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Abstract: In this paper we generalize Hardy–Rogers maps in the context of coupled fixed points.
We comment on the symmetry of some of the coefficients involved in the Hardy–Rogers condition,
and thus, we deduce a simpler formula. We generalize, with the help of the obtained main theorem,
some known results about existence and uniqueness of market equilibrium in duopoly markets.
As a consequence, we ascertain that the equilibrium production should be equal for both market
participants provided that they have symmetric response functions. With the help of the main
theorem, we investigate and enrich some recent results regarding market equilibrium in duopoly
markets. We define a generalized response function that includes production and surpluses. Finally,
we illustrate a possible application of the main result in the investigation of market equilibrium when
the payoff functions are non-differentiable.
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1. Introduction

The investigation of coupled fixed points started in 1987 from the article [1]. The
first result [1] deals with maps with the mixed monotone property in complete, partially
ordered metric spaces. There are a great number of contemporary research papers on
the theory of coupled fixed points with the mixed monotone property [2], without the
mixed monotone property [3], in ordered probabilistic metric spaces [4], in modular metric
spaces [5], in metric spaces endowed with a graph [6], fuzzy cone metric spaces [7], in
b-metric spaces [8], and for multi-valued maps [9] . The idea of coupled fixed points was
generalized for coupled best-proximity points [10]. There are applications of coupled fixed
points in different fields of mathematics—impulsive differential equations [6], integral
equations [11], ordinary differential equations [12], periodic boundary value problems [13],
fractional equations [14], and nonlinear matrix equations [15]—and in other sciences—
economics [16,17], aquatic ecosystems [18], and dynamic programming [19]—with these
just being the most recent investigations dealing with coupled fixed points.

Important results about the connection between coupled fixed points and fixed points
are obtained in [20]. Following the technique suggested in [20], we present a generalization
of Hardy–Rogers maps in the coupled fixed point theory. It has been noticed and proven
in [16] that whenever the functions Fi : X1 × X2 → Xi, i = 1, 2, involved in the model,
satisfy a symmetric condition, i.e., F2(x, y) = F1(y, x), then the coupled fixed points (ξ, η)
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should satisfy ξ = η. This result can be used to study a lot of different economic processes,
and we utilize it in studying markets with few dominant players. If we take out the extreme
case of a single participant, the simplest example would be a case with only two players: a
duopoly market.

The analysis of market equilibrium in duopoly markets was pioneered by [21] in 1897.
Due to its practical importance, it is still a matter of high interest and rapid development
nowadays [22,23]. The classical approach is to maximize the payoff function of the two
participants in the market [24–26] with the justification that rational players will always
try to gain maximum profitability in the real world. Modern businesses are managed
and evaluated against several key performance indicators (KPIs), including new product
development, gain of market share, and consumer satisfaction. These factors do not exclude
the pursuit of profits, but the focus is more biased toward long-term gains and performance.
Therefore, a different approach has been suggested in [16] by considering the response
functions of both players rather than maximizing their payoffs. While current-period profits
are important, management practices that aim solely at their maximization may not provide
the best foundation for long-term growth and market dominance. Thus, focusing solely on
the short-term gains cannot explain actions of duopoly market players in contemporary
global markets. Similar to real-world travel, there are several ways to reach a destination.
The complexity and size of contemporary business organizations varies and is the basis
upon which they choose the most suitable path. Yet such options offer different short-term
strategies, despite being universally oriented toward long-term success. An example of
different sub-goals that support expansion could be policies that boost workforce engage-
ment or actions oriented toward takeovers to add new customers and resources. Quite
often we face a combination of sub-goals in a company’s strategic plans. With various
master plans, business entities will respond differently to economic changes. For an out-
sider these could look like sub-optimal solutions, but they may be well-aligned with the
long-term company strategy. Even in markets with very few competitors, substitution of
goods and globalization have driven a change toward introducing specialized products
and non-homogeneous outputs. This is a very special deviation from early models, where
homogeneous goods were assumed to be supplied. While one can argue that there are
a lot of situations where the outputs may be virtually identical (for example, the case of
raw materials), a sound market model should also be able to explain situations where
products are different. In such cases, companies face a large number of opportunities to
gain competitive advantage—in particular ones that are not based on price. Differences
in organizational structure impose another challenge for traditional models. In particular,
complexity in decision-making processes can result in increases of the time required to
decide on and implement an action. Therefore, the assumption that price changes can
happen immediately and with the same pace for each player is too restrictive and not
realistic. Some decisions require more time than others. In the extreme case, they may
even be considered unfeasible due to technological or scale concerns (for example, change
in production levels may not be possible due to batch processing, minimum number of
outputs, or technological concerns that produce a discrete number of products at once).
Thus, the real-world outputs are not perfectly divisible. This fact imposes an additional
restriction on how companies react and behave in duopoly markets. Recent developments
as a result of the COVID-19 crisis and shortages of some crucial components have proven
to be a very significant test on how companies can react in nonlinear way. In particular, the
need to change production output dramatically due to quick price jumps offers a possibility
to test our suggestions and highlights the benefits of the model, as discussed below.

