xk
2 C

)

=

D
l−1

∏
k=1

((Xk+2Yk)B+(Xk+Yk)D)(XkC+YkE)
l

∏
k=1

(Xk A+YkC)

l−1

∏
k=1

((Xk+Yk)B+Zk D)
(

YkC+ Xk
2 E

) l

∏
k=1

(
Yk A+

Xk
2 C

) ,

Also, we have

Ψ6l−3 = Ψ6l−5 +
Ψ6l−5Ψ6l−8

Ψ6l−8 + Ψ6l−6
.

After substitution and some simple computation, we obtain

Ψ6l−3 =

D
l−1

∏
k=1

((Xk+2Yk)B+(Xk+Yk)D)(XkC+YkE)
l

∏
k=1

(Xk A+YkC)
(

YlC+
Xl
2 E+(Xl−1+Yl−1)C+Zl−1E

)
l−1

∏
k=1

((Xk+Yk)B+Zk D)

l

∏
k=1

(
YkC+ Xk

2 E
)(

Yk A+
Xk
2 C

)

=

D
l−1

∏
k=1

((Xk+2Yk)B+(Xk+Yk)D)

l

∏
k=1

(Xk A+YkC)(XkC+YkE)

l−1

∏
k=1

((Xk+Yk)B+Zk D)

l

∏
k=1

(
YkC+ Xk

2 E
)(

Yk A+
Xk
2 C

) .

Moreover, we can prove the other relations. The proof is complete.
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Example 4. We consider numerical simulations to verify the results presented in this subsection
for the difference Equation (6) with the initial conditions Ψ−4 = 9, Ψ−3 = 4, Ψ−2 = 4, Ψ−1 = 8,
and Ψ0 = 4. See Figure 4.

Figure 4. The numerical solution of Equation (6) with Ψ−4 = 9, Ψ−3 = 4, Ψ−2 = 4, Ψ−1 = 8, and
Ψ0 = 4.

Example 5. In order to confirm the results of this subsection, we consider numerical simulations for the
difference Equation (6) with the initial conditions Ψ−4 = −90, Ψ−3 = 4, Ψ−2 = −60, Ψ−1 = 8, and
Ψ0 = −04. See Figure 5.

Figure 5. The numerical solution of Equation (6) with Ψ−4 = −90, Ψ−3 = 4, Ψ−2 = −60, Ψ−1 = 8,
and Ψ0 = −40.
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3.2. Case 2: Ψl+1 = Ψl−1 +
Ψl−1Ψl−4

Ψl−4−Ψl−2

The subsection introduces solve the following difference equation

Ψl+1 = Ψl−1 +
Ψl−1Ψl−4

Ψl−4 −Ψl−1
. (7)

Theorem 7. The solution {Ψl}∞
l=1 to difference Equation (7) can be expressed by the given formulas

Ψ6l−5 = Dl(2A−C)l(2C−E)l−1

Bl−1(A−C)l(C−E)l−1 , Ψ6l−4 = El(2B−D)l

Al−1(B−D)l ,

Ψ6l−3 = Dl(2A−C)l(2C−E)l

Bl−1(A−C)l(C−E)l , Ψ6l−2 = CEl(2B−D)l

Al(B−D)l ,

Ψ6l−1 = Dl+1(2A−C)l(2C−E)l

Bl(A−C)l(C−E)l , Ψ6l =
El+1(2B−D)l

Al(B−D)l ,

where Ψ−4 = A, Ψ−3 = B, Ψ−2 = C, Ψ−1 = D and Ψ0 = E.

Proof. It is easy to see that the result holds if l = 1. Next, suppose that l > 0 and
assumption holds for l − 1, which is

Ψ6l−11 = Dl−1(2A−C)l−1(2C−E)l−2

Bl−2(A−C)l−1(C−E)l−2 , Ψ6l−10 = El−1(2B−D)l−1

Al−2(B−D)l−1 ,

Ψ6l−9 = Dl−1(2A−C)l−1(2C−E)l−1

Bl−2(A−C)l−1(C−E)l−1 , Ψ6l−8 = CEl−1(2B−D)l−1

Al−1(B−D)l−1 ,

Ψ6l−7 = Dl(2A−C)l−1(2C−E)l−1

Bl−1(A−C)l−1(C−E)l−1 , Ψ6l−6 = El(2B−D)l−1

Al−1(B−D)l−1 .

From the formula of difference Equation (7), we find

Ψ6l−5 = Ψ6l−7 +
Ψ6l−7Ψ6l−10

Ψ6l−10 −Ψ6l−8

= Ψ6l−7 +
Dl(2A− C)l−1(2C− E)l−1 A

Bl−1(A− C)l−1(C− E)l−1(A− C)

= Ψ6l−7 +
Dl(2A− C)l−1(2C− E)l−1 A

Bl−1(A− C)l(C− E)l−1

=
Dl(2A− C)l−1(2C− E)l−1(2A− C)

Bl−1(A− C)l(C− E)l−1 .

Similarly, we have

Ψ6l−3 = Ψ6l−5 +
Ψ6l−5Ψ6l−8

Ψ6l−8 −Ψ6l−6

= Ψ6l−5 +
Dl(2A− C)l(2C− E)l−1C

Bl−1(A− C)l(C− E)l−1(C− E)

=
Dl(2A− C)l(2C− E)l−1(C− E + C)

Bl−1(A− C)l(C− E)l

=
Dl(2A− C)l(2C− E)l

Bl−1(A− C)l(C− E)l .

Also, we can prove the other relations. The proof is complete.

Example 6. In order to confirm the results of this subsection, we consider numerical simulations for
difference Equation (7) with the initial conditions Ψ−4 = 10, Ψ−3 = −20, Ψ−2 = 100, Ψ−1 = −30,
and Ψ0 = −11. See Figure 6.
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Figure 6. The numerical solution of Equation (7) with Ψ−4 = 10, Ψ−3 = −20, Ψ−2 = 100, Ψ−1 = −30,
and Ψ0 = −11.

Example 7. We consider numerical simulations to verify the results presented in this subsection for
difference Equation (7) with the initial conditions Ψ−4 = −10, Ψ−3 = 20, Ψ−2 = −100, Ψ−1 = 30,
and Ψ0 = 11. See Figure 7.

Figure 7. The numerical solution of Equation (7) with Ψ−4 = −10, Ψ−3 = 20, Ψ−2 = −100, Ψ−1 = −30,
and Ψ0 = −20 .

3.3. Case 3: Ψl+1 = Ψl−1 −
Ψl−1Ψl−4

Ψl−4−Ψl−1

The subsection solves the following difference equation

Ψl+1 = Ψl−1 −
Ψl−1Ψl−4

Ψl−4 −Ψl−1
. (8)
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Theorem 8. If {Ψl}∞
l=1 is the solution to difference Equation (8), then this solution is obtained by

the given formulas

Ψ6l−5 = −Cl Dl El−1

Bl−1(A−C)l(C−E)l−1 , Ψ6l−4 = (−1)l Dl El

Al−1(B−D)l ,

Ψ6l−3 = Cl Dl El

Bl−1(A−C)l(C−E)l , Ψ6l−2 = (−1)lCDl El

Al(B−D)l ,

Ψ6l−1 = Cl Dl+1El

Bl(A−C)l(C−E)l , Ψ6l =
(−1)l Dl El+1

Al(B−D)l ,

where Ψ−4 = A, Ψ−3 = B, Ψ−2 = C, Ψ−1 = D and Ψ0 = E.

Proof. It is easy to see that the result holds if l = 1. Next, assume that l > 0 and assumption
holds for l − 1, which is

Ψ6l−11 = −Cl−1Dl−1El−2

Bl−2(A−C)l−1(C−E)l−2 , Ψ6l−10 = (−1)l−1Dl−1El−1

Al−2(B−D)l−1 ,

Ψ6l−9 = Cl−1Dl−1El−1

Bl−2(A−C)l−1(C−E)l−1 , Ψ6l−8 = (−1)l−1CDl−1El−1

Al−1(B−D)l−1 ,

Ψ6l−7 = Cl−1Dl El−1

Bl−1(A−C)l−1(C−E)l−1 , Ψ6l−6 = (−1)l−1Dl−1El

Al−1(B−D)l−1 ,

From the formula difference Equation (8), we arrive at

Ψ6l−5 = Ψ6l−7 −
Ψ6l−7Ψ6l−10

Ψ6l−10 −Ψ6l−8

= Ψ6l−7 −
Cl DlEl−1 A

Bl−1(A− C)l−1(C− E)l−1(A− C)

=
Cl DlEl−1(A− C− A)

Bl−1(A− C)l(C− E)l−1

=
−Cl DlEl−1

Bl−1(A− C)l(C− E)l−1 .

Similarly, we get

Ψ6l−3 = Ψ6l−5 −
Ψ6l−5Ψ6l−8

Ψ6l−8 −Ψ6l−6

= Ψ6l−5 +
Cl+1DlEl−1

Bl−1(A− C)l(C− E)l−1(C− E)

=
Cl DlEl−1(C− E + C)

Bl−1(A− C)l(C− E)l

=
Cl DlEl

Bl−1(A− C)l(C− E)l .

Also, we can prove the other relations. The proof is complete.

Example 8. We consider numerical simulations to verify the results presented in this subsection for
difference Equation (8) with the initial conditions Ψ−4 = 10, Ψ−3 = −20, Ψ−2 = 100, Ψ−1 = −30,
and Ψ0 = 11. See Figure 8.
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Figure 8. The numerical solution of Equation (8) with Ψ−4 = 10, Ψ−3 = −20, Ψ−2 = 100, Ψ−1 = −30,
and Ψ0 = 11.

Example 9. In order to confirm the results of this subsection, we consider numerical simulations for
difference Equation (8) with the initial conditions Ψ−4 = −5, Ψ−3 = 10, Ψ−2 = −20, Ψ−1 = −15,
and Ψ0 = −6. See Figure 9.

Figure 9. The numerical solution of Equation (8) with Ψ−4 = −5, Ψ−3 = 10, Ψ−2 = −20, Ψ−1 = −15,
and Ψ0 = −6.
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3.4. Case 4: Ψl+1 = Ψl−1 −
Ψl−1Ψl−4

Ψl−4+Ψl−1

The subsection introduces solve the following difference equation

Ψl+1 = Ψl−1 −
Ψl−1Ψl−4

Ψl−4 + Ψl−1
. (9)

Theorem 9. The solution {Ψl}∞
l=1 to difference Equation (9) can be expressed by the given formulas

Ψ6l−5 = Cl Dl El−1

l−1

∏
k=1

(B+2kD)(C+(2k−1)E)
l

∏
k=1

(A+(2k−1)C)

, Ψ6l−4 = Cl−1Dl El

l−1

∏
k=1

(A+2kC)(C+2kE)
l

∏
k=1

(B+(2k−1)D)

,

Ψ6l−3 = Cl Dl El

l−1

∏
k=1

(B+2kD)

l

∏
k=1

(C+(2k−1)E)(A+(2k−1)C)

, Ψ6l−2 = Cl Dl El

l−1

∏
k=1

(C+2kE)
l

∏
k=1

(A+2kC)(B+(2k−1)D)

,

Ψ6l−1 = Cl Dl+1El

l

∏
k=1

(B+2kD)(C+(2k−1)E)(A+(2k−1)C)

, Ψ6l =
Cl Dl El+1

l

∏
k=1

(A+2kC)(C+2kE)(B+(2k−1)D)

,

where Ψ−4 = A, Ψ−3 = B, Ψ−2 = C, Ψ−1 = D and Ψ0 = E.

Proof. It is easy to see that the result holds if l = 1. Next, assume that l > 0 and assumption
holds for l − 1, which is

Ψ6l−11 = Cl−1Dl−1El−2

l−2

∏
k=1

(B+2kD)(C+(2k−1)E)
l−1

∏
k=1

(A+(2k−1)C)

, Ψ6l−10 = Cl−2Dl−1El−1

l−2

∏
k=1

(A+2kC)(C+2kE)
l−1

∏
k=1

(B+(2k−1)D)

,

Ψ6l−9 = Cl−1Dl−1El−1

l−2

∏
k=1

(B+2kD)

l−1

∏
k=1

(C+(2k−1)E)(A+(2k−1)C)

, Ψ6l−8 = Cl−1Dl−1El−1

l−2

∏
k=1

(C+2kE)
l−1

∏
k=1

(A+2kC)(B+(2k−1)D)

,

Ψ6l−7 = Cl−1Dl El−1

l−1

∏
k=1

(B+2kD)(C+(2k−1)E)(A+(2k−1)C)

, Ψ6l−6 = Cl−1Dl−1El

l−1

∏
k=1

(A+2kC)(C+2kE)(B+(2k−1)D)

,

From the formula of difference Equation (9), we obtain

Ψ6l−5 = Ψ6l−7 −
Ψ6l−7Ψ6l−10

Ψ6l−10+Ψ6l−8

= Ψ6l−7 −
Cl−1Dl El−1(A+2(l−1)C)

l−1

∏
k=1

(B+2kD)(C+(2k−1)E)
l−1

∏
k=1

(A+(2k−1)C)(A+2(l−1)C+C)

= Cl−1Dl El−1(A+(2l−1)C−A−2(l−1)C)
l−1

∏
k=1

(B+2kD)(C+(2k−1)E)
l

∏
k=1

(A+(2k−1)C)

= Cl Dl El−1

l−1

∏
k=1

(B+2kD)(C+(2k−1)E)
l

∏
k=1

(A+(2k−1)C)

,
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Similarly, we get

Ψ6l−3 = Ψ6l−5 −
Ψ6l−5Ψ6l−8

Ψ6l−8+Ψ6l−6

= Ψ6l−5 −
Cl Dl El−1(C+2(l−1)E)

l−1

∏
k=1

(B+2kD)(C+(2k−1)E)
l

∏
k=1

(A+(2k−1)C)(C+2(l−1)E+E)

= Cl Dl El−1(C+(2l−1)E−C−2(l−1)E)
l−1

∏
k=1

(B+2kD)

l

∏
k=1

(C+(2k−1)E)(A+(2k−1)C)

= Cl Dl El

l−1

∏
k=1

(B+2kD)

l

∏
k=1

(C+(2k−1)E)(A+(2k−1)C)

.

Also, we can prove the other relations. The proof is complete.

Example 10. In order to confirm the results of this subsection, we consider numerical simulations
for difference Equation (9) with the initial conditions Ψ−4 = 5, Ψ−3 = −4, Ψ−2 = 5, Ψ−1 = −5,
and Ψ0 = 6. see Figure 10.

Figure 10. The numerical solution of Equation (9) with Ψ−4 = 5, Ψ−3 = −4, Ψ−2 = 5, Ψ−1 = −5,
and Ψ0 = 6.

Example 11. We consider numerical simulations to verify the results presented in this subsection for
difference Equation (9) with the initial conditions Ψ−4 = −10, Ψ−3 = 8, Ψ−2 = −10, Ψ−1 = 10,
and Ψ0 = −11. See Figure 11.
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Figure 11. The numerical solution of Equation (9) with Ψ−4 = −10, Ψ−3 = 8, Ψ−2 = −10, Ψ−1 = 10,
and Ψ0 = −11.

4. Conclusions

In this paper, we discussed some properties of solutions of a class of fifth-order rational
difference equations. Specifically, we studied the conditions of local and global stability of
the equilibrium points, as well as the conditions of boundedness.

It has been verified that condition γ1γ2 + 3γ3γ1 < (1− γ0)(γ2 + γ3)
2 guarantees

the local stability of the equilibrium point of Equation (1). The unique equilibrium point
of Equation (1) is a global attractor if γ2(1− γ0) 6= γ1. Moreover, every solution of
Equation (1) is bounded if γ0 +

γ1
γ2

< 1. Furthermore, we obtained solutions of four special
cases of the studied equation which covers most of the possibilities of coefficient signs.
Finally, we confirm our results by numerical simulations.
It would be interesting to study the oscillatory and periodic behavior of solutions to this
Equation (1).
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