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Abstract: In this study, the numerical solutions of linear two-dimensional Fredholm integral equations
of the second kind via Bernstein operators are considered. The method is presented with illustrative
examples for regularized-equal and Chebyshev collocation points. The obtained numerical results
from illustrative examples show that the proposed numerical algorithm is accurate and efficient for
solving linear two-dimensional Fredholm integral equation of the second kind.
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1. Introduction

Let D := [0, 1]× [0, 1]. Two dimensional linear Fredholm integral equations of the
second kind

α(x, y)u(x, y)− β(x, y)
1∫

0

1∫
0

κ(x, y; s, t)u(s, t)dsdt = f (x, y), (x, y) ∈ D (1)

is considered, where α(x, y), β(x, y) and f (x, y) are given non-zero continuos functions
on D. κ(x, y; s, t) ∈ C(D × D) (i.e., continuous space on D × D) is the kernel function,
and u(x, y) is the undetermined function. Fredholm and Volterra integral equations often
appear in science and engineering problems. For example Fredholm integral equations
arise in mathematical economics (see [1]), in fluid mechanics problems involving hydrody-
namic interactions near finite-sized elastic interfaces (see [2,3]) and in physics; for the mass
distribution of polymers in a polymeric melt [4]. Volterra integral equations are important
for initial value problems of differential equations (see [5]). See also [6–8] for more applica-
tions of Fredholm and Volterra integral equations in mathematical physics. Obtaining the
analytical solutions of integral equations is difficult, so the numerical solutions of integral
equations are necessary.

There are some numerical methods for solving integral equations of the second kind,
such as the Bernstein piecewise polynomial method, integral mean value method, Taylor
series method and least square method as presented in [9] for one dimensional Fredholm
integral equations. A simple numerical method based on Berstein’s approximation for
Volterra integral equation is presented in [10] for one dimension, and authors approximate
unknown function by Bernstein’s polynomial approximation. Bivariate generalized Bern-
stein operators are used to solve Fredholm integral equations in [11] with applications.
Lagrange polynomial approximation, Barycentric Lagrange polynomial approximation,
and modified Lagrange polynomial approximation were also used for numerical solutions
of Volterra and Fredholm integral equations in [12] for one dimension, and in [13] for two
dimensions. Cosine-trigonometric basis functions are developed to solve two dimensional
Fredholm integral equations of the second kind, with accurate solution by [14]. Weakly
singular kernel using spectral collocation is another technique for solving Fredholm in-
tegral equations of the second kind [15]. Modified Berstein–Kantorovich operators were
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used for numerical solutions of the Fredholm and Volterra integral equations, see [16].
Two-dimensional Volterra–Fredholm integral equations of the second kind are solved
by Berstein operators, based on approximating unknown function with Bernstein poly-
nomials [17]. Two dimensional Bernstein polynomial approximation method for mixed
Fredholm-Volterra integral equations is presented in [18] with operational matrix. The
method has several advantages in reducing computational burden with good accuracy.
Moreover, Bernstein operators are useful to find the approximate solutions of the integral
equations, see also [19–23].

This paper presents a two dimensional Bernstein polynomial approximation method
with regularized-equal collocation points and with Chebyshev collocation points to solve
two dimensional linear Fredholm integral equation of the second kind.

The sections of the paper are organized as follows: In Section 2, the two dimensional
Bernstein polynomial approximation method is considered with regularized equally-spaced
and with Chebyshev collocation points. A numerical approach based on the method given
by [24] is developed for solving Fredholm integral equations of the second kind. In
Section 3, the method is applied on some examples from literature. These numerical
examples illustrate the efficiency and applicability of the method. The interpretations of
the obtained results are given in Section 4.

2. Bernstein Polynomial Approximation Method
2.1. Two-Dimensional Bernstein Polynomial Approximation Method

Two dimesional Bernstein polynomials of degree m× n on the square D := [0, 1]×
[0, 1] are

b(k,m),(p,n)(x, y) =

(
m
k

)(
n
p

)
xk(1− x)m−kyj(1− y)n−p, (x, y) ∈ D, (2)

k = 0, 1, . . . , m, p = 0, 1, . . . , n ∈ N.

Then, the Bernstein approximation Bm,n( f (x, y)) to a function f (x, y) : D → R is the
polynomial

Bm,n( f (x, y)) =
m

∑
k=0

n

∑
p=0

f
(

k
m

,
p
n

)
b(k,m),(p,n)(x, y). (3)

See [25] for the properties of Bernstein polynomials on D and convergency for frac-
tional integration and see [17] for the properties of Bernstein polynomials on D and conver-
gency of this approximation method for Volterra–Fredholm integral equations.