We have tried to generalize these ideas by showing that the maximization problem
may lack the second order conditions, due to a nondifferentiabilty of the payoff functions.
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2. Materials and Methods

Definition 1 ([27]). Let (X, ρ) be a metric space. A map T : X → X is a Hardy–Rogers map if
there are non-negative constants ai, i = 1, 2, 3, 4, 5, satisfying ∑5

i=1 ai < 1, so that for any x, y ∈ X
holds the inequality:

ρ(Tx, Ty) ≤ a1ρ(x, y) + a2ρ(x, Tx) + a3ρ(y, Ty) + a4ρ(x, Ty) + a5ρ(y, Tx). (1)

As pointed out in [28], from the symmetry of the metric function ρ(·, ·) it follows that
if (1) holds true then there will hold the inequality:

ρ(Tx, Ty) ≤ a1ρ(x, y) +
a2 + a3

2
(ρ(x, Tx) + ρ(y, Ty)) +

a4 + a5

2
(ρ(x, Ty) + ρ(y, Tx)).

Therefore, without loss of generality we can consider maps that satisfy the inequality:

ρ(Tx, Ty) ≤ k1ρ(x, y) + k2(ρ(x, Tx) + ρ(y, Ty)) + k3(ρ(x, Ty) + ρ(y, Tx)), (2)

so that k1 + 2k2 + 2k3 < 1.
If k2 = k3 = 0 we get a Banach contraction map, if k1 = k3 = 0 we get a Kannan

contraction map [29], and if k1 = k2 = 0 we get a Chatterjea contraction map [30].
In what follows, we will assume that a Hardy–Rogers maps satisfies (2).

Theorem 1 ([28]). Let (X, ρ) be a complete metric space and T : X → X be a Hardy–Rogers map,
then:

1. there is a unique fixed point ξ ∈ X of T and, moreover, for any initial guess x0 ∈ X, the
iterated sequence xn = Txn−1 for n = 1, 2, . . . converges to the fixed point ξ;

2. there holds a priori error estimates ρ(ξ, xn) ≤ kn

1−k ρ(x0, x1);
3. there holds a posteriori error estimate ρ(ξ, xn) ≤ k

1−k ρ(xn−1, xn);
4. the rate of convergence is ρ(ξ, xn) ≤ kρ(ξ, xn−1);

where k = k1+k2+k3
1−k2−k3

and ki = 1, 2, 3 are the constants from (2).

Definition 2 ([1]). Let A be nonempty subset of a metric space (X, ρ), F : A × A → A. An
ordered pair (ξ, η) ∈ A× A is called a coupled fixed point of F in A if ξ = F(ξ, η) and η = F(η, ξ).

A generalization of the above-mentioned notions was presented in order to apply
the technique of coupled fixed points in the investigation of market equilibrium [16]. In
duopoly markets, naturally each of the players has a different response reaction based on
its rival and the market. Thus, two response functions Fi for i = 1, 2 were considered in [16],
such that Fi : X1 × X2 → Xi, i = 1, 2, where Xi is the production set of player i = 1, 2
and the coupled fixed points were defined by x = F1(x, y) and y = F2(x, y). Whenever
X1 = X2 = A and F2(x, y) = F1(y, x) we get the notion of coupled fixed points from
Definition 2.

3. Main Result

We will generalize the notions from [16] by considering two different metric spaces
(Zi, di), i = 1, 2.

Definition 3. Let X1, X2 be nonempty subsets of the metric spaces (Z1, d1) and (Z2, d2), respec-
tively, Fi : X1 × X2 → Xi for i = 1, 2. An ordered pair (ξ, η) ∈ X1 × X2 is called a coupled fixed
point of (F1, F2) if ξ = F1(ξ, η) and η = F2(ξ, η).

Definition 4. Let X1, X2 be nonempty subsets of the metric spaces (Z1, d1) and (Z2, d2), respec-
tively, Fi : X1 × X2 → Xi for i = 1, 2. For any pair (x, y) ∈ X1 × X2 we define the sequences
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{xn}∞
n=0 and {yn}∞

n=0 by x0 = x, y0 = y and xn+1 = F1(xn, yn), yn+1 = F2(xn, yn) for all
n ≥ 0.

Everywhere, when considering the sequences {xn}∞
n=0 and {yn}∞

n=0, we will assume
that they are the sequences defined in Definition 4.

Theorem 2. Let (X1, d1) and (X2, d2) be two complete metric spaces. Let there be two maps
Fi : X1 × X2 → Xi for i = 1, 2, and let there be non-negative constants ki for i = 1, 2, 3, so that
k1 + 2k2 + 2k3 < 1 and the ordered pair of maps (F1, F2) satisfies the inequality:

S1 = ∑2
i=1 di(Fi(x, y), Fi(u, v)) ≤ k1(d1(x, u) + d2(y, v))

+k2(d1(x, F1(x, y)) + d2(y, F2(x, y)) + d1(u, F1(u, v)) + d2(v, F2(u, v)))
+k3(d1(x, F1(u, v)) + d2(y, F2(u, v)) + d1(u, F1(x, y)) + d2(v, F2(x, y)))

(3)

for any (x, y), (u, v) ∈ X1 × X2. Then:

