
����������
�������

Citation: Tao, H.; Fu, L.; Chen, Y.;

Han, L.; Wang, X. Improved

Allocation and Reallocation

Approaches for Software

Trustworthiness Based on

Mathematical Programming.

Symmetry 2022, 14, 628.

https://doi.org/10.3390/

sym14030628

Academic Editors: Clemente

Cesarano and Ioannis Dassios

Received: 24 January 2022

Accepted: 18 March 2022

Published: 21 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Improved Allocation and Reallocation Approaches for Software
Trustworthiness Based on Mathematical Programming
Hongwei Tao 1 , Lianyou Fu 1, Yixiang Chen 2,* , Lin Han 3 and Xiao Wang 1

1 College of Computer and Communication Engineering, Zhengzhou University of Light Industry,
Zhengzhou 450002, China; hongweitao@zzuli.edu.cn (H.T.); fly13233761631@163.com (L.F.);
pandaxiaoxi@gmail.com (X.W.)

2 MoE Engineering Center for Software/Hardware Co-Design Technology and Application,
East China Normal University, Shanghai 200062, China

3 Henan Province Supercomputing Centre, Zhengzhou University, Zhengzhou 450002, China;
hanlin@zzu.edu.cn

* Correspondence: yxchen@sei.ecnu.edu.cn; Tel.: +86-021-6223-525

Abstract: Software trustworthiness allocation and reallocation are the symmetry of software trustworthiness
measure. They can provide the optimization scheme for trustworthiness development and improvement,
according to the requirements. The existing allocation and reallocation models do not consider the absolute
majority of software trustworthiness classification; therefore, they cannot be very accurate in the allocation
and reallocation of software trustworthiness. In this paper, improved allocation and reallocation models
are constructed, which can resolve the above problem, and their polynomial solving algorithms are
designed. At the same time, a demonstration application of the improved models and algorithms is
given, and the trustworthiness enhancement specification of spacecraft software, based on factory reports,
is established, including trustworthiness development specification and trustworthiness improvement
specification. This enhancement specification provides a scientific and reasonable theory and method for
the delivery acceptance of spacecraft software, from qualitative to quantitative grading acceptance, and
furnishes a standard guarantee for the trustworthy development and improvement of such software.

Keywords: software trustworthiness; allocation approach; reallocation approach; trustworthiness
enhancement specification; trustworthiness development specification; trustworthiness
improvement specification

1. Introduction

Software is an indispensable technical product in human life. With the increasing scale
of software, it is inevitable that software products contain many known and unknown
defects when they leave the factory. After the defects are triggered, they often cause serious
losses and negative social impacts [1]. Reference [2] is titled “Fatal Bugs: Disasters and
Inspirations of Software Defects”. It shows readers the Patriot missile, Mars probe, Ariane
5 rocket, Toyota’s pedal door, Therac-25 medical accident, 2003 blackouts in the northeast-
ern United States, South Korea’s digital budget accounting system and other safety-related
areas, which have led to major safety incidents and caused significant material losses due
to software defects. All these have made the issue of software trustworthiness increasingly
prominent, so that people are now paying more and more attention to software trustwor-
thiness. Governments, large scientific research institutions and software companies have
successively put forward targeted research plans. For example, in China, the State Council
has listed the high-performance trustworthy computer, supporting the development of
the trustworthy software industry, in the key areas of the Outline of National Medium
and Long Term Science and Technology Development Program (2006–2020); the 863 plan
has launched the key project of “High-Credible Software Production Tools and Integrated
Environment”; the National Natural Science Foundation of China has organized the major

Symmetry 2022, 14, 628. https://doi.org/10.3390/sym14030628 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14030628
https://doi.org/10.3390/sym14030628
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-4722-5915
https://orcid.org/0000-0003-1235-5530
https://doi.org/10.3390/sym14030628
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14030628?type=check_update&version=2

Symmetry 2022, 14, 628 2 of 25

research program of “Basic Research on Trustworthy Software”. In America, the National
Software Development Strategy has put the development of trustworthy software at the
forefront. In Europe, a research program, called “Open Trusted Computing” was launched
to develop open-source trustworthy computing software; both the Fifth Framework Plan
and the Sixth Framework Plan of the European Union regard highly trustworthy software
as the focus of software technology development. Constructing trustworthy software has
become an important trend and inevitable choice for the development and application of
modern software technology. Software trustworthiness describes the ability of software
behavior and results, to accommodate user expectations. The measurement and evaluation
of software trustworthiness is able to offer the basis for the improvement of the software
trustworthiness development, which is listed as the first core scientific issue in the major
research plan of “Basic Research on Trustworthy Software” [1]. Software trustworthiness
enhancement is also one of the core research issues of software trustworthiness [3], which
realizes the transformation of software trustworthiness development and improvement,
from qualitative to quantitative.

As mentioned above, the software trustworthiness measure is used to calculate soft-
ware trustworthiness through the given attribute values and their weight values [4]. A
number of measures oriented to trustworthy attributes are built. Deng et al. established a
structural equation model for software trustworthiness evaluation, to obtain the weights of
trustworthy attributes and the relationship among them [5]. Gene et al. used cognitive task
analysis methods and qualitative analysis techniques to propose a descriptive model of
computer code trustworthiness, which includes three trustworthy factors: performance,
transparency, and reputation [6]. To help users select the most trustworthy available alter-
natives, Tania et al. investigated whether a quality model is able to provide values useful
for expressing trustworthy attributes [7]. A theoretical model for evaluating code trustwor-
thiness and code reuse is proposed by Gene et al. [8]. This model characterizes a five-step
process of how programmers perceive computer code, consisting of acquisition, initial
viewing, in-depth viewing, merging, and reevaluating. Zhihan et al. built an evaluation
framework for a cyber physical system, on the basis of the knowledge of machine learning,
designing an online rank algorithm, and proposing a trustworthy intelligent prediction
model [9]. Cristiano et al. used coding practices to describe the trustworthiness of web ap-
plications from a security perspective. Their method is instantiated for the concrete case of
input validation practices and contains a quality model to calculate trustworthiness values
that can be used to compare different applications, or different code elements in the same
application [10]. Medeiros et al. conducted a comprehensive study of detecting/predicting
vulnerable code, using software metrics and machine learning algorithms [11]. Their main
result is that using machine learning algorithms over software metrics helps to identify
vulnerable code units, with relatively high confidence in security-critical software systems,
but they do not help low critical or non-critical systems, mainly due to the unbalanced
nature of their data set. Nádia et al. proposed an approach for assessing and benchmarking
software trustworthiness. Their approach is based on software metrics that can be used
as indicators of software security [12]. In order to more strictly measure software trust-
worthiness and carry out the theoretical validation of models, Tao et al. used axiomatic
approaches to evaluate software trustworthiness, give the expected properties of software
trustworthiness measures and present a series of models satisfying these properties [13–15].
Khan et al. analyzed the dependability and trustworthiness for the component-based
software development. Their results show that the component with the most reusability
will prove to be more dependable and trustworthy [16]. Gul et al. proposed the loss
speed index, to integrate the most important variables of software security, and a software
trustworthy security growth model was built, based on this index. This model can be
applied to predict the vulnerability severity/type [17]. Muhammad et al. used the values
assigned to test case results to classify software trustworthiness [18]. The rating strategy
contains test strategies imposed, completeness of system test execution, test iterations,
test case priority and test case results, for each iteration. Wang et al. evaluated software

Symmetry 2022, 14, 628 3 of 25

trustworthiness from three aspects: process entity, behavior and products. They propose a
software process trustworthiness model, including 37 trustworthiness principles, 182 pro-
cess entities and behaviors, and 108 artifacts as evidence [19]. Ogunniye et al. developed
a prototype e-recruitment system, to explore users’ perceptions of algorithmic systems.
They suggest that the data and reasoning behind the algorithmic results must be inter-
preted in order to improve users’ perception of the fairness, reliability and transparency
of e-recruitment systems, and to build trust in the systems [20]. Both references [21,22]
use the fuzzy comprehensive evaluation method to assess software trustworthiness, but
there is a difference in the methods for selecting trustworthy attribute sets and calculating
trustworthy attribute weights. Reference [21] built the trustworthy attribute set through
inviting experts and computing the trustworthy attribute weights, according to information
entropy. Reference [22] determined the trustworthy attribute set by the authors in advance,
and obtained the trustworthy attribute weights by the rough set theory and expert opinion.
Zhang et al. presented a real-time trust measurement theory based on a non-interfering
model [23]. In their theory, system calls are handled as atomic actions, and system call
sequences are structured as the real behavior of the process. The theoretically expected
behavior is calculated according to the mutual non-interference relationship between the
security domains, to which the system call belongs in the actual behavior. The trustworthi-
ness of a process is assessed through determining whether actual and theoretical expected
behavior deviates. A trustworthiness assessment, on the basis of factors affecting software
behavior, is presented by Tian et al. [24]. The behavioral trajectories are represented by a
behavioral trajectory matrix, converted to a grayscale image. These images are then used to
train a deep residual network to classify software behavior. Ji et al. introduced a Noisy-OR
Gate Bayesian Network model to obtain the joint probability distribution (JPD) of target
risk systems, in the probabilistic evaluation of construction risk [25]. This model requires
only connection probabilities with high availability and reliability as the prior knowledge,
thereby greatly reducing the dimensionality of risk factors, while preserving the reasoning
ability of JPD. Ogundoyin et al. used a fuzzy analytic hierarchy process technique to iden-
tify and prioritize trust parameters in fog computing [26]. Their results show that quality
of service is the best prioritized parameter that the service requester can use to assess the
trust level of a service provider, followed by quality of security, with recommendations
being the worst. It is also revealed that social relationship is the highest-ranking trust
parameter that a service provider can use to determine the level of truthfulness of a service
requester; past reputation is the least considered. Sahu et al. applied fuzzy method, neural
network, fuzzy-neural network and neural-fuzzy, to predict the reliability of the dataset
retrieved from John Musa of bell laboratories [27]. Their results indicate the fuzzy-neural
method is the best among all the proposed methods. In the fuzzy-neural method, the
Levenberg–Marquardt algorithm is used to train the neurons. Sahu et al. also presented a
review-based study, to evaluate the previously established methodologies for reliability
prediction [28]. Al-Mejibli et al. first identified security risk factors, which affect usability,
as well as the security of a healthcare web application, and then calculated the weight of
each security factor using Fuzzy AHP [29]. Their study also concludes that user satisfaction
is the most crucial factor among all the six security risk factors. Marshall et al. presented a
range of models for tool verification and evaluated them based on estimated risk and cost
for end-user and provider [30]. Maza et al. proposed a governance framework, based on
blockchain, for building trustworthy software [31]. This framework enables transparency
and auditability, by allowing activities to be recorded, monitored, and analyzed throughout
the application development life cycle. Buraga et al. established an OWL 2 ontology that
can provide a high-level machine-processable description of the Database Management
Systems (DBMS) domain [32]. This work is intended to facilitate the proper execution of
various software engineering processes and database-centric administrative tasks. In addi-
tion, it can be applied to improve the decision process, to identify/select the appropriate
DBMS, on the basis of specific requirements. Riehle et al. discussed the importance of
ensuring that software developers adopt measurable approaches to making data-related