2.2. Discretization of the Integral Equations by Bernstein’s Approximation

Consider the following integral equation,

α(x, y)u(x, y)− β(x, y)
1∫

0

1∫
0

κ(x, y; s, t)u(s, t)dsdt = f (x, y), (x, y) ∈ D, (4)

where, α(x, y), β(x, y) and f (x, y) are non-zero continuous functions on D. κ(x, y; s, t) ∈
C (D× D) is the kernel function and u(x, y) is the undetermined function. The two
dimensional Bernstein’s approximation Bm,n(u(x, y)) of the m× n degree are defined on
D as,

Bm,n(u(x, y)) =
m

∑
k=0

n

∑
p=0

u
(

k
m

,
p
n

)
b(k,m),(p,n)(x, y), (5)

where,

b(k,m),(p,n)(x, y) =

(
m
k

)(
n
p

)
xk(1− x)m−kyp(1− y)n−p, (x, y) ∈ D, (6)

k = 0, 1, . . . , m, p = 0, 1, . . . , n ∈ N.
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In order to find u( k
m , p

n ), k = 0, 1, . . . , m, p = 0, 1, . . . , n convert (4) into a linear form
by using the collocation points xi , i = 0, 1, . . . , m, and yj , j = 0, 1, . . . , n and approximating
the unknown function u(x, y) by (5). That is,

α(xi, yj)
m

∑
k=0

n

∑
p=0

u(
k
m

,
p
n
)b(k,m),(p,n)(xi, yj) (7)

−β(xi, yj)

1∫
0

1∫
0

κ(xi, yj; s, t)
m

∑
k=0

n

∑
p=0

u(
k
m

,
p
n
)b(k,m),(p,n)(s, t)dsdt

= f (xi, yj), (xi, yj) ∈ D.

Choose collocation points xi, i = 0, 1, . . . , m and yj, j = 0, 1, . . . , n as regularized-
equally spaced

xi =

{
ε + i

m , for i 6= m
1− ε, for i = m

and yj =

{
ε + j

n , for j 6= n
1− ε, for j = n

(8)

for arbitrary small ε to get rid of the undetermined computations as 00 in the
Equation (7) [10]. On the other hand, in the practical calculation, the second Chebyshev
collocation points (xi, yj), i = 0, 1, . . . , m, j = 0, 1, . . . , n are taken as;

xi =

{
1−cos iπ

m
2 + ε, for i 6= m, i 6= 0

1− ε, for i = m
and yj =

{
1−cos jπ

n
2 + ε, for j 6= n, j 6= 0

1− ε, for j = n
. (9)

Equivalently, (7) can be written in the matrix form

AX = Y, (10)

where, the coefficient matrix A ∈ R(m+1)(n+1)×(m+1)(n+1) is

A =

α(xi, yj)b(k,m),(p,n)(xi, yj)− β(xi, yj)

1∫
0

1∫
0

κ(xi, yj; s, t)b(k,m),(p,n)(s, t)dsdt


i = 0, 1, . . . , m, j = 0, 1, . . . , n, k = 0, 1, . . . , m, p = 0, 1, . . . , n, (11)

right side vector is

Y =
[

f (xi, yj)
]T , i = 0, 1, . . . , m, j = 0, 1, . . . , n,

and the unknown vector X given as

X =

[
um,n(

k
m

,
p
n
)

]T
.



Symmetry 2022, 14, 625 4 of 10

Algorithm 1: Numerical solution of the two dimensional Fredholm integral
equation of the second kind by using Bernstein polynomial approximation
Bm,n(u(x, y)), is obtained as follows:

STEP 1. Put the m and n values.
STEP 2. Set the collocation points xi, i = 0, 1, . . . , m and yj, j = 0, 1, . . . , n, as in (8)

or (9).
STEP 3. Use STEP 1 and STEP 2 by Equation (11) to find matrix A.
STEP 4. Calculate Y =

[
f (xi, yj)

]T , i = 0, 1, . . . , m, j = 0, 1, . . . , n.
STEP 5. Solve the system (10) and denote the numerical solution by um,n(

k
m , p

n ).
STEP 6. Substitute um,n(

k
m , p

n ) in Equation (5) and compute Bm,n(um,n(
k
m , p

n )).
STEP 7. Calculate the error function E(x, y) = u(x, y)− Bm,n(um,n(x, y)).

3. Numerical Results

In this numerical section, three test problems are used with the following errors. Let
xp, p = 0, 1, . . . , N1 and yq, q = 0, 1, . . . , N2 be the selected points, where N1 and N2 are not
necessarily equal to m and n, respectively. i.e., Error can be calculated for different number
of selected points We define maximum and root mean square errors by

E(x, y) = u(x, y)− Bm,n(um,n(x, y)) (12)

ep,q = E(xp, yq) (13)

e = max
p,q

∣∣ep,q
∣∣ (14)

RMSE =

√√√√ 1
(N1 + 1)(N2 + 1)

N2

∑
q=0

N1

∑
p=0

e2
p,q (15)

respectively. We use the notation cond(A) to present the condition number of matrix A.
Mathematica in double precision is used, to solve the examples. The exact solutions are
known and used to show that the numerical solutions obtained by Bernstein polynomial
approximation is correct. Moreover, “GaussKronrodRule” is used for numerical integration.

Example 1. Let D := [0, 1]× [0, 1]. We consider the integral equation,

u(x, y) = sin(x + y)
1∫

0

1∫
0

u(s, t)dtds + f (x, y), (x, y) ∈ D, (16)

where f (x, y) = [1 + sin(2) − 2 sin(1)] sin(x + y), has the exact solution u(x, y) = sin(x +
y) [13]. The Table 1 presents the errors and cond(A) in (11) of the linear system (10) by the
given algorithm for regularized-equal collocation points in (8). The Table 2 presents the errors and
cond(A) in (11) of the linear system (10) by the given algorithm for Chebyshev collocation points
in (9).

The values of the approximate solution um,n(xi, yj) at Chebyshev collocation points (9)
are more accurate than at regularized equal collocation points. Usually, accuracy of the
method is higher by Chebyshev collocation points than regularized equi-spaced points.
Analogous results when Lagrange and Brycentric Lagrange methods were used to approxi-
mate the solution of two dimensional Fredholm integral equation of the second kind were
also obtained in [13].

The cond(A) of the coefficient matrix in (11) for Example 1 is increasing when the
values m and n are increasing. This leads to ill-conditioning of the coefficient matrix A.
Preconditioning techniques can be used for reducing the condition numbers see [26–29].
For example, a particular class of regular splittings of symmetric M-matrices was used to
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precondition the conjugate gradient (CG) method in [29]. Errors
∣∣ep,q

∣∣ of Berstein polyno-
mial approximation method for regularized-equal collocation points and for Chebyshev
collocation points when n = 4 and m = 4 can be seen in Figures 1 and 2, respectively.

RMSE e cond(A)

m = 4; n = 4 4:83519� 10�4 6:20168� 10�4 45:0771

m = 6; n = 6 1:47242� 10�7 1:88455� 10�7 825:869

m = 8; n = 8 5:78929� 10�11 7:39292� 10�11 14001:9

m = 10; n = 10 2:49619� 10�14 3:25295� 10�14 231568

m = 12; n = 12 5:89465� 10�15 7:77156� 10�15 3:82524� 106
Table 2
RMSE, maximum errors and cond(A) obtained by Bernstein polynomial approxi-
mation with Chebyshev collocation points for the Example 1.

Fig. 1. Error jep;qj for the Bernstein method with regularized-equal collocation points
for Example 1.

Fig. 2. Error jep;qj for the Bernstein method with Chebyshev collocation points for
Example 1.
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7

Figure 2. Error
∣∣ep,q

∣∣ for the Bernstein method with Chebyshev collocation points for Example 1.

Example 2. Let D2 := [0, π/2]× [0, 1]. Consider the following integral equation of the form

ex+yu(x, y) = x2y
π/2∫
0

1∫
0

(x + y + s + t)u(s, t)dtds + f (x, y), (x, y) ∈ D2, (17)

where,

f (x, y) = (e− 1)(1− eπ/2)(x3y + x2y2) +

[
(e− 1)

(
eπ/2 − eπ/2

2
π − 1

)
+ (1− eπ/2)

]
x2y + e2x+2y,

and the exact solution is u(x, y) = ex+y [13].

Remark 1. Regularized equally- spaced collocation points xi, i = 0, 1, . . . , m and yj, j = 0, 1, . . . , n
for Example 2 are taken as

xi =

{
ε + πi

2m , for i 6= m
π
2 − ε, for i = m

and yj =

{
ε + j

n , for j 6= n
1− ε, for j = n

, (18)
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and Chebyshev collocation points are taken as,

xi =

{
1
2 (

π
2 −

π
2 cos iπ

m ) + ε, for i 6= m, i 6= 0
π
2 − ε, for i = m

and yj =

{
1−cos jπ

n
2 + ε, for j 6= n, j 6= 0

1− ε, for j = n
. (19)

Table 1. RMSE, maximum errors and cond(A) obtained by Bernstein polynomial approximation with
regularized-equal collocation points for the Example 1.

RMSE e cond(A)

m = 4, n = 4 8.38179× 10−4 1.06334× 10−3 57.8964

m = 6, n = 6 1.58843× 10−6 2.00316× 10−6 2094.98

m = 8, n = 8 2.12976× 10−9 2.67504× 10−9 83,023.7

m = 10, n = 10 2.03771× 10−12 2.55296× 10−12 3.51706× 106

m = 12, n = 12 6.94695× 10−15 9.21485× 10−15 1.57479× 108

Table 2. RMSE, maximum errors and cond(A) obtained by Bernstein polynomial approximation with
Chebyshev collocation points for the Example 1.

RMSE e cond(A)

m = 4, n = 4 4.83519× 10−4 6.20168× 10−4 45.0771

m = 6, n = 6 1.47242× 10−7 1.88455× 10−7 825.869

m = 8, n = 8 5.78929× 10−11 7.39292× 10−11 14,001.9

m = 10, n = 10 2.49619× 10−14 3.25295× 10−14 231,568

m = 12, n = 12 5.89465× 10−15 7.77156× 10−15 3.82524× 106

The Table 3 presents the errors and cond(A) of (11) for Example 2 with the given
method for regularized-equal collocation points in (8). The Table 4 presents the errors and
cond(A) of (11) for Example 2 with the given method for Chebyshev collocation points
in (9).

Table 3. RMSE, maximum errors and cond(A) matrix obtained by Bernstein polynomial approxima-
tion with regularized-equal collocation points for the Example 2.

RMSE e cond(A)

m = 4, n = 4 3.5208× 10−3 8.13074× 10−3 319.544

m = 8, n = 8 4.33182× 10−8 1.05168× 10−7 370,059

m = 10, n = 10 9.91076× 10−11 2.42851× 10−10 1.52628× 107

m = 12, n = 12 1.7907× 10−13 4.3876× 10−13 6.67461× 108

m = 15, n = 15 5.44544× 10−14 1.35003× 10−13 2.14727× 1011

Usually, solving the integral Equation (17) by Bernstein polynomial approximation
with Chebyshev collocation points in (9) give more accurate solutions than with regularized-
equal collocation points. cond(A) of (10) is increasing according to m and n values. For this
example ill-conditioned matrix is obtained when the m and n values are increased. Errors∣∣ep,q

∣∣ of Berstein polynomial approximation method for regularized-equal collocation points
and for Chebyshev collocation points when n = 4 and m = 4 can be seen in Figures 3 and 4,
respectively.
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Table 4. RMSE, maximum errors and cond(A) matrix obtained by Bernstein polynomial approxima-
tion with Chebyshev collocation points for the Example 2.

RMSE e cond(A)

m = 4, n = 4 1.92655× 10−3 4.33359× 10−3 313.093

m = 8, n = 8 1.24258× 10−9 2.85366× 10−9 81,233.1

m = 10, n = 10 9.61004× 10−13 2.21334× 10−12 1.30198× 106

m = 12, n = 12 7.95505× 10−15 2.66454× 10−14 2.08914× 107

m = 15, n = 15 8.71513× 10−15 2.4869× 10−14 1.33228× 109

Example 3. Let D := [0, 1]× [0, 1]. We consider the following integral equation of the form

u(x, y) =
1∫

0

1∫
0

(ex+y + s + t)u(s, t)dtds + f (x, y), (x, y) ∈ D, (20)

where, f (x, y) = − 46
63 −

4ex+y

7 + x5/2 + y5/2, has the exact solution u(x, y) = x5/2 + y5/2. The
Table 5 presents the errors and cond(A) of (11) of the linear system (10) of Example 3 with the
Bernstein polynomial approximation method for regularized-equal collocation points. The errors
and cond(A) of (11) of the linear system of Example 3 by the Bernstein polynomial approximation
method with Chebyshev collocation points (9) are given in Table 6.

RMSE e cond(A)

m = 4; n = 4 1:92655� 10�3 4:33359� 10�3 313:093

m = 8; n = 8 1:24258� 10�9 2:85366� 10�9 81233:1

m = 10; n = 10 9:61004� 10�13 2:21334� 10�12 1:30198� 106

m = 12; n = 12 7:95505� 10�15 2:66454� 10�14 2:08914� 107

m = 15; n = 15 8:71513� 10�15 2:4869� 10�14 1:33228� 109
Table 4
RMSE, maximum errors and cond(A) matrix obtained by Bernstein polynomial
approximation with Chebyshev collocation points for the Example 2.

than with regularized-equal collocation points. cond(A) of (2.9) is increasing
according to m and n values. For this example ill-conditioned matrix is ob-
tained when the m and n values are increased. Errors jep;qj of Berstein poly-
nomial approximation method for regularized-equal collocation points and for
Chebyshev collocation points when n = 4 and m = 4 can be seen in Fig. 3
and 4, respectively.

Fig. 3. Error jep;qj for the Bernstein method with regularized-equal collocation points
for Example 2.

Fig. 4. Error jep;qj for the Bernstein method with Chebyshev collocation points for
Example 2.
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Figure 3. Error
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9
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∣∣ep,q

∣∣ for the Bernstein method with Chebyshev collocation points for Example 2.
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Table 5. RMSE, maximum errors and cond(A) obtained by Bernstein polynomial approximation with
regularized equal collocation points for the Example 3.

RMSE e cond(A)

m = 4, n = 4 1.53888× 10−3 2.67654× 10−3 31.4408

m = 8, n = 8 1.34335× 10−5 2.23442× 10−5 405,765

m = 10, n = 10 3.77166× 10−6 6.17914× 10−6 1.73458× 107

m = 12, n = 12 1.40399× 10−6 2.27531× 10−6 7.74265× 108

m = 13, n = 13 7.40942× 10−7 1.09405× 10−6 5.5125× 109

m = 14, n = 14 6.25117× 10−7 1.00499× 10−6 3.56596× 1010

m = 15, n = 15 3.67724× 10−7 5.48086× 10−7 2.54559× 1011

Table 6. RMSE, maximum errors and cond(A) matrix obtained by Bernstein polynomial approxima-
tion with Chebyshev collocation points for the Example 3.

RMSE e cond(A)

m = 4, n = 4 7.4401× 10−4 1.38474× 10−3 208.172

m = 8, n = 8 7.71115× 10−7 1.21018× 10−6 68,431.8

m = 10, n = 10 1.2929× 10−7 1.99855× 10−7 3.71914× 106

m = 12, n = 12 3.25731× 10−8 4.99379× 10−8 1.88073× 107

m = 13, n = 13 1.62656× 10−8 2.38047× 10−8 8.26725× 107

m = 14, n = 14 1.06507× 10−8 1.6249× 10−8 3.07663× 108

m = 15, n = 15 6.04148× 10−9 8.91422× 10−9 1.3338× 109

Similarly, solving integral Equation (20) by Bernstein polynomial approximation
method with Chebyshev collocation points give more accurate solutions than with regular-
ized equally spaced collocatiton points. Errors

∣∣ep,q
∣∣ of Berstein polynomial approximation

method for regularized equal collocation points and for Chebyshev collocation points when
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In this paper, two dimensional linear Fredholm integral equations of the second
kind are solved by means of Bernstein polynomial approximation method. The
considered approximation method with regularized equal collocation points
and Chebyshev collocation points transforms the equations into a linear form
of equations and numerical solutions are obtained. The numerical results in-
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4. Conclusions

In this paper, two dimensional linear Fredholm integral equations of the second kind
are solved by means of Bernstein polynomial approximation method. The considered ap-
proximation method with regularized equal collocation points and Chebyshev collocation
points transforms the equations into a linear form of equations and numerical solutions
are obtained. The numerical results indicate that the Bernstein polynomial approximation
method is an accurate technique and can be applied to solve Fredholm integral equations
of the second kind. Numerical results show that; when the collocation points are chosen as
Chebyshev points, more stable results are obtained. The stability analysis of the Bernstein
operators for solving other type of integral equations such as integro-differential equations
and fractional integro-differential equations by using Chebyshev collocation points can be
given in the further studies.
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