1. there is a unique coupled fixed point (ξ, η) ∈ X1×X2 of (F1, F2) and, moreover, for any initial
guess (x0, y0) ∈ x the iterated sequences xn = F1(xn−1, yn−1) and yn = F2(xn−1, yn−1) for
n = 1, 2, . . . converge to the coupled fixed point (ξ, η);

2. there holds a priori error estimate

d1(ξ, xn) + d2(η, yn) ≤
kn

1− k
(d1(x0, x1) + d2(y0, y1))

;
3. there holds a posteriori error estimate

d1(ξ, xn) + d2(η, yn) ≤
k

1− k
(d1(xn, xn−1) + d2(yn, yn−1))

;
4. the rate of convergence is d1(ξ, xn) + d2(η, yn) ≤ k(d1(ξ, xn−1) + d2(η, yn−1))

where k = k1+k2+k3
1−k2−k3

.
If in addition X1, X2 ⊆ X, where (X, d) is a complete metric space and F2(x, y) = F1(y, x),

then the coupled fixed point (ξ, η) satisfies ξ = η.

Remark 1. By F2(x, y) = F1(y, x), actually we assume that Fi is defined on the set (X1 ∪ X2)×
(X1 ∪ X2). It is possible for F1(x1, x2) 6∈ X1 not to hold inequality (3), provided that x1, x2 ∈ X1
and x2 6∈ X2. Therefore in this case we should assume that X1 ≡ X2.

Proof. Let us consider the product space (X1 × X2, ρ), endowed with the metric:

ρ(·, ·) = d1(·, ·) + d2(·, ·).

From the assumption that (Xi, di) are complete metric spaces it follows that (X1 ×
X2, ρ) is a complete metric space, too.

Following [20], let us define a map G : X1 × X2 → X1 × X2 by G(x, y) =
(F1(x, y), F2(x, y)). Then inequality (3) is equivalent to:

S2 = ρ(G(x, y), G(u, v))
≤ k1ρ((x, y), (u, v)) + k2(ρ((x, y), G(x, y)) + ρ((u, v), G(u, v))

+k3(ρ((x, y), G(u, v)) + ρ((u, v), G(x, y))
(4)

and therefore the map G : X1 × X2 → X1 × X2 is a Hardy–Rogers map in the complete
metric space (X1 × X2, ρ). Consequently, we can apply Theorem 1, and we will get that
there is a unique (ξ, η) ∈ X1 × X2, such that (ξ, η) = G(ξ, η) = (F1(ξ, η), F2(ξ, η)), i.e.,
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ξ = F1(ξ, η) and η = F2(ξ, η). The error estimates followed directly from the definition of
the metric ρ and Theorem 1.

If in addition X1, X2 ⊆ X, F2(x, y) = F1(y, x) and d1 = d2 = d, then for the fixed point
(x, y) of the map G, by using (3) with u = y and v = x, we get:

2d(x, y) = 2d(F1(x, y), F2(x, y)) = d(F1(x, y), F1(y, x)) + d(F2(x, y), F2(y, x))
= ρ(G(x, y), G(y, x)) ≤ 2k1d(x, y)

+k2(d(x, F1(x, y)) + d(y, F2(x, y)) + d(y, F1(y, x)) + d(x, F2(y, x)))
+k3(d(x, F1(y, x)) + d(y, F2(y, x)) + d(y, F1(x, y)) + d(x, F2(x, y)))

= 2k1d(x, y) + k2(d(x, x) + d(y, y) + d(y, y) + d(x, x))
+k3(d(x, y) + d(y, x) + d(y, x) + d(x, y))

= 2k1ρ(x, y) + 2k3ρ(x, y) < 2d(x, y),

(5)

which is a contradiction and therefore x = y.

4. Applications of of the Main Result

We will present some corollaries of Theorem 1.

4.1. Generalization of Some Known Results about Coupled Fixed Points and Corollaries

Let us recall the main result from [16].

Theorem 3. Let X1, X2 be closed and nonempty subsets of a complete metric space (X, d). Let there
be a closed subset D ⊆ X1 × X2 and maps Fi : D → Xi for i = 1, 2, so that (F1(x, y), F2(x, y)) ⊆
D for every (x, y) ∈ D. Let the ordered pair (F1, F2) be such that there holds:

d(F1(x, y), F1(u, v)) + d(F2(z, w), F2(t, s)) ≤ αd(x, u) + βd(y, v) + γd(z, t) + δd(w, s) (6)

for all (x, y), (u, v), (z, w), (t, s) ∈ D and for some non-negative constants α, β, γ, δ, so that
s = max{α + γ, β + δ} < 1. Then there is a unique pair (ξ, η) in D, which is a unique coupled
fixed point for the ordered pair (F1, F2). Moreover, the sequences {xn}∞

n=0 and {yn}∞
n=0 of iteration,

defined in Definition 4, converge to ξ and η, respectively, for any arbitrarily chosen initial guess
(x, y) ∈ X1 × X2, and the error estimates hold.

If in addition F2(x, y) = F1(y, x) then the coupled fixed point (ξ, η) satisfies ξ = η.