Symmetry 2022, 14, 628 4 of 25

design decisions [33]. Their results show that the more accurate the data type design of a
program is, the less complex the algorithm using instances of these data types is. Xu built a
data-driven trust evaluation model on the basis of perceptual sources [34]. In this model,
the monitoring module is taken as the evaluation unit, and the relay node completes the
trust evaluation of the sensing node in its monitoring module. A direct trust calculation
is achieved by sensing the relationship between the nodes’ own data, and recommenda-
tion trust is calculated by monitoring the relationship between neighboring nodes in the
module. The comprehensive trust of the perception node is the output, by combining with
the historical trust. Novikova et al. presented a novel algorithm to compute an integral
trustworthiness risk score, based on privacy, reliability, resilience, safety, and CIA risk
scores, and the resulting trustworthiness risk score can be further transformed to trustwor-
thiness ratings [35]. Alzahari et al. gave a new automatic elicitation method, namely, a
library of the trust requirements of blockchain applications [36]. A novel trust taxonomy is
identified to classify and analyze the associations between trust factors and their attributes,
and a proof-of-concept prototype tool is developed to implement the method. Choudhary
et al. presented a software readiness rating, on the basis of the combination of weighting
methods, and the combination weights are computed, depending on experiments, expert
judgments, and statistical calculations [37].

Software trustworthiness allocation is the symmetry of the software trustworthiness
measurement. It is to determine the attribute values, according to the user’s expectation
of the software, which is used to guide the design of the optimal value of each trustwor-
thiness attribute [38]. Software trustworthiness reallocation calculates the optimal sum
of the increase in all the trustworthy attribute values, based on the improved users’ ex-
pectation, which is applied to guide the improvement of software trustworthiness [39].
The determination of software trustworthy level requires software to satisfy not only the
requirements of the software trustworthiness metric value, but also the requirements of
the trustworthy attribute value. For two software with the same trustworthiness metric
value, if a certain attribute of one software does not meet the trustworthy attribute value
requirements, then its trustworthy level will be reduced. At present, the existing allocation
and reallocation methods do not involve the above situation [38,39]; that is, they do not
consider the absolute majority of software trustworthiness classification [3,40], so they do
not very accurately conduct the software trustworthiness allocation and reallocation. On
the other hand, the current research only demonstrates the effectiveness of their methods
with simple examples, and does not go deep into the practical application of the methods.

Research question: Is it possible to build new allocation and reallocation models based
on mathematical programming methods by adding the constraint of the absolute majority
of software trustworthiness classification? If these new models can be constructed, can
polynomial time algorithms be designed for them? If polynomial time algorithms can be
given, do these algorithms have practical application scenarios?

The research goals are to construct software trustworthiness allocation and reallocation
models, involving an absolute majority of software trustworthiness classification, based
on a mathematical programming method, design polynomial time solution algorithms for
these improved models, and give their demonstration application.

The main contributions of the paper consist of putting forward improved methods
for software trustworthiness allocation and reallocation, constructing improved allocation
and reallocation models, involving the absolute majority of trustworthiness classification,
and designing polynomial time algorithms for these improved models. In these algorithms,
the Newton iteration algorithms are used to initially allocate or reallocate software trust-
worthiness, and then, according to the absolute majority constraint, the final allocation or
reallocation is made based on attribute weights. At the same time, these improved methods
are used to build trustworthiness enhancement specification for spacecraft software, based
on factory reports, consisting of software trustworthiness development specification and
software trustworthiness improvement specification. The contributions in this paper can
fill the previously mentioned research gaps.

Symmetry 2022, 14, 628 5 of 25

The rest of the paper is organized as follows. In Section 2, we describe a software trust-
worthiness measurement model used in [40] and a software trustworthiness classification
model proposed in [3]. An improved allocation approach for software trustworthiness is
introduced in Section 3, including the improved allocation model, based on mathematical
programming and its polynomial-time algorithm. An improved reallocation approach
for software trustworthiness is given in Section 4, consisting of the improved reallocation
model and its polynomial time algorithm. In Section 5, we establish the trustworthiness
enhancement specification for spacecraft software, based on factory reports, according to
the improved allocation and reallocation approaches. We present the discussion in Section 6.
The conclusions and future work come in the last section.

2. Software Trustworthiness Measurement and Classification
2.1. Software Trustworthiness Measurement Model

Axiomatic approaches formally describe the empirical understanding of software
attributes by defining the desired properties of numerical relationship systems in software
measures [41,42]. They can provide accuracy and a formal basis for the quantification of soft-
ware attributes, which are the desired measurement activities. In order to measure software
trustworthiness more strictly and validate the model theoretically, we once used axiomatic
approaches to assess software trustworthiness, on the basis of decomposition of attribute,
proposed seven expected properties, and established a software trustworthiness model,
satisfying these seven properties [14]. In view of the particularity of spacecraft software,
the simplified version, shown in Definition 1, was applied to measure the trustworthiness
of spacecraft software [3,40].

Definition 1. (Simplified Software Trustworthiness Measurement Model based on Attribute
Decomposition [3,40])

T =
n
∏
i=1

yαi
i

yi =
ni
∏
j=1

x
βij
ij

where

1. T: trustworthy degree of software;
2. n: number of trustworthy attributes;
3. yi(1 ≤ i ≤ n): trustworthy value of the i-th trustworthy attribute;
4. αi(1 ≤ i ≤ n): weight value of the i-th trustworthy attribute, satisfying 0 ≤ αi ≤ 1,

∑n
i=1 αi = 1.

5. ni: number of trustworthy sub-attributes that comprise the i-th trustworthy attribute;
6. xij: trustworthy value of the j-th sub-attribute of the i-th trustworthy attribute;
7. βij: weight value of the j-th sub-attribute of the i-th trustworthy attribute, such that

0 ≤ βij ≤ 1, ∑ni
j=1 βij = 1.

This simplified measurement model not only satisfies the seven properties, but also
complies with Cannikin’s law [3]. At the same time, its effectiveness is verified through
the trustworthiness evaluation of 23 spacecraft software. Validation results show that it
can effectively assess the trustworthiness of spacecraft software and find deficiencies in the
development process [3,14,40].

2.2. Software Trustworthiness Classification Model

The software trustworthiness classification model is used to divide the software
trustworthiness into several grades, according to the software trustworthiness measurement
results, and its desirable properties are as follows.

Uniqueness of trustworthy level [3,40]. The levels evaluated by the software trustwor-
thiness classification model should completely cover all possible distribution intervals of

Symmetry 2022, 14, 628 6 of 25

the software trustworthiness measurement values. Each value of software trustworthiness
can only be assessed as one level, which ensures the uniqueness of its trustworthy level. In
addition, the evaluation of the trustworthy level in the classification model should require
that the software not only meets the requirements of the software trustworthiness mea-
surement, but also meets the requirements of the trustworthy attribute. For two software
with the same measurement result, if one of the software does not meet the trustworthy
attribute requirements, then its trustworthy level will be reduced.

Threshold [3,40]. Threshold means that when the software trustworthiness is to reach
a certain level, the trustworthy attributes must reach the lowest value required at this level.
This property indicates that the value of the trustworthy attribute should not be too low,
and it is possible to increase the trustworthy level of software by improving the trustworthy
attribute with the lowest value.

Absolute majority [3,40]. Absolute majority refers to the software trustworthiness
reaching a certain level; at least two-thirds of the trustworthy attribute values must reach
this level. Assume that there are n trustworthy attributes, then the number of trustworthy
attributes with this level should be not less than dn× 2/3e. Therefore, the number of
trustworthy attributes below this level should not exceed n− dn× 2/3e. This property is
used to describe that the trustworthy level is likely to reach a certain level, only when the
2/3 majority of the trustworthy attribute values achieve this level.

A software trustworthiness classification model is established in Table 1 [3]. This
classification model is constructed based on software trustworthiness measurement results,
ranging between 1 and 10. It is easy to prove that this model satisfies the above three
properties. Considering that the bigger the software trustworthiness is, the more difficult it
is to improve it, and the higher the trustworthy level is, the higher the requirement of the
trustworthy attribute value is, in this model, the classification interval is not equidistant.
The value interval of increasing the trustworthy level from the lowest level to the top is
approximately decreasing, according to the golden ratio.

Table 1. Software trustworthiness classification model [3].

Software Trustworthiness
Measurement Requirements Trustworthy Attribute Requirements Trustworthy

Level

9.50 ≤ T

1. The number of trustworthy attributes with
a value lower than 9.50 shall not exceed
n− dn× 2/3e

2. No trustworthy attribute with a value of
less than 8.50

V

8.50 ≤ T < 9.50 or
9.50 ≤ T and cannot be rated

as level V

1. The number of trustworthy attributes with
a value lower than 8.50 shall not exceed
n− dn× 2/3e

2. No trustworthy attribute with a value of
less than 7.00

IV

7.00 ≤ T < 8.50 or
8.50 ≤ T and cannot be rated

as level IV or above

1. The number of trustworthy attributes with
a value lower than 7.00 shall not exceed
n− dn× 2/3e

2. No trustworthy attribute with a value less
than 4.50

III

4.50 ≤ T < 7.00 or
7.00 ≤ T and cannot be rated

as level III or above

1. The number of trustworthy attributes with
a value less than 4.50 is not more than
n− dn× 2/3e

2. No trustworthy attribute with a value less
than 1

II

Symmetry 2022, 14, 628 7 of 25

Table 1. Cont.

Software Trustworthiness
Measurement Requirements Trustworthy Attribute Requirements Trustworthy

Level

T < 4.50 or
4.50 ≤ T and cannot be rated

as level II or above
No trustworthy attribute with a value less than 1 I

3. Improved Allocation Approach for Software Trustworthiness

Assuming that the trustworthy attribute value is positively correlated with the soft-
ware development cost, in order to minimize the development cost, the improved allocation
model, based on the model given in Definition 1, is defined as a mathematical programming
model, as shown in Definition 2.

Definition 2. (Improved allocation model for software trustworthiness)

min
n
∑

i=1
yi

subject to

T =

n
∏
i=1

yαi
i ≥ T0

1 ≤ y0 ≤ yi ≤ 10∣∣{ i|yi < y′0
}∣∣ ≤ (n− dn× 2/3e)

where

1. T: trustworthy degree of software;
2. T0: minimum degree that the software needs to reach;
3. n: number of trustworthy attributes;
4. yi(1 ≤ i ≤ n): value of the i-th trustworthy attribute;
5. y0: minimal value that all the trustworthy attributes must achieve, in the software trustwor-

thiness classification model given in Table 1, y0 = 1 for level I software, y0 = 1 for level II
software, y0 = 4.5 for level III software, y0 = 7 for level IV software, and y0 = 8.5 for level V
software;

6. y′0: minimal value of next-level trustworthy attributes, in the software trustworthiness
classification model given in Table 1, y′0 = 1 for level I software, y′0 = 4.5 for level II software,
y′0 = 7 for level III software, y′0 = 8.5 for level IV software, and specify y′0 = 9.5 for level V
software;

7. αi(1 ≤ i ≤ n): weight value of the i-th trustworthy attribute, such that 0 ≤ αi ≤ 1,
∑n

i=1 αi = 1.

Sensitivity analysis of T, on the basis of the method given in reference [3], shows that
the attribute sensitivity is equal to the attribute weight, and the larger the weight is, the
more important it is to improve the software trustworthiness, so it is necessary to increase
the value of the most important attribute as much as possible. At the same time, in order to
simplify the allocation process, the following growth function of the trustworthy attribute
value is defined.

Definition 3. (Trustworthy Attribute Value Growth Function [38]).

yi = y0 + k× (αi − αmin)

where

1. n: number of trustworthy attributes;
2. yi(1 ≤ i ≤ n): trustworthy attribute values;
3. y0: minimum value that all the trustworthy attributes must reach;

Symmetry 2022, 14, 628 8 of 25

4. αi(0 ≤ i ≤ 1): weight value of the i-th trustworthy attribute, satisfying 0 ≤ αi ≤ 1,
∑n

i=1 αi = 1, αmin = min
1≤i≤n

{αi};

5. k: growth rate of the trustworthy attribute value with 0 ≤ k.

Substitute the trustworthy attribute value growth function into the improved allocation
model for software trustworthiness, and the improved allocation model for software
trustworthiness, based on the trustworthy attribute value growth function, can be obtained.

Definition 4. (Improved Allocation Model for Software Trustworthiness based on Trustworthy
Attribute Value Growth Function)

minksatisfy

T =

n
∏
i=1

(y0 + k× (αi − αmin))
αi ≥ T0

1 ≤ y0 ≤ y0 + k× (αi − αmin) ≤ 10∣∣{ i|y0 + k× (αi − αmin) < y′0
}∣∣ ≤ (n− dn× 2/3e)

where

1. k: growth rate of the trustworthy attribute value, such that 0 ≤ k.
2. y0: minimum value that all the trustworthy attributes must reach, the meaning is the same as

in Definition 1;
3. y′0: minimum value of next-level trustworthy attributes must achieve. The meaning is the

same as in Definition 1;
4. αi(1 ≤ i ≤ n): trustworthy attribute weight values, such that 0 ≤ αi ≤ 1, ∑n

i=1 αi = 1,
αmin = min

1≤i≤n
{αi}

5. T0: minimum degree that the software needs to achieve.

Software trustworthiness allocation is the process of assigning trustworthiness to
software trustworthy attributes through their weight values. Therefore, the software
trustworthiness allocation, on the basis of the growth function of the trustworthiness
attribute value, is actually looking for the minimum k within the interval

[
0, 10−y0

αmax−αmin

]
,

such that
n
∏
i=1

(y0 + k× (αi − αmin))
αi ≥ T0∣∣{ i|y0 + k× (αi − αmin) < y′0

}∣∣ ≤ (n− dn× 2/3e),

where 0 ≤ αi ≤ 1, ∑n
i=1 αi = 1, αmax = max

1≤i≤n
{αi}.

Let N = {1, 2, . . . , n}, P =
{

i|i ∈ N ∧ yi ≥ y′0
}

. The solution process can be divided
into the following two cases:

(1) When y0 ≥ T0, take the dn× 2/3e trustworthy attributes with the largest weight
and make their values y′0, and the values of the remaining attributes y0, so that the
allocation conditions can be satisfied.

(2) When y0 < T0, let

f (k) = ∏
i∈N−M>10

[y0 + k(αi − αmin)]
αi ∏

i∈M>10

yi
αi − T0

where M>10 is a set, whose initial value is ∅. In the following, the idea of the
reallocation method given in [39] is borrowed for initial allocation. With k = 0 as
the initial iteration value, the approximate root k, satisfying f (k) = 0, is obtained by
the Newton iteration method. k is substituted into the trustworthy attribute value
growth function. If there are attribute values greater than 10, the subscript set of the
attribute values over 10 is included in M>10, and the new set is still denoted as M>10.
Sort the attributes subscripted in M>10 in descending order of weight. The attribute

Symmetry 2022, 14, 628 9 of 25

with the largest weight is set to 9.90, the attribute with the second largest weight is
set to 9.85, and the attribute with the third largest weight is set to 9.80, and so on.
However, when setting the attribute values, it is necessary to ensure that they meet
y0 ≤ yi (i ∈ M>10). The initial value of the attribute with the largest weight value and
the step size can be changed as needed. Going to the next round of the calculation,
the Newton iteration method is applied to find a new approximate root k, satisfying
f (k) = 0, and a similar method is used to update the value of M>10 and the values
of the attributes subscripted in M>10. When the set M>10 is no longer updated, the
attribute value growth function is used to compute the value of the attributes with
subscripts in N −M>10, and the values of the attributes with subscripts in M>10 are
obtained by the above setting rules. Denote the trustworthy attribute values obtained
as y1, y2, . . . , yn in turn, if the following condition

R =
∣∣{ i|i ∈ N ∧ yi < y′0

}∣∣ ≤ (n− dn× 2/3e) (1)

is satisfied, then y1, y2, . . . , yn are the allocation results. Otherwise, select the attribute
whose subscript is in R and has the largest weight value in turn, set its value to y′0,
and delete its subscript from R until condition (1) is satisfied.

The above specific solution process is shown in Algorithm 1.

Algorithm 1 Algorithm for allocating software trustworthiness: for given T0, y0 and weight
values of trustworthy attributes α1, α2, . . . , αn, output the assigned trustworthy attribute values
y1, y2, . . . , yn.

Input: T0, y0, α1, α2, . . . , αn
Output: yj(j = 1, 2, . . . , n)

1. Initialize N = {1, 2, . . . , n}, M>10 = ∅, Q = ∅, ∆ = 0;
2. if y0 ≥ T0 then
3. while |Q| ≤ dn× 2/3e do
4. α0 = 0, j = 0
5. for i ∈ Ndo
6. if αi > α0 then
7. α0 = αi, j = i;
8. end if
9. end for
10. Q = Q ∪ {j}, N = N − {j};
11. end while
12. return yj = y0(j ∈ {1, 2, . . . , n} −Q), yj = y′0(j ∈ Q));
13. else
14. while N −M>10 6= ∅ do
15. f (k) = ∏

i∈N−M>10
[y0 + k(αi − αmin)]

αi ∏
i∈M>10

yi
αi − T0;

16. Taking k = 0 as the initial value of the iteration, m = 1000 as the maximum number of
iterations, 10−10 as the error, the Newton iteration method is used to find the approximate
root k that satisfies f (k) = 0;

17. M = ∅;
18. for i ∈ N −M>10 do
19. yi = y0 + k(αi − αmin);
20. if yi > 10 then
21. M = M ∪ {i}
22. end if
23. end for
24. M>10 = M>10 ∪M
25. if M == ∅ then
26. break;
27. else
28. while M 6= ∅ do

Symmetry 2022, 14, 628 10 of 25

Algorithm 1 Cont.

29. α0 = 0, j = 0;
30. for i ∈ M do
31. if αi > α0 then
32. α0 = αi, j = i;
33. end if
34. end for
35. yj = 9.90− ∆× 0.05, ∆ = ∆ + 1, M = M− {j};
36. if yj < y0 then
37. yj = y0;
38. end if
39. end while
40. end if
41. end while
42. if

∣∣{ i|i ∈ N ∧ yi < y′0
}∣∣ ≤ (n− dn× 2/3e) then

43. return yj(j = 1, 2, . . . , n);
44. else
45. R =

{
i
∣∣i ∈ N ∧ yi < y′0

}
46. while |R| > dn× 1/3e do
47. α0 = 0, j = 0
48. for i ∈ P do
49. if αi > α0 then
50. α0 = αi, j = i;
51. end if
52. end for
53. R = R− {j}, yj = y′0;
54. end while
55. return yj(j = 1, 2, . . . , n);
56. end if
57. end if

Theorem 1. The time complexity of Algorithm 1 isO(n3).

Proof. Steps 3–12 are a double nested loop, used to calculate the allocation results when
y0 ≥ T0. The number of loops in the first loop is |Q|, and that in the second loop is |N|.
Since |Q| ≤ n and |N| ≤ n, the time complexity of Steps 3–12 is O(n2).

Steps 14–41 are a while loop, applied to initially allocate software trustworthiness
to trustworthy attributes when y0 < T0. The maximum number of loops in this while
loop is

∣∣N −M>10
∣∣, which satisfies

∣∣N −M>10
∣∣ ≤ n . Steps 16–17 are applied to look for

the approximate root k, satisfying f (k) = 0, through the Newton iteration method. It
takes O(m), where m expresses the maximum number of iterations the designer wants to
perform. Steps 18–23 are a for loop, updating the values of attributes with subscripts in
N −M>10 through the attribute value growth function. The number of loops in this for
loop is

∣∣N −M>10
∣∣. Because of

∣∣N −M>10
∣∣ ≤ n , then the time complexity of Steps 18–23

is O(n). Steps 24–40 are an if-else conditional statement, updating the values of attributes
with subscripts in M>10 by the setting rules. The else statement part is a double nested
loop, the maximum number of loops for both the loops are |M|. Due to |M| ≤ n , then the
time complexity of Steps 24–40 is O(n2). Consequently, we infer that the time complexity
of Steps 14–41 is O(nm + n2 + n3).

Steps 42–56 are an if-else statement, which are applied to finally assign software
trustworthiness to trustworthy attributes when y0 < T0. The else statement part is a double
nested loop, and the maximum number of loops for both the loops are |R|. Notice that
|R| ≤ n , and it follows the time complexity of Steps 42–56, is O(n2).

Symmetry 2022, 14, 628 11 of 25

In summary, we can obtain the time complexity of Algorithm 1 is O(nm+ n3). Because
the expected maximum number of iterations of the Newton iteration method m is usually
given before the algorithm is executed, the time complexity of Algorithm 1 is O(n3). �

4. Improved Reallocation Approach for Software Trustworthiness

The basic idea of software trustworthiness reallocation is that the software trustworthy
level needs to be upgraded due to actual needs, for example, upgrading level III software
to level IV software, so it is necessary to reallocate the software trustworthiness to meet the
requirements of the improved level. Similarly, in view of the fact that the development cost
of trustworthy attributes is positively correlated with the value of trustworthy attributes,
it is expected that under the condition of meeting the requirements of increasing the
trustworthy level, the improved software trustworthiness reallocation minimizes the sum
of the increases in all the trustworthy attribute values and takes into account the absolute
majority of the classification model.

Definition 5. (Improved Software Trustworthiness Reallocation Model)

min
n
∑

i=1
∆yi

such that

T =

n
∏
i=1

yαi
i ≥ T0

1 ≤ y0 ≤ yi ≤ 10, 1 ≤ i ≤ n

1 ≤ y′i ≤ yi, 1 ≤ i ≤ n∣∣{ i|yi < y′0
}∣∣ ≤ (n− dn× 2/3e)

where

1. T: trustworthy degree of software;
2. T0: minimum degree that the software needs to achieve after reallocation;
3. n: number of trustworthy attributes;
4. yi(1 ≤ i ≤ n): attribute values after reallocation;
5. y′

i
(1 ≤ i ≤ n): attribute values before reallocation;

6. y0: minimum value that all the trustworthy attributes must reach after reallocation, in the
software trustworthiness classification model given in Table 1, y0 = 1 for level I software,
y0 = 1 for level II software, y0 = 4.5 for level III software, y0 = 7 for level IV software, and
y0 = 8.5 for level V software;

7. y′0: minimum value of next-level trustworthy attributes after reallocation, in the software
trustworthiness classification model given in Table 1, y′0 = 1 for level I software, y′0 = 4.5
for level II software, y′0 = 7 for level III software, y′0 = 8.5 for level IV software, and specify
y′0 = 9.5 for level V software;

8. ∆yi = yi − y′
i
: increased value of the i-th attribute after reallocation;

9. αi(1 ≤ i ≤ n): weight values of trustworthy attributes, satisfying 0 ≤ αi ≤ 1, ∑n
i=1 αi = 1.

From the results in Section 3, it can be seen that attribute sensitivity of T is equal to
the attribute weight, and the larger the weight is, the more important it is to improve the
software trustworthiness, so it is also necessary to increase the attribute value as much
as possible. In order to simplify the reallocation process, and in view of the fact that the
trustworthy attribute value after reallocation should be no less than that before reallocation,
the trustworthy attribute value growth function is modified as follows.

Definition 6. (Modified Trustworthy Attribute Value Growth Function [39])

yi = max
{

y0, y′i
}
+ k× (αi − αmin), 1 ≤ i ≤ n

Among

1. n: number of attributes;

Symmetry 2022, 14, 628 12 of 25

2. yi(1 ≤ i ≤ n): attribute values after reallocation;
3. y′

i
(1 ≤ i ≤ n): attribute values before reallocation;

4. y0: minimum value that all the trustworthy attributes must reach after reallocation;
5. αi(1 ≤ i ≤ n): weight values of trustworthy attributes, satisfying 0 ≤ αi ≤ 1, ∑n

i=1 αi = 1,
αmin = min

1≤i≤n
{αi};

6. k: growth rate of the attribute value with 0 ≤ k.

Substituting the modified trustworthy attribute value growth function into the im-
proved software trustworthiness reallocation model, the improved software trustworthi-
ness reallocation model, on the basis of the modified trustworthy attribute value growth
function, is obtained.

Definition 7. (Improved Software Trustworthiness Reallocation Model based on Modified Trust-
worthy Attribute Value Growth Function)

minksatisfy

n
∏
i=1

[
max

{
y0, y′i

}
+ k× (αi − αmin)

]αi ≥ T0

1 ≤ max
{

y0, y′i
}
+ k× (αi − αmin) ≤ 10∣∣{ i|max

{
y0, y′i

}
+ k× (αi − αmin) < y′0

}∣∣ ≤ (n− dn× 2/3e)

Among

1. k: growth rate of the attribute value, such that 0 ≤ k.
2. y0: minimum value that all the trustworthy attributes must reach after reallocation. The

meaning is the same as in Definition 5;
3. y′

i
(1 ≤ i ≤ n): attribute values before reallocation;

4. y′0: minimum value of next-level trustworthy attributes after reallocation, see Definition 5 for
specific meanings.

5. αi(1 ≤ i ≤ n): weight values of trustworthy attributes, satisfying 0 ≤ αi ≤ 1, ∑n
i=1 αi = 1,

αmin = min
1≤i≤n

{αi};

6. T0: minimum degree that the software needs to achieve after reallocation.

Software trustworthiness allocation is to assign trustworthiness to software trustwor-
thy attributes, according to their weight, and software trustworthiness reallocation is also to
reassign trustworthiness to software trustworthy attributes by their weight values. There-
fore, the software trustworthiness reallocation, on the basis of the modified trustworthiness
attribute value growth function, is actually to look for the minimum k, within the interval[

0, min
i∈{1,...n}−O

{
10−max{y0,y′i}

αi−αmin

}]
, such that

{
1 ≤ max

{
y0, y′i

}
+ k× (αi − αmin) ≤ 10∣∣{ i|max

{
y0, y′i

}
+ k× (αi − αmin) < y′0

}∣∣ ≤ (n− dn× 2/3e)

where 0 ≤ αi ≤ 1, ∑n
i=1 αi = 1, αmin = min

1≤i≤n
{αi}, O =

{
j
∣∣∣∣αj = min

1≤i≤n
{αi}

}
.

Because the purpose of software trustworthiness reallocation is to improve the soft-
ware trustworthiness, it is necessary to reduce the software modification as much as
possible, in the case of improving the software trustworthiness to meet the level require-
ments. Therefore, if the value of the trustworthy attribute before reallocation is already
greater than y′0, no modification is required. Let N = {1, 2, . . . , n}, P =

{
i|yi ≥ y′0

}
.

(1) When |N − P| ≤ (n− dn× 2/3e), let

g(k) = ∏
i∈N−P−M>10

[
max

{
y0, y′i

}
+ k× (αi − αmin)

]αi ∏
i∈P

yi
αi ∏

i∈M>10

yi
αi ,

Symmetry 2022, 14, 628 13 of 25

where, M>10 is a set with initial value ∅. At this time, the software trustworthiness
is allocated by a method similar to that in Algorithm 1. It should be noted that the
values of attributes with subscripts in M>10 must meet max

1≤i≤n
{y0, y′i} ≤ yi in the

updating process.
(2) When |N − P| > (n− dn× 2/3e). Since the greater the attribute weight is, the more

important it is to improve the trustworthiness of the software, set the value of the trust-
worthy attribute with the subscript in P and the largest weight to y′0, and delete this
subscript from the set P. Repeat the above process until
|N − P| ≤ (n− dn× 2/3e) is satisfied. If the software trustworthiness meets the
reallocation requirements at this time, return. Otherwise, let P =

{
i|yi ≥ y′0

}
, and

jump to (1) to execute.

The above specific solution process is shown in Algorithm 2.

Algorithm 2 Algorithm for reallocating software trustworthiness: for given trustworthy attribute
values y′1, . . . , y′n before reallocation, trustworthy attribute weight values α1, α2, . . . , αn, T0 that the
software must achieve after reallocation and y0 that all of the trustworthy attributes must reach
after reallocation, output the reallocated trustworthy attribute values y1, y2, . . . , yn.

Input: y′1, . . . , y′n, T0, y0, α1, α2, . . . , αn
Output: yj(j = 1, 2, . . . , n)

1. Initialize N = {1, 2, . . . , n}, P =
{

i|i ∈ N ∧ yi ≥ y′0
}

, yi = y′i(i ∈ P), M>10 = ∅, ∆ = 0;
2. if |N − P| ≤ (n− dn× 2/3e) then
3. yi = y′i(i ∈ N − P)
4. if ∏

i∈N
yi

αi ≥ T0 then

5. Q = { i|i ∈ (N − P) ∧ yi < y0}
6. for i ∈ Q do
7. yi = y0
8. end for
9. return yj(j = 1, 2, . . . , n)
10. else
11. while N − P−M>10 6= ∅ do
12. g(k) = ∏

i∈N−P−M>10

[
max

{
y0, y′i

}
+ k× (αi − αmin)

]αi ∏
i∈P

yi
αi ∏

i∈M>10
yi

αi − T0;

13. Taking k = 0 as the initial value of the iteration, m = 1000 as themaximum number of
iterations, 10−10 as the error, the Newton iteration method is used to find the approximate
root k that satisfies g(k) = 0;

14. M = ∅;
15. for i ∈ N − P−M>10 do
16. yi = max

{
y0, y′i

}
+ k× (αi − αmin);

17. if yi > 10 then
18. M = M ∪ {i}
19. end if
20. end for
21. M>10 = M>10 ∪M
22. if M == ∅ then
23. break;
24. else
25. while M 6= ∅ do
26. α0 = 0, j = 0;
27. for i ∈ M do
28. if αi > α0 then
29. α0 = αi, j = i;
30. end if
31. end for
32. yj = 9.90− ∆× 0.05, ∆ = ∆ + 1, M = M− {j};

Symmetry 2022, 14, 628 14 of 25

Algorithm 2 Cont.

33. if yj < max
{

y0, y′j
}

then

34. yj = max
{

y0, y′j
}

;

35. end if
36. end while
37. end if
38. end while
39. end if
40. else
41. while |N − P| > (n− dn× 2/3e) do

42. S =

{
i
∣∣∣∣ max
i∈N−P

{αi}
}

;

43. for i ∈ S do
44. yi = y′0;
45. P = P ∪ S;
46. end for
47. end while
48. yi = y′i(i ∈ N − P)
49. if ∏

i∈N
yi

αi ≥ T0 then

50. return yj(j = 1, 2, . . . , n);
51. else
52. M>10 = ∅, ∆ = 0;
53. execute Steps 2–39;
54. end if
55. end if

Theorem 2. The time complexity of Algorithm 2 is O(n3).

Proof. Algorithm 2 is an if-else statement.
The if statement part is applied to calculate the reallocation result when

|N − P| ≤ (n− dn× 2/3e). It is easy to obtain the time complexity of Steps 3–9 as O(n).
Steps 11–38 are a while loop, and its time complexity analysis is similar to that of Steps
14–41 in Algorithm 1. Because

∣∣N − P−M>10
∣∣ ≤ n and |M|≤ n , it is easy to get that the

time complexity of Steps 11–38 is O(nm + n2 + n3), where m is the maximum number of
iterations that the designer wishes to execute.

The else statement part is used to compute the reallocation result when
|N − P| > (n− dn× 2/3e). Steps 41–47 are a double nested loop, the maximum num-
ber of loops of the first loop is |N − P|, and the number of loops of the second loop is
|S|. Due to |N − P| ≤ n and |S| ≤ n , it follows that the time complexity of Steps 41–47 is
O(n2). Steps 49–54 are also an if-else statement. The if statement part is a return statement,
so its time complexity is O(1). Step 53 calls Steps 2–9, so the time complexity of Step 53
is O(nm + n2 + n3). Thus, we arrive at the conclusion that the time complexity of the else
statement part is O(nm + n2 + n3).

Thus, the time complexity of Algorithm 2 is O(nm + n3). Because the expected
maximum number of iterations of the Newton iteration method m is usually given before
the algorithm is preformed, the time complexity of Algorithm 2 is O(n3). �

5. Trustworthiness Enhancement Specification for Spacecraft Software Based on
Factory Reports

In this section, we demonstrate the effectiveness of the improved allocation and
reallocation approaches, by establishing the trustworthiness enhancement specification for

Symmetry 2022, 14, 628 15 of 25

spacecraft software, based on factory reports, which includes a software trustworthiness
development specification and software trustworthiness improvement specification.

5.1. Software Trustworthiness Measurement and Classification Based on Factory Reports

When the software is delivered, experts are usually organized to evaluate the software
trustworthiness, based on the software factory reports. In order to enable the experts to
give an objective evaluation, according to the review materials, a software trustworthiness
hierarchical model, based on factory reports, is established in [3]. This hierarchical model
consists of 9 attributes, which are subdivided into 28 sub-attributes. Each sub-attribute
involves four measurement elements, and each of the four measurement elements only
corresponds to one of the four levels of A, B, C, and D. Therefore, once the measurement
element is selected, the corresponding level of the measurement element is determined,
and then the sub-attribute measurement value, determined by the level of the measurement
element, can be obtained. The trustworthy attributes, trustworthy sub-attributes in the
software trustworthiness hierarchical model, based on factory reports, and their weight
values are given in Table 2 [3,14].

Table 2. Trustworthy attributes, sub-attributes and their weight values in the software trustworthiness
hierarchical model based on factory reports.

Attribute Attribute
Weight Sub-Attribute Sub-Attribute

Weight

Overall planning and
implementation

0.05

Development planning and
execution 0.31

Functionality and performance
compliance with specification 0.36

Integrity of software development
documentation 0.33

Analysis and design 0.17
Input file controlled condition 0.33

Requirement analysis 0.33
Software design 0.34

Test verification
0.20

Test plan and implementation 0.16
Code walk through and static

analysis 0.17

Test content comprehensiveness 0.17
Special testing situation 0.17

Test coverage 0.17
Test environment, methods and tool

usage 0.16

Reliability and safety 0.15
Reliability and safety analysis 0.33
Reliability and safety design 0.34

Reliability and safety verification 0.33

Software technology
status change 0.09

Basis, demonstration and approval
of technical status change 0.34

Test and verification after changes 0.33
Implementations after changes 0.33

Quality problem close
loop

0.09
Quality problem zero completion 0.50
Implementation of one example

against three tasks 0.50

Configuration
management 0.11

Configuration management
organization, requirements, and

tools
0.33

Change control situation 0.34
Configuration audit, documentary 0.33

Symmetry 2022, 14, 628 16 of 25

Table 2. Cont.

Attribute Attribute
Weight Sub-Attribute Sub-Attribute

Weight

Software development
environment

0.05
Development supporting software 0.50
Development supporting hardware 0.50

Third party evaluation
situation

0.09

Evaluation input and evaluation
plan situation 0.33

Evaluation of implementation
situation 0.33

Problem solving situation 0.34

In order to compute, allocate and reallocate software trustworthiness, the trustworthy
levels of measurement elements are first converted to specific values. That is, if the A-
level measurement element is selected, the corresponding sub-attribute value is 10; if the
B-level measurement element is chosen, the corresponding sub-attribute value is 9; if the
C-level measurement element is selected, the corresponding sub-attribute value is 7; if the
D-level measurement element is chosen, the corresponding sub-attribute value is 2. The
software trustworthiness classification model, established in Table 1, is required to meet the
absolute majority; that is, to reach a certain level of software trustworthiness, at least 2/3
of the trustworthy attribute values must reach this level. There are nine attributes in the
software trustworthiness hierarchical model, based on factory reports. Then, the number
of trustworthy attributes lower than the corresponding level is not more than three, and
the software trustworthiness classification model, based on factory reports, can be built, as
shown in Table 3.

Table 3. Software trustworthiness classification model based on factory reports.

Software Trustworthiness
Measurement Requirements Trustworthy Attribute Requirements Trustworthy

Level

9.50 ≤ T

1. The number of trustworthy attributes with
a value lower than 9.50 shall not exceed 3

2. No trustworthy attribute with a value of
less than 8.50

V

8.50 ≤ T < 9.50 or
9.50 ≤ T and cannot be rated

as level V

1. The number of trustworthy attributes with
a value lower than 8.50 shall not exceed 3

2. No trustworthy attribute with a value of
less than 7.00

IV

7.00 ≤ T < 8.50 or
8.50 ≤ T and cannot be rated

as level IV or above

1. The number of trustworthy attributes with
a value lower than 7.00 shall not exceed 3

2. No trustworthy attribute with a value less
than 4.50

III

4.50 ≤ T < 7.00 or
7.00 ≤ T and cannot be rated

as level III or above

1. The number of trustworthy attributes with
a value less than 4.50 is not more than 3

2. No trustworthy attribute with a value less
than 1

II

T < 4.50 or
4.50 ≤ T and cannot be rated

as level II or above
No trustworthy attribute with a value less than 1 I

A panel of 10 experts was invited to rate the 28 sub-attributes of the 23 spacecraft
software, and the model presented in Definition 1 was used to measure these 23 spacecraft
software. The classification model, shown in Table 3, was applied to classify these software
trustworthiness measurement results. As such, 11 representative software are selected as
study subjects, and the numbers of these 11 representative software are 2, 4, 6, 7, 9, 18, 19,

Symmetry 2022, 14, 628 17 of 25

20, 21, 22, 23. The trustworthy attribute values, trustworthy degrees and trustworthy levels
of 11 representative spacecraft software are given in Table 4 [3].

Table 4. Trustworthy attribute values, trustworthy degrees and trustworthy levels of 11 representative
spacecraft software.

Attribute No. 2 No. 4 No. 6 No. 7 No. 9 No. 18 No. 19 No. 20 No. 21 No. 22 No. 23

Overall planning and
implementation 8.28 7.66 7.66 7.66 7.66 8.33 8.33 7.00 8.33 8.33 9.00

Analysis and design 7.61 7.61 7.87 7.87 7.87 7.61 7.61 7.61 7.87 7.87 7.61

Test verification 6.13 4.76 5.90 6.15 7.94 8.41 9.16 8.28 8.20 5.99 8.40

Reliability and safety 8.26 7.61 7.00 4.63 7.00 9.00 8.28 7.61 7.00 7.00 9.00

Software technology
status change 8.28 8.26 8.26 8.26 8.26 8.28 8.26 7.61 9.00 9.00 8.58

Quality problem close
loop 8.37 8.37 8.37 8.37 7.93 9.49 8.37 8.37 8.37 8.37 8.37

Configuration
management 9.00 9.00 7.00 7.62 8.28 10.00 9.66 8.59 8.59 8.59 10.00

Software development
environment 9.00 4.24 7.00 7.00 7.94 9.00 9.00 9.49 9.00 9.00 9.00

Third party
evaluationsituation 9.65 9.37 9.65 9.65 9.64 8.26 9.00 9.00 8.56 10.00 8.26

Trustworthy degree 7.90 7.09 7.36 7.04 7.97 8.61 8.58 8.08 8.17 7.76 8.57

Trustworthy level III II III III III IV IV III III III IV

5.2. Trustworthiness Development Specification for Spacecraft Software Based on Factory Reports

In the following, we apply the improved software trustworthiness allocation algorithm,
given in Section 3, to establish the software trustworthiness development specification of
spacecraft software, based on factory reports. This specification guides the development
of trustworthiness of this type of software. According to this specification, in order to
develop software that achieves the corresponding trustworthy level, the developer must
at least follow the level specified by the complete trustworthy sub-attribute during the
development process. Considering that the trustworthy level of this type of software needs
to be at least level III, only three specifications with trustworthy levels of level V, level IV
and level III are given below.

It can be seen from the software trustworthiness classification model, based on factory
reports given in Table 3, that to achieve level V, the degree of software trustworthiness is
at least 9.50, the trustworthy attribute value is at least 8.50, and the number of attributes,
whose values are greater than or equal to 8.50 and less than 9.50, cannot exceed 3. Before
the trustworthiness allocation of the V-level software, the three attributes with the lowest
weight value are pre-processed first. From the weight value of each attribute given in
Table 2, it can be seen that there are two trustworthy attributes with the lowest weight value;
namely, the overall planning and execution and the software development environment,
both of which have weight values of 0.05, and their values are set as 8.50. There are three
trustworthy attributes with the second lowest weight value, which are software technology
status change, quality problem close loop and third-party evaluation situation, and the
weight values are 0.09. If the values of these three are all set to 8.50, the condition that
the number of attributes, whose values are greater than or equal to 8.50 and less than
9.50, cannot exceed 3 is not met. Because the trustworthiness allocation is based on the
weight, the attributes with the same weight value need to be assigned the same value.
Therefore, the attribute values of these three trustworthy attributes are all set to 9.50. For
the remaining attributes, the trustworthy attribute values can be specified as 9.50. At this

Symmetry 2022, 14, 628 18 of 25

time, it can be calculated that the software trustworthiness is 9.40, which does not meet the
condition that the software trustworthiness must be greater than or equal to 9.5 in level V.

Denote the values of the nine trustworthy attributes as y1, . . . , y9, respectively. Accord-
ing to Algorithm 1, the process of software allocation is as follows.

Due to y1 = 8.50, y5 = 9.50, y6 = 9.50, y8 = 8.50, y9 = 9.50 are determined in the
pre-processing stage. Let N = {2, 3, 4, 7}, M>10 = ∅, Q = ∅, ∆ = 0. For level V software,
y0 = 8.50, T0 = 9.50. Since y0 < T0, let

f (k) = ∏
i∈{2,3,4,7}−M>10

[y0 + k(αi − αmin)]
αi ∏ y1

α1 y5
α5 y6

α6 y8
α8 y9

α9 ∏
i∈M>10

yi
αi − T0

= ∏
i∈{2,3,4,7}

[y0 + k(αi − αmin)]
αi ∏ 8.500.059.500.099.500.098.500.059.500.09 − 9.50

According to the Newton iterative method, the approximate solution k = 1.4816 of
f (k) = 0 is obtained with k = 0 as the initial iteration value, m = 1000 as the maximum
number of iterations, and 10−10 as the error. Substituting k = 1.4816 into the attribute value
growth function yi = y0 + k(αi − αmin), i ∈ {2, 3, 4, 7}, we can obtain

y2 = 9.68, y3 = 9.72, y4 = 9.65, y7 = 9.59

Because all of these are less than 10.00, Algorithm 1 is stopped.
Since spacecraft software belongs to the safety-critical field, the trustworthy sub-

attributes, corresponding to the V-level software, are limited to at least level C. By using
the software attribute trustworthiness allocation algorithm, given in reference [43], we can
assign software attribute trustworthiness to sub-attribute. The trustworthiness develop-
ment specification of V-level spacecraft software, based on factory reports, is shown in
Table 5. The highest trustworthy value of software attributes is 9.72, and the corresponding
attribute is test verification. In addition, the attributes with a trustworthy value greater
than 9.50 include analysis and design (9.68), reliability and safety (9.65), and configuration
management (9.59). The attributes with a trustworthy value equal to 9.50 contain software
technical status change, quality problem zeroing, and third-party evaluation. The attributes
with a trustworthy value equal to 8.50 are overall planning and execution, and software
development environment. The degree of software trustworthiness is equal to 9.50. As
can be seen from the specification, the more important the attribute is, the greater its trust-
worthy value is. The sub-attribute level in the specification only specifies the minimum
requirements of the sub-attribute, and in the actual development process, it can be carried
out according to the high requirements.

Similarly, from Table 3, it can be seen that in order to reach level IV, the degree of
software trustworthiness should be at least 8.50, the trustworthy attribute value should be
at least 7.00, and the number of attributes, whose value is greater than or equal to 7.00 and
less than 8.50, should not exceed 3. The values of attributes with the lowest weight value
are all set as 7.00. The values of attributes with the second lowest weight value are all set
to 8.50. For the same reason, the trustworthy sub-attribute corresponding to the IV-level
software are restricted to at least level C.

According to Algorithm 1 and the software attribute trustworthiness allocation algo-
rithm, presented in reference [43], the trustworthiness specification of IV-level spacecraft
software, based on factory reports, is shown in Table 6. From this specification, we can see
that most of the sub-attribute levels of IV-level trustworthy software are level B, which is
quite different from that of V-level trustworthy software.

In the same way, we can obtain the level III specification of this type, based on factory
reports, as shown in Table 7. Most of the sub-attribute levels of III-level spacecraft software
are level C and there is no level A.

Symmetry 2022, 14, 628 19 of 25

Table 5. Trustworthiness development specification of V-level spacecraft software based on the
factory reports.

Attribute Attribute
Value Sub-Attribute

Sub-
Attribute

Level

Overall planning and
implementation 8.50

Development planning and execution C
Functionality and performance compliance

with specification A

Integrity of software development
documentation B

Analysis and design 9.68
Input file controlled condition A

Requirement analysis A
Software design A

Test verification 9.72

Test plan and implementation A
Code walk through and static analysis A

Test content comprehensiveness A
Special testing situation A

Test coverage A
Test environment, methods and tool usage B

Reliability and safety 9.65
Reliability and safety analysis B
Reliability and safety design A

Reliability and safety verification A

Software technology status
change 9.50

Basis, demonstration and approval of technical
status change A

Test and verification after changes A
Implementations after changes B

Quality problem close loop 9.50
Quality problem zero completion A

Implementation of one example against three
tasks A

Configuration management 9.59

Configuration management organization,
requirements, and tools A

Change control situation A
Configuration audit, documentary B

Software development
environment

8.50
Development supporting software B
Development supporting hardware B

Third party evaluation
situation

9.50
Evaluation input and evaluation plan situation A

Evaluation of implementation situation B
Problem solving situation A

Table 6. Trustworthiness development specification of IV-level spacecraft software based on
factory reports.

Attribute Attribute
Value Sub-Attribute

Sub-
Attribute

Level

Overall planning and
implementation 7.00

Development planning and execution C
Functionality and performance compliance

with specification C

Integrity of software development
documentation C

Analysis and design 8.78
Input file controlled condition B

Requirement analysis B
Software design B

Test verification 8.85

Test plan and implementation B
Code walk through and static analysis B

Test content comprehensiveness B
Special testing situation B

Test coverage B
Test environment, methods and tool usage B

Reliability and safety 8.73
Reliability and safety analysis B
Reliability and safety design B

Reliability and safety verification B

Symmetry 2022, 14, 628 20 of 25

Table 6. Cont.

Attribute Attribute
Value Sub-Attribute

Sub-
Attribute

Level

Software technology status
change 8.50

Basis, demonstration and approval
of technical status change A

Test and verification after changes B
Implementations after changes C

Quality problem close loop 8.50
Quality problem zero completion B

Implementation of one example against three
tasks B

Configuration management 8.64

Configuration management organization,
requirements, and tools B

Change control situation B
Configuration audit, documentary B

Software development
environment

7.00
Development supporting software C
Development supporting hardware C

Third party evaluation
situation

8.50
Evaluation input and evaluation plan situation C

Evaluation of implementation situation B
Problem solving situation A

Table 7. Trustworthiness development specification of III-level spacecraft software based on the
factory reports.

Attribute Attribute
Value Sub-Attribute

Sub-
Attribute

Level

Overall planning and
implementation 4.50

Development planning and execution C
Functionality and performance compliance

with specification C

Integrity of software development
documentation C

Analysis and design 7.54
Input file controlled condition C

Requirement analysis C
Software design B

Test verification 7.67

Test plan and implementation C
Code walk through and static analysis B

Test content comprehensiveness B
Special testing situation C

Test coverage C
Test environment, methods and tool usage C

Reliability and safety 7.45
Reliability and safety analysis C
Reliability and safety design B

Reliability and safety verification C

Software technology status
change 7.00

Basis, demonstration and approval of technical
status change C

Test and verification after changes C
Implementations after changes C

Quality problem close loop 7.00
Quality problem zero completion C

Implementation of one example against three
tasks C

Configuration management 7.28

Configuration management organization,
requirements, and tools C

Change control situation B
Configuration audit, documentary C

Software development
environment

4.50
Development supporting software C
Development supporting hardware C

Third party evaluation
situation

7.00
Evaluation input and evaluation plan situation C

Evaluation of implementation situation C
Problem solving situation C

Symmetry 2022, 14, 628 21 of 25

From these specifications, it can be seen that there is only one C-level sub-attribute in
V-level spacecraft software, while there is no A-level sub-attribute in III-level spacecraft
software. There are no D-level sub-attributes in level V, IV and III software. In fact, level
D specifies that the trustworthy value of this sub-attribute is 2, which means that this
sub-attribute is not trusted.

5.3. Trustworthiness Improvement Specification for Spacecraft Software Based on Factory Reports

Let y′1, . . . , y′9 represent the values of the nine trustworthy attributes in Table 4, before
software trustworthiness reallocation, and y1, . . . , y9 express that after reallocation. Suppose
the degree of the software trustworthiness, before improvement, is T′, and the degree of
improved software trustworthiness is T.

It is assumed that the level II software in Table 4 needs to be improved to level
III software; that is, the software numbered 4 is upgraded from level II to level III.
Then, based on the improved software trustworthiness reallocation method, a specifi-
cation can be given to guide the software trustworthiness improvement. The process of
trustworthiness reallocation of the software numbered 4 is as follows. First, initialize
N = {1, 2, . . . , 9}, then n = 9. Since y0 = 4.50, y′0 = 7.00, T0 = 7.00 for level III. We
can obtain P =

{
i|i ∈ N ∧ yi ≥ y′0

}
= {1, 2, 4, 5, 6, 7, 9}, and let

{
yi = y′i|i ∈ P

}
. Because

|N − P| = 2 < (n− dn× 2/3e) = 3, let yi = y′i(i ∈ N − P). Since ∏
i∈N

yi
αi = 7.09 ≥ 7.00, it

can be derived that Q = { i|i ∈ (N − P) ∧ yi < y0} = {8}, set y8 = 4.50, then Algorithm 2
is stopped.

The results calculated using Algorithm 2 are shown in Table 8. It can be seen from
Table 8 that in order to improve the software numbered 4, from level II to level III, it is only
necessary to upgrade the software development environment attribute value from 4.24 to
4.50. Table 7 shows that only two sub-attributes of the software development environment,
development supporting software and development supporting hardware, need to be
raised to level C respectively.

Table 8. Trustworthiness improvement specification of software numbered 4 from level II to level III.

Changes of Trustworthy at
Tribute Values No. 4

Changes of Trustworthy
Attribute and Software

Trustworthiness
Values

No. 4

y′1 → y1 7.66→ 7.66 y′6 → y6 8.37→ 8.37
y′2 → y2 7.61→ 7.61 y′7 → y7 9.00→ 9.00
y′3 → y3 4.76→ 4.76 y′8 → y8 4.24→ 4.50
y′4 → y4 7.61→ 7.61 y′9 → y9 9.37→ 9.37
y′5 → y5 8.26→ 8.26 T′ → T 7.09→ 7.12

It is assumed that the software numbered 2 in Table 4 needs to be upgraded from level
III to level IV. The following is the process of trustworthiness reallocation of software num-
bered 2. First, initialize N = {1, 2, . . . , 9}, then n = 9. Since y0 = 7.00, y′0 = 8.50, T0 = 8.50
for level IV, it follows that P =

{
i|i ∈ N ∧ yi ≥ y′0

}
= {7, 8, 9}, and let

{
yi = y′i|i ∈ P

}
. Be-

cause |N − P| = 6 > (n− dn× 2/3e) = 3, take the three attributes with the largest weight
values from set

{
y′i|i ∈ (N − P)

}
and set their attribute values to 8.5 after software trust-

worthiness reallocation. That is, y2 = 8.5, y3 = 8.5, y4 = 8.5. Update P = {2, 3, 4, 7, 8, 9}
and let

{
yi = y′i|i ∈ (N − P)

}
. Due to ∏

i∈N
yi

αi = 8.63 > T0 = 8.50, Algorithm 2 is stopped.

The reallocation results are y1 = 8.28, y2 = 8.50, y3 = 8.50, y4 = 8.50, y5 = 8.50,
y6 = 8.37, y7 = 9.00, y8 = 9.00, y9 = 9.65, as shown in Table 9.

At this time, it is necessary to adjust the attribute values of test verification, analysis
and design, and reliability and safety, to 8.50. According to the calculation of the software
attribute trustworthiness allocation algorithm designed in [30], the level of measurement
element, corresponding to each sub-attribute of analysis and design, reliability and security,
should be adjusted to B. Test validation can be adjusted in a variety of ways, such as

Symmetry 2022, 14, 628 22 of 25

adjusting test planning and execution to level C and the rest to level B, or adjusting test
environment, method and tool usage to level C and the rest to level B.

Table 9. Trustworthiness improvement specification of software numbered 2 from level III to level IV.

Changes of Trustworthy at
Tribute Values No. 2

Changes of Trustworthy
Attribute and Software
Trustworthiness Values

No. 2

y′1 → y1 8.28→ 8.28 y′6 → y6 8.37→ 8.37
y′2 → y2 7.61→ 8.50 y′7 → y7 9.00→ 9.00
y′3 → y3 6.13→ 8.50 y′8 → y8 9.00→ 9.00
y′4 → y4 8.26→ 8.50 y′9 → y9 9.65→ 9.65
y′5 → y5 8.28→ 8.28 T′ → T 7.90→ 8.63

6. Discussion

Reference [38] defines a software trustworthiness allocation model as a mathematical
programming model, and reference [43] presents a similar allocation model for software
attribute trustworthiness. The improved software trustworthiness allocation model given
in this paper has the same objective function as the model proposed in [38], but adds
constraints related to the absolute majority of software trustworthiness classification. On
the other hand, their attribute variables have different value ranges. The value range
of the attribute variable of the model established in [38] is (0,1). In this case, when the
attribute value yi is kept unchanged and the attribute weight value αi is increased, yαi

i will
decrease, which is inconsistent with expectations. The value range of attribute variables
in the improved model is (1,10), which can solve this problem well. At the same time,
the improved model has different objective functions and constraints from the software
attribute trustworthiness allocation model described in [43]. Therefore, the allocation
algorithms proposed in [38,43] cannot be used to solve the improved allocation model. In
order to solve the improved model, a polynomial time algorithm is designed in this paper.
In the improved allocation algorithm, the trustworthiness initial allocation is carried out by
using the Newton iteration algorithm, and the constraint of absolute majority is taken into
account in the final allocation.

Reference [39] also builds a software trustworthiness reallocation model, based on
mathematical programming, and the improved software trustworthiness reallocation model
presented here has the same objective function, but more constraints. Meanwhile, refer-
ence [39] does not comprehensively consider reducing software modifications as much
as possible when designing the reallocation algorithm. In order to solve this problem,
in the improved reallocation algorithm, if the value of the trustworthy attribute, before
reallocation, is already greater than y′0, no modification is required. Similar to the improved
allocation algorithm, the Newton iteration algorithm is used for the initial reallocation, and
then the final reallocation is carried out according to the absolute majority constraint.

The effectiveness of allocation and reallocation methods, given in [38,39,43], are vali-
dated by examples. In this paper, the improved allocation and reallocation methods are
applied to formulate a trustworthiness enhancement specification for spacecraft software,
based on factory reports, to demonstrate their effectiveness. The improved allocation
algorithm is used to establish the software trustworthiness development specification of
spacecraft software, and the improved reallocation algorithm is utilized to build a software
trustworthiness improvement specification.

7. Conclusions and Future Work

In this paper, the software trustworthiness measurement model used in [3,40], the
software trustworthiness classification model established in [3] and the software trust-
worthiness hierarchical model, based on factory reports, given in [3], are introduced. We
present a software trustworthiness classification model, based on factory reports, and con-
struct improved models to allocate and reallocate the trustworthy degree of software to its

Symmetry 2022, 14, 628 23 of 25

attribute appropriately. Both the improved allocation and reallocation model are defined as
mathematical programming models. Compared with the allocation model defined in [38],
the improved allocation model adds the absolute majority of software trustworthiness clas-
sification constraint, and has more reasonable attribute variable value range. The improved
reallocation model also adds the absolute majority constraint, compared to the model given
in [39]. Polynomial time algorithms are given to calculate the optimal solutions of these
improved models. They can more accurately assign or reassign software trustworthiness.
Moreover, the designed reallocation algorithm can also reduce the software modifications
as much as possible, in the process of improving the software. It should be noted that the
allocation and reallocation algorithms given in this paper are only suitable for the case
where the growth rates of all attributes are the same. The trustworthiness enhancement
specification of spacecraft software, based on our improved allocation and reallocation
approaches, is formulated, including trustworthiness development specification and trust-
worthiness improvement specification. It demonstrates the rationality and effectiveness
of these improved methods. Meanwhile, these improved methods can be used to develop
trustworthiness enhancement specifications for other types of software.

The following questions deserve further study. Firstly, both the improved allocation
model and the improved reallocation model assume that all the attributes have the same
growth rate. If their growth rates are not the same, how to design polynomial time al-
gorithms for related models is very important to study. Secondly, both the trustworthy
attribute value growth function and the modified trustworthy attribute value growth func-
tion are linear functions. If they are other types of functions, how can the corresponding
allocation and reallocation model be solved? Thirdly, the improved software trustworthi-
ness allocation model and reallocation model are both constructed based on the simplified
software trustworthiness measurement model. In the future, we will study how to build
the software trustworthiness allocation model and reallocation model, according to other
software trustworthiness measurement models, and design corresponding solving algo-
rithms. Finally, we assume that the software attribute values are positively correlated
with the software development cost, but do not give the quantitative relationship model
between them. In the future, we will study the quantitative relationship model between the
software attribute values and the software development cost, and introduce the quantitative
relationship model into the software trustworthiness allocation and reallocation models, to
guide the control of the software development cost more accurately.

Author Contributions: Conceptualization, H.T. and Y.C.; methodology, H.T. and Y.C.; formal analysis,
H.T., Y.C. and L.H.; software, L.F.; writing—original draft preparation, H.T. and L.F.; writing—review
and editing, L.H. and X.W.; funding acquisition, H.T. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was financially supported by Doctoral Research Fund of Zhengzhou University
of Light Industry (2016BSJJ037) and Science and Technology Project of Henan Province (212102210076,
202102210351).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to thank all the scholars who give many constructive suggestions
and critical comments, which help us improve the general quality of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. He, J.F.; Shan, Z.G.; Wang, J.; Pu, G.G.; Fang, Y.F.; Liu, K.; Zhao, R.Z.; Zhang, Z.T. Review of the Achievements of Major Research

Plan of Trustworthy Software. Bull. Natl. Nat. Sci. Found. China 2018, 32, 291–296.
2. Jin, Z.H. Fatal Bug: The Disaster and Enlightenment of Software Defects; People’s Posts and Telecommunications Press: Beijing, China,

2016.

Symmetry 2022, 14, 628 24 of 25

3. Chen, Y.X.; Tao, H.W. Software Trustworthiness Measurement Evaluation and Enhancement Specification; Science Press: Beijing, China,
2019.

4. Tao, H.W.; Chen, Y.X.; Wu, H.Y.; Deng, R.M. A Survey of Software Trustworthiness Measurements. Int. J. Perform. Eng. 2019, 15,
2364–2372.

5. Deng, R.M.; Chen, Y.X.; Wu, H.Y.; Tao, H.W. Software Trustworthiness Evaluation using Structural Equation Modeling. Int. J.
Perform. Eng. 2019, 15, 2628–2635.

6. Alarcon, G.M.; Militello, L.G.; Ryan, P.; Jessup, S.A.; Calhoun, C.S.; Lyons, J.B. A Descriptive Model of Computer Code
Trustworthiness. J. Cogn. Eng. Dec. Mak. 2017, 11, 107–121. [CrossRef]

7. Basso, T.; Silva, H.; Moraes, R. On the Use of Quality Models to Characterize Trustworthiness Properties. In Proceedings of the
International Workshop on Software Engineering for Resilient Systems, Naples, Italy, 17 September 2019; pp. 147–155.

8. Alarcon, G.M.; Ryan, T.J. Trustworthiness Perceptions of Computer Code: A Heuristic-Systematic Processing Model. In
Proceedings of the 51st Hawaii International Conference on System Sciences, Waikoloa Village, HI, USA, 2–6 January 2018;
pp. 5384–5393.

9. Lv, Z.H.; Han, Y.; Singh, K.A.; Manogaran, G.; Lv, H.B. Trustworthiness in Industrial IoT Systems Based on Artificial Intelligence.
IEEE Trans. Industr. Inform. 2021, 17, 1496–1504.

10. Lemes, C.I.; Naessens, V.; Vieira, M. Trustworthiness Assessment of Web Applications: Approach and Experimental Study Using
Input Validation Coding Practices. In Proceedings of the 30th International Symposium on Software Reliability Engineering
(ISSRE), Berlin, Germany, 28 October–1 November 2019; pp. 435–445.

11. Medeiros, N.; Ivaki, N.; Costa, P.; Vieira, M. Vulnerable Code Detection Using Software Metrics and Machine Learning. IEEE
Access 2020, 8, 219174–219198. [CrossRef]

12. Medeiros, N.; Ivaki, N.; Costa, P.; Vieira, M. An Approach for Trustworthiness Benchmarking Using Software Metrics. In
Proceedings of the 23rd IEEE Pacific Rim International Symposium on Dependable Computing (PRDC 2018), Taipei, Taiwan, 4–7
December; pp. 84–93.

13. Tao, H.W.; Zhao, J. An Improved Attributes-Based Software Trustworthiness Metric Model. J. Wuhan Univ. 2017, 63, 151–157.
14. Tao, H.W.; Chen, Y.X.; Wu, H.Y. Decomposition of Attributes Oriented Software Trustworthiness Measure Based on Axiomatic

Approaches. In Proceedings of the 20th International Conference on Software Quality, Reliability and Security Companion
(QRS-C), Macau, China, 11–14 December 2020; pp. 308–315.

15. Liu, H.; Tao, H.W.; Chen, Y.X. An Approach for Trustworthy Evidence of Source Code Oriented Aerospace Software Trustworthi-
ness Measurement. AER Control Appl. 2021, 47, 32–41.

16. Khan, S.; Jha, S.K.; Khatri, S.K. Dependability and Trustworthiness Analysis for Component Based Software Development. Int. J.
Rec. Techn. Eng. 2019, 8, 2277–3878.

17. Jabeen, G.; Ping, L. A Unified Measurable Software Trustworthy Model Based on Vulnerability Loss Speed Index. In Proceedings
of the 18th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/13th IEEE
International Conference on Big Data Science and Engineering, Rotorua, New Zealand, 5–8 August 2019; pp. 18–25.

18. Muhammad, D.M.S.; Fairul, R.F.; Loo, F.A.; Nur, F.A.; Norzamzarini, B. Rating of Software Trustworthiness Via Scoring of System
Testing Results. Int. J. Dig. Enterp. Technol. 2018, 1, 121–134.

19. Wang, D.X.; Wang, Q.; He, J. Evidence-based Software Process Trustworthiness Model and Evaluation Method. J. Softw. 2017, 28,
1713–1731.

20. Ogunniye, G.; Legastelois, B.; Rovatsos, M.; Dowthwaite, L.; Portillo, V.; Vallejos, E.P.; Zhao, J.; Jirotka, M. Understanding User
Perceptions of Trustworthiness in E-recruitment Systems. IEEE Internet Comput. 2021, 25, 23–32. [CrossRef]

21. Shi, H.L.; Ma, J.; Zou, F.Y. A Fuzzy Comprehensive Evaluation Model for Software Dependability based on Entropy Weight.
In Proceedings of the 2008 International Conference on Computer Science and Software Engineering, Wuhan, China, 12–14
December 2008; pp. 683–685.

22. Li, B.; Cao, Y. An Improved Comprehensive Evaluation Model of Software Dependability based on Rough Set Theory. J. Soft.
2009, 4, 1152–1159. [CrossRef]

23. Zhang, F.; Xu, M.D.; Chao, H.C.; Zhang, C.; Liu, X.L.; Hu, F.N. Real-time Trust Measurement of Software: Behavior Trust Analysis
Approach based on Noninterference. J. Softw. 2019, 30, 2268–2286.

24. Tian, F.; Guo, Y.H. Software Trustworthiness Evaluation Model based on Behavior Trajectory Matrix. Inform. Softw. Technnol. 2020,
119, 106–233.

25. Ji, C.Y.; Su, X.; Qin, Z.F.; Nawaz, A. Probability Analysis of Construction Risk based on Noisy-or Gate Bayesian Networks. Rel.
Eng. Syst. Saf. 2022, 217, 107974. [CrossRef]

26. Ogundoyin, S.O.; Kamil, I.A. A Fuzzy-AHP based Prioritization of Trust Criteria in Fog Computing Services. Appl. Soft Comput.
2020, 97, 106789. [CrossRef]

27. Sahu, K.; Srivastava, R.K. Soft Computing Approach for Prediction of Software Reliability. ICIC Express Lett. 2018, 12, 1213–1222.
28. Sahu, K.; Srivastava, R.K. Revisiting Software Reliability. In Book Data Management, Analytics and Innovation, Advances in Intelligent

Systems and Computing; Balas, V., Sharma, N., Chakrabarti, A., Eds.; Springer: Singapore, 2019; Volume 808, pp. 221–235.
29. Al-Mejibli, I.S.; Alharbe, N.R. A Fuzzy Analytic Hierarchy Process for Security Risk Assessment of Web Based Hospital

Management System. Int. J. Adv. Trends Comput. Sci. Eng. 2019, 8, 2470–2474. [CrossRef]

http://doi.org/10.1177/1555343416657236
http://doi.org/10.1109/ACCESS.2020.3041181
http://doi.org/10.1109/MIC.2021.3115670
http://doi.org/10.4304/jsw.4.10.1152-1159
http://doi.org/10.1016/j.ress.2021.107974
http://doi.org/10.1016/j.asoc.2020.106789
http://doi.org/10.30534/ijatcse/2019/92852019

Symmetry 2022, 14, 628 25 of 25

30. Marshall, A.M. Digital Forensic Tool Verification: An Evaluation of Options for Establishing Trustworthiness. Forensic Sci. Int.:
Digit. Investig. 2021, 38, 301181. [CrossRef]

31. Maza, S.; Megouas, O. Framework for Trustworthiness in Software Development. Int. J. Perf. Eng. 2021, 17, 241–252. [CrossRef]
32. Buraga, S.C.; Amariei, D.; Dospinescu, O. An OWL-Based Specification of Database Management Systems. Comput. Mater. Cont.

2022, 70, 5537–5550. [CrossRef]
33. Riehle, R.D.; Michael, J.B. Improving the Trustworthiness of Software Through Rigorous Data Type Design. Computer 2021, 54,

89–95. [CrossRef]
34. Xu, Z.S. Research on Software Trustworthiness Measurement Evaluation Model based on Data Driven. In Proceedings of the

2nd International Conference on Computer Science Communication and Network Security (CSCNS2020), Sanya, China, 22–23
December 2020; pp. 1–4.

35. Novikova, E.; Doynikova, E.; Gaifulina, D.; Kotenko, I. Construction and Analysis of Integral User-Oriented Trustworthiness
Metrics. Electronics 2022, 11, 234. [CrossRef]

36. Alzahari, S.; Kamalrudin, M. An Approach to Elicit Trustworthiness Requirements in Blockchain Technology. J. Phys. Conf. Ser.
2021, 1807, 012031. [CrossRef]

37. Choudhary, C.; Kapur, P.K.; Khatri, S.K.; Majumdar, R. Software Quality and Reliability Improvement in Open Environment.
In Book Advances in Interdisciplinary Research in Engineering and Business Management: Asset Analytics (Performance and Safety
Management); Kapur, P.K., Singh, G., Panwar, S., Eds.; Springer: Singapore, 2021; pp. 263–276.

38. Ma, Y.J.; Chen, Y.X.; Gu, B. An Attributes-Based Allocation Approach of Software Trustworthy Degrees. In Proceedings of the 2015
IEEE International Conference on Software Quality, Reliability and Security Companion, Vancouver, BC, Canada, 3–5 August
2015; pp. 89–94.

39. Tao, H.W.; Chen, Y.X.; Wu, H.Y. A Reallocation Approach for Software Trustworthiness Based on Trustworthy Attributes.
Mathematics 2020, 8, 14. [CrossRef]

40. Wang, J.; Chen, Y.X.; Gu, B.; Guo, X.Y.; Wang, B.H.; Jin, S.Y.; Xu, J.; Zhang, J.Y. An Approach to Measuring and Grading Software
Trust for Spacecraft Software. Sci. Sin. Technol. 2015, 45, 221–228.

41. Kitchenham, B.; Pflfleeger, S.L.; Fenton, N. Towards a Framework for Software Measurement Validation. IEEE Trans. Softw. Eng.
1995, 21, 929–943. [CrossRef]

42. Briand, L.C.; Morasca, S.; Basili, R.V. Property-based Software Engineering Measurement. IEEE Trans. Softw. Eng. 1996, 22, 68–86.
[CrossRef]

43. Tao, H.W.; Wu, H.Y.; Chen, Y.X. An Approach of Trustworthy Measurement Allocation Based on Sub-Attributes of Software.
Mathematics 2019, 7, 237. [CrossRef]

http://doi.org/10.1016/j.fsidi.2021.301181
http://doi.org/10.23940/ijpe.21.02.p8.241252
http://doi.org/10.32604/cmc.2022.021714
http://doi.org/10.1109/MC.2020.3033610
http://doi.org/10.3390/electronics11020234
http://doi.org/10.1088/1742-6596/1807/1/012031
http://doi.org/10.3390/math8010014
http://doi.org/10.1109/32.489070
http://doi.org/10.1109/32.481535
http://doi.org/10.3390/math7030237

	Introduction
	Software Trustworthiness Measurement and Classification
	Software Trustworthiness Measurement Model
	Software Trustworthiness Classification Model

	Improved Allocation Approach for Software Trustworthiness
	Improved Reallocation Approach for Software Trustworthiness
	Trustworthiness Enhancement Specification for Spacecraft Software Based on Factory Reports
	Software Trustworthiness Measurement and Classification Based on Factory Reports
	Trustworthiness Development Specification for Spacecraft Software Based on Factory Reports
	Trustworthiness Improvement Specification for Spacecraft Software Based on Factory Reports

	Discussion
	Conclusions and Future Work
	References