Let us consider Theorem 2 for X1, X2 as nonempty and closed subsets of a complete
metric space (X, d), rather than being subsets of two different metric spaces with constants
β = γ = 0. If we put z = x, t = y, w = u, and s = v in (6), we get:

S3 = d(F1(x, y), F1(u, v)) + d(F2(x, y), F2(u, v))
≤ αd(x, u) + βd(y, v) + γd(x, u) + δd(y, v)
≤ s(d(x, u) + d(y, v))

(7)

where s = max{α + γ, β + δ} < 1. Therefore Theorem 3 is a consequence of Theorem 2.

Remark 2. If in Theorem 2 k1 = k3 = 0, we get a generalization of a Kannan type of contraction
for coupled fixed points. If in Theorem 2 k1 = k2 = 0, we get a generalization of a Chatterjea type of
contraction for coupled fixed points.

4.2. Application in the Investigation of Market Equilibrium in Duopoly Markets
4.2.1. The Basic Model

Assume we have two companies competing for the same customers [31], and they are
attempting to meet demand with a total production of Z = x + y. The price on market
P(Z) = P(x + y) is the inverse of the demand function. The cost functions of the two
players are c1(x) and c2(y), respectively. The payoff functions are Π1(x, y) = xP(x + y)−
c1(x) and Π2(x, y) = yP(x + y)− c2(y). Assuming that both participants are rational, each
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one’s goal is to maximize profits, i.e., max{Π1(x, y) : x, assuming that y is fixed} and
max{Π2(x, y) : y, assuming that x is fixed}. We get the equations:∣∣∣∣∣

∂Π1(x,y)
∂x = P(x + y) + xP′(x + y)− c′1(x) = 0

∂Π2(x,y)
∂y = P(x + y) + yP′(x + y)− c′2(y) = 0

(8)

provided the functions P and ci, i = 1, 2 are differentiable.
The solution of (8) presents the equilibrium pair of production [31]. Often Equa-

tion (8) has solutions in the form of x = b1(y) and y = b2(x), which are called response
functions [31].

It may prove difficult or impossible to solve (8), so it is frequently advised to seek
an approximate solution. However, one significant disadvantage is that it may not be
stable. Fortunately, an implicit formula for the response function can be found in (8), i.e.,
x = ∂Π1(x,y)

∂x + x = F1(x, y) and y = ∂Π2(x,y)
∂y + y = F2(x, y).

We might end up with response functions that do not maximize the payoff Π. It is
commonly assumed that each participant’s response is dependent on their own output as
well as the output of others. For example, if the output quantities are (xn, yn) at time n, and
the first player changes its output to levels xn+1 = F1(xn, yn), the second player will also
change its output to levels yn+1 = F2(xn, yn). If there are x and y, satisfying x = F1(x, y)
and y = F2(x, y), we get an equilibrium. To ensure that the solutions of (8) maximize the
payoff functions, a sufficient condition is that Πi is concave or (9) is satisfied [26]:∣∣∣∣∣∣

∂2Π1(x,y)
∂x2 (x0, y0) ≤ 0

∂2Π2(x,y)
∂y2 (x0, y0) ≤ 0.

(9)

The use of response functions converts the maximization problem into a coupled fixed
point problem, allowing all assumptions of concavity and differentiability to be avoided.
The problem of finding coupled fixed points for an ordered pair of maps (F1, F2) is the
problem of solving the equations x = F1(x, y) and y = F2(x, y) [1]. However, one significant
limitation may be that players cannot change output too quickly, and thus, the player may
not maximize his profits.

4.2.2. Connection Between the Second-Order Conditions and the
Contraction-Type Conditions

We will restate Theorem 2 for k2 = k3 = 0; let X1, X2 be subsets of a metric space (X, d)
in the economic language. We use Assumption 1 to prove that if differentiable, the response
functions satisfy the second-order condition, but, moreover, Assumption 1 guarantees
stability of the iterated process. We show that by using Assumption 1 we can enlarge the
conclusions from [32].

Assumption 1. Let us consider a duopoly market, satisfying:

1. The two player are producing homogeneous goods that are perfect substitutes.
2. The first player can produce quantities from the set X1, and the second one can produce

quantities from the set X2, where X1 and X2 are closed, nonempty subsets of a complete metric
space (X, d).

3. Let there be a closed subset D ⊆ X1 × X2 and maps Fi : D → Xi, i = 1, 2, so that:

(F1(x, y), F2(x, y)) ⊆ D

for every (x, y) ∈ D, are the response functions for Players One and Two, respectively.
4. Let α < 1, so that the inequality:

d(F1(x, y), F1(u, v)) + d(F2(x, y), F2(u, v)) ≤ α(d(x, u) + d(y, v)) (10)
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holds for all (x, y), (u, v) ∈ X1 × X2.

Then there is a unique market equilibrium pair (ξ, η) in D, i.e., ξ = F1(ξ, η) and
η = F2(ξ, η).

If in addition the symmetry condition F2(x.y) = F1(y, x) holds, then the market
equilibrium pair (ξ, η) satisfies ξ = η.

Example 1. Let us get the response functions Fi through the maximization of Πi, i = 1, 2. Let all
partial derivatives that take part in (8) and (9) exist. Let (x0, y0) be a unique solution of (8); then it
is well known that the optimization of the payoff functions in the Cournot model is guaranteed if (9)
is satisfied.

We will show that from (10) follows (9).

Following [16], the response functions are defined as:

F1(x, y) =
∂Π1(x, y)

∂x
+ x

F2(x, y) =
∂Π2(x, y)

∂y
+ y.

(11)

From (10) we get:

lim∆x→0
|F1(x + ∆x, y)− F1(x, y)|+ |F2(x + ∆x, y)− F2(x, y)|

∆x
≤ α

lim∆y→0
|F1(x, y + ∆y)− F1(x, y)|+ |F2(x, y + ∆y)− F2(x, y)|

∆y
≤ α,

(12)

and therefore it follows that
∣∣∣ ∂F1

∂x (x0, y0)
∣∣∣ ≤ α < 1 and

∣∣∣ ∂F2
∂y (x0, y0)

∣∣∣ ≤ α < 1. Then from (11)
we get:

∂2Π1(x, y)
∂x2 (x0, y0) =

∂F1

∂x
(x0, y0)− 1 < α− 1 < 0

and
∂2Π2(x, y)

∂y2 (x0, y0) =
∂F2

∂y
(x0, y0)− 1 < α− 1 < 0.

A similar condition to (10) is investigated in [17], where maps with the mixed mono-
tone property are considered. In this case, (10) holds only for part of the variables and
therefore we cannot take limits in (12). Thus, the response functions from [17] may not be
differentiable.

Besides presenting sufficient conditions for the existence of a market equilibrium, As-
sumption 1 also gives sufficient conditions for the stability of the process of the consecutive
responses of the players if they do not change their behavior.

Example 2. Let us consider a model with P(x, y) = 100− x− y and cost functions C1(x) = x2

2

and C2(y) =
y2

2 .

By (8) we get: ∣∣∣∣∣
∂Π1(x,y)

∂x = 100− 3x− y = 0
∂Π2(x,y)

∂y = 100− x− 3y = 0.
(13)

The second-order conditions are ∂2Π1(x,y)
∂x2 = −3 < 0 and ∂2Π2(x,y)

∂y2 = −3 < 0 and,
consequently, the solution of the system of Equation (13) is the equilibrium points, because
it satisfies (9). Unfortunately, the response functions in the model will be F1(x, y) =
100− 2x− y and F2(x, y) = 100− x− 2y, which will not satisfy condition (10).

If the initial start is different, we get Table 1.
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Table 1. The iterated sequence’s values (xn, yn) with initial conditions of (20, 31).

n 0 1 2 3 4 5 6

xn 20 29 24 17 60 0 100
yn 31 18 35 6 71 0 100

In both Tables 1 and 2, we see that the process is not converging. The results from
Table 1 show that if the response functions do not satisfy condition (10), then the process
may have asymmetric behavior.

Table 2. The iterated sequence’s values (xn, yn) with initial conditions of (20, 30).

n 0 1 2 . . . 2k 2k + 1

xn 20 30 20 . . . 20 30
yn 30 20 30 . . . 30 20

Let us point out that the system (8) may have more than one solution (x, y) satisfying
the second-order conditions (9). In this case, we will need further investigation to find
which one of the solutions is the solution of the optimization problem of the Cournot
model. Therefore, nevermind that (10) is a stronger restriction than (9)—the model from
Assumption 1 is different from the well-known Cournot optimization problem.

4.2.3. Comments on the Coefficients α, β, γ, and δ

Although Theorem 3 is a consequence of Theorem 2, it seems that the usage of four
coefficients may give better understanding of duopoly markets.

Let the response functions F1 and F2 satisfy:

ρ(F1(x, y), F1(u, v)) ≤ αρ(x, u) + βρ(y, v) (14)

and
ρ(F2(x, y), F2(u, v)) ≤ γρ(x, u) + δρ(y, v). (15)

If max{α + γ, β + δ} ∈ (0, 1), then by summing up (14) and (15) the model satisfies
inequality (6). Let us assume that α and δ are close to 1 and β and γ are close to 0, i.e., the
coefficients lack a kind of symmetry. This means that both players do not pay too much
attention to the behavior of the production of the other one. They are interested mostly in
their own production.

Example 3. Let us consider a model with the following response functions: F1(x, y) = 45−
0.98x− 0.09y and F2(x, y) = 50− 0.01x− 0.9y. An example Cournot model can be considered
P(x, y) = 50− 0.09x− 0.01y with cost functions C1(x) = 0.985x2 and C2 = 0.86y2.

Thus, we get:

|xn+2 − xn+1| = |F1(xn, yn)− F1(xn+1, yn+1)| ≤ 0.98|xn − xn+1|+ 0.09|yn − yn+1|

and

|yn+2 − yn+1| = |F2(xn, yn)− F2(xn+1, yn+1)| ≤ 0.01|xn − xn+1|+ 0.9|yn − yn+1|,

which can be interpenetrated as any player takes into account only his change in production.
The market equilibrium is (24.06, 26.18).

We see from Table 3 that at the very beginning the oscillations of the sequences of
production are big, and it take a lot of time to get close to the equilibrium values.



Symmetry 2022, 14, 605 9 of 15

Table 3. The iterated sequence’s values (xn, yn) with initial values of (10, 30).

n 0 1 2 3 4 5 10 21 50 51 120 121 599 600

xn 10 37 12 35 13 33.7 16.8 30.8 21.1 26.9 22.64 25.43 24.07 24.05
yn 30 18 33 20 31 21.4 28.6 24.1 25.8 26.4 26.03 26.34 26.19 26.18

4.2.4. Some Applications on Newly Investigated Oligopoly Models

A deep analysis of a class of oligopoly markets is presented in [32]. In Section 2 of [32],
the authors analyze market equilibrium, obtained by the use of the first- and second-order
conditions. They have assumed P(Q) = Q−1/µ, where P is the market price, x, y ≥ 0 and
are the quantity supplied by Firms One and Two, respectively, Q = x + y and is the total
output, and µ > 0 is a parameter. Both players share a linear cost function with constant
average and marginal cost ci > 0. As the results in [32] are for ci = c for i = 1, 2, let us
assume that c1 = c2 = c. The first-order conditions in [32] yield the system of equations:∣∣∣∣∣ x = µQ− cµQ1+ 1

µ

y = µQ− cµQ1+ 1
µ .

Both players share one and the same response function F1(x, y) = F2(x, y) = F(x, y) =

µQ− cµQ1+ 1
µ , where Q = x + y. Using the mean-value theorem, we get the equality:

|F(x, y)− F(u, v)| =
∣∣∣(µ− c(1 + µ)Q1/µ

λ )
∣∣∣(|x− u|+ |y− v|)

≤ (µ + c(1 + µ)Q1/µ
λ )(|x− u|+ |y− v|)

where Qλ = λ(x + y) + (1− λ)(u + v) for some λ ∈ (0, 1). As the total output of the
economy is bounded from above, we can assume that Qλ ≤ Qmax < +∞. We get:

|F1(x, y)− F1(u, v)|+ |F2(x, y)− F2(u, v)| ≤ 2
∣∣∣(µ + c(1 + µ)Q1/µ

max)
∣∣∣(|x− u|+ |y− v|).

Assumption 1 can be applied if 2
∣∣∣µ + c(1 + µ)Q1/µ

max

∣∣∣ < 1, i.e.,

0 < cQ1/µ
max <

1− 2µ

2(1 + µ)
< 1, (16)

which holds true if µ ∈ [0, 1/2).
The analysis in [32] using the second-order conditions shows that there exists a market

equilibrium if µ ≥ max
{

1, x
2y−x , y

2x−y

}
. If µ < 1, following [32], the second-order condi-

tions do not ensure an existence of a market equilibrium. It follows that whenever the
marginal costs c satisfies (16) there exists a unique market equilibrium. Thus, Assumption 1
covers any cases that are not covered by the classical first- and second-order conditions.

4.2.5. A Generalized Response Function

When considering a real-life model of duopolies, we need to pay attention to the
surplus of the total production. Actually, every one of the participants in the market takes
into account not only realized production on the market but also surplus quantities.

We apply Theorem 2 by altering the underlying sets, dividing the set Xi into two
parts—realized production and surplus production—and by considering a special function,
called the generalized response function, that will include not only production realized on
the market but also the surplus production. We present a very particular case of Theorem 2.
We present one possible definition of such generalized response functions.

Let us denote the set of possible productions of Player i by Ui, the set of the realized
production on the market by Pi ⊆ Ui and the set of its surplus quantities by si, i = 1, 2. Let
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us put Xi = Pi × si. Neither of the players knows the surplus production of the other one.
Therefore a more realistic model of the response functions of the two player will be:

f1 : X1 × P2 → U1, f2 : X2 × P1 → U2.

Starting at a moment t0 with realized, on-the-market productions p(0)i , surpluses s(0)i ,

and productions u(0)
i , i = 1, 2 for both players results in new levels of production for the

players:
u(1)

1 = f1

(
p(0)1 , p(0)2 , s(0)1

)
∈ Ui, u(1)

2 = f2

(
p(0)1 , p(0)2 , s(0)2

)
∈ U2.

The market reacts to these new levels of production by generating new surplus quanti-
ties s(1)i = Qi(u

(1)
1 , u(1)

2 ), where Qi : U1 ×U2 → Ui, i = 1, 2 are the responses of the market
to the produced quantities of both players. Thus, the realized quantities on the market for
each of the players at moment t1 will be:

p(1)1 = u(1)
1 − s(1)1 = f1

(
p(0)1 , p(0)2 , s(0)1

)
−Q1

(
u(1)

1 , u(1)
2

)
= f1

(
p(0)1 , p(0)2 , s(0)1

)
−Q1

(
f1

(
p(0)1 , p(0)2 , s(0)1

)
, f2

(
p(0)1 , p(0)2 , s(0)2

))
and

p(1)2 = u(1)
2 − s(1)2 = f2(p(0)1 , p(0)2 , s(0)2 )−Q2(u

(1)
1 , u(1)

2 )

= f2(p(0)1 , p(0)2 , s(0)2 )−Q2( f1(p(0)1 , p(0)2 , s(0)1 ), f2(p(0)1 , p(0)2 , s(0)2 )).

We will define a new function, which we will call a generalized response function
of the player and the market. Let X ∈ X1, Y ∈ X2, i.e., X = (x, δx) ∈ P1 × s1 and
Y = (y, δy) ∈ P2 × s2:

F1(X, Y) = F1(x, y, δx, δy)
= ( f1(x, y, δx)−Q1( f1(x, y, δx), f2(x, y, δy)), Q1( f1(x, y, δx), f2(x, y, δy)))

and

F2(X, Y) = F2(x, y, δx, δy)
= ( f2(x, y, δy)−Q2( f1(x, y, δx), f2(x, y, δy)), Q2( f1(x, y, δx), f2(x, y, δy))).

Regarding Assumption 1, the sets X and Y can be subsets of Rn, and we can then
reformulate Assumption 1 for the case of the generalized response function of the player
and the market.

Assumption 2. Let us consider a duopoly market, satisfying:

1. The two players are producing homogeneous goods that are perfect substitutes.
2. The player i, i = 1, 2 can produce quantities from the set Ui, its set of the realized, on-the-

market production as Pi, and the set of its surplus production is si, where X = P1 × s1 and
Y = P2 × s2 are closed, nonempty subsets of a complete metric space (Z, ρ).

3. Let there be a closed subset D ⊆ X × Y and maps F1 : D → X and F2 : D → Y, such that
(F1(x, y), F2(x, y)) ⊆ D for every (x, y) ∈ D is the generalized response function of the
player and the market for Players One and Two, respectively.

4. Let α ∈ (0, 1), so that the inequality:

ρ(F1(x, y), F1(u, v)) + ρ(F2(x, y), F2(u, v)) ≤ α(ρ(x, u) + ρ(y, v)) (17)

holds for all (x, y), (u, v) ∈ X×Y.

Assumption 2 is actually a very particular case of Theorem 2; that is why it seems a bit
different.
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We will illustrate Assumption 2 by an example. Let Ui = [0,+∞), Pi = [0,+∞),
si = [0,+∞), X = P1 × s1 and Y = P2 × s2. Let X and Y be subsets of (R2, ρ1), where
d1((x1, y1), (x2, y2)) = |x1 − x2| + |y1 − y2|. Let (X × Y) be endowed with the metric
ρ(·, ·) = d1(·, ·) + d1(·, ·). Let f1 : X × P2 → U1 and f2 : Y × P1 → U2 be defined by
f1(x, y, δx) = 45− 0.5x + 0.25y− 0.1δx and f2(x, y, δy) = 20− 0.2x− 0.25y− 0.05δy, where
(x, δx) ∈ X and (y, δy) ∈ Y. Let the response functions of the market Q1 : U1 ×U2 → U1
and Q2 : U1 ×U2 → U2 be defined by Q1(x, y) = 0.05x + 0.03y and Q2(x, y) = 0.04x +
0.06y. Let the generalized response function of the player and the market F1 : X×Y → X
and F2 : X×Y → Y be:

F1(x, y, δx, δy) = ( f1(x, y, δx)−Q1( f1(x, y, δx), f2(x, y, δy)), Q1( f1(x, y, δx), f2(x, y, δy)))

and

F2(x, y, δx, δy) = ( f2(x, y, δy)−Q2( f1(x, y, δx), f2(x, y, δy)), Q2( f1(x, y, δx), f2(x, y, δy))).

We need to show only that (17) holds true.
From

S3 = ρ1(F1(x, y, δx, δy), F1(u, v, δu, δv))
≤ 0.5|x− u|+ 0.1|δx− δu|+ 0.25|y− v|+ 0.3|δy− δv|
≤ 0.5ρ1((x, y, δx, δy), (u, v, δu, δv))

and
S4 = ρ1(F2(x, y, δx, δy), F2(u, v, δu, δv))
≤ 0.2|x− u|+ 0.5|δx− δu|+ 0.25|y− v|+ 0.1|δy− δv|
≤ 0.5ρ1((x, y, δx, δy), (u, v, δu, δv)),

it follows that (17) is satisfied when α ≤ 0.5.
The equilibrium solution of the market is x = 27.1, y = 9.6, δx = 1.6, and δy = 1.2.

The example shows that in the equilibrium both players will have surplus production
greater that zero.

If we suppose that the players do not pay attention to the surplus quantities, i.e.,
F1(x, y, δx) = 45− 0.5x + 0.25y and F2(x, y, δy) = 20− 0.2x− 0.25y, we get an equilibrium
solution in the market of x = 29.8 and y = 11.2.

4.2.6. Applications of Theorem 2 for Optimization of Non-Differentiable Payoff Functions
and Examples

It seems from Theorem 3 that we can impose different type of contraction conditions
that will be not equivalent to (9). Let us restate Theorem 2 for when k1 = k2 = 0 in the
economic language. We will used the next assumption to show that an equilibrium may
exist and be unique for non-differentiable functions, too.

Assumption 3. Let us consider a duopoly market, satisfying:

1. The two players are producing homogeneous goods that are perfect substitutes.
2. The first player can produce quantities from the set X1, and the second one can produce

quantities from the set X2, where X1 and X2 are closed, nonempty subsets of a complete metric
space (X, d).

3. Let there be a closed subset D ⊆ X1 × X2 and maps Fi : D → Xi, so that:

(F1(x, y), F2(x, y)) ⊆ D

for every (x, y) ∈ D are the response functions for Players One and Two, respectively.
4. Let β ∈ [0, 1/2), so that the inequality:

S5 = ∑2
i=1 d(Fi(x, y), Fi(u, v))

≤ β(d(x, F1(x, y)) + d(y, F2(x, y)) + d(u, F1(u, v)) + d(v, F2(u, v)))
(18)
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holds for all (x, y), (u, v) ∈ D.

Then there is a unique market equilibrium pair (ξ, η) in D, i.e., ξ = F(ξ, η) and η =
f (ξ, η). Moreover, the sequences {xn}∞

n=0 and {yn}∞
n=0 converge to ξ and η, respectively,

and the error estimates hold.
If in addition the symmetry condition F2(x.y) = F1(y, x) holds, then the market

equilibrium pair (ξ, η) satisfies ξ = η.

Example 4. Let us consider a market with two competing players producing perfectly substitutable
goods. Let us consider the response functions of Players One and Two to be:

F1(x) = F1(x, y) =
{

0.2 x ∈ [0, 0.8]
0.1 x ∈ (0.8, 1]

and F2(y) = F2(x, y) =
{

0.9 y ∈ [0, 0.1]
0.8 y ∈ (0.1, 1]

,

respectively.

We can choose D to be D = [0, 1] × [0, 1]. It is easy to check that F1 : D → [0, 1],
F2 : D → [0, 1], and (F1(D), F2(D)) ⊆ D.

We will consider several cases to show that (F1, F2) satisfies (18).
Let x, u ∈ [0, 0.8] or x, u ∈ (0.8, 1], then:

|F(x)− F(u)| = 0 ≤ β1|x− F(x)|+ β1|u− F(u)|

holds for any β1 ∈ [0, 1/2).
Let x ∈ [0, 0.8] and u ∈ (0.8, 1], then, using the equalities:

0 = inf{|x− F(x)| : x ∈ [0, 0.8]} and 0.7 = inf{|u− F(u)| : u ∈ (0.8, 1]},

we get that the inequality |F(x)− F(u)| = 0.1 ≤ β10+ β10.7 ≤ β1|x− F(x)|+ β1|u− F(u)|
will hold for any β1 ∈ [1/7, 1/2) (Figure 1).

-0.1

-0.15

-0.2

-0.25

OD r 

�o�.2�0!:.4-,.__0i-. 6--r--..,__,4
0.8 

(I) X 

0.4 
0.2 y 

0.8 
0.6 

Figure 1. Graphic of the function |F(x)− F(y)| − 1
7 (|x− F(x)|+ |y− F(y)|).

Let y, v ∈ [0, 0.1] or y, v ∈ (0.1, 1], then:

|F2(y)− F2(v)| = 0 ≤ β2|y− F2(y)|+ β2|v− F2(v)|

holds for any β2 ∈ [0, 1/2).
Let y ∈ [0, 0.1] and v ∈ (0.1, 1], then, using the equalities:

0.8 = inf{|y− F2(y)| : x ∈ [0, 0.1]} and 0 = inf{|v− F2(v)| : u ∈ (0.1, 1]},

we get that the inequality:

|F2(y)− F2(v)| = 0.1 ≤ β20.8 + β20 ≤ β2|y− F2(y)|+ β2|v− F2(v)|

will hold for any β2 ∈ [1/8, 1/2) (Figure 2).
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Figure 2. Graphic of the function |F2(y)− F2(v)| − 1
8 (|y− F2(y)|+ |v− F2(v)|).

Therefore,

S6 = |F1(x)− F1(u)|+ |F2(y)− F2(v)|
≤ 1

7
(|x− F1(x)|+ |u− F1(u)|+ |y− F2(y)|+ |v− F2(v)|),

and thus, the ordered pair (F1, F2) satisfies Assumption 3 with a constant β = 1/7. Conse-
quently, there exists an equilibrium pair (x, y), and, for any initial start in the economy, the
iterated sequences (xn, yn) converge to the market equilibrium (x, y). In this case we get
that the equilibrium pair of the production of the two firms is (0.8, 0.1).

The considered model with response functions F1 and F2 does not satisfy (10). Indeed,
let us consider x = 0.8, u = x + ε, and y = 0.1, v = y + ε. Then

|F1(x)− F1(u)|+ |F2(y)− F2(v)| = 0.1 + 0.1 = 0.2 ≥ 2ε = 2(|x− u|+ |y− v|)

for any ε ≤ 0.1, and thus, we cannot apply Assumption 1.
The example shows that if the values for Fi were obtained by solving the optimization

of the payoff functions, then we could not speak about the second-order conditions, as Fi
would not be differentiable.

5. Discussion

We have presented a generalization of a fixed-point result [16], and we have illustrated
some possible applications and consequences of the main result (Theorem 2). We have
illustrated the connection between coupled fixed points and fixed points by considering
a suitable product space. Thus, it is easy to see the natural generalizations of Kannan,
Chatterjea, or Hardy–Roger types of maps. We illustrated a possible application in the
investigation of market equilibrium for noncompetitive markets. We showed that the
presented technique can be used to widen some known results [32]. Thus, Assumption 1
covers any cases that are not covered by the classical first- and second-order conditions
used in [32]. The main result (Theorem 2) can be used in more-complicated models, where
we have considered a real-life model of duopolies by paying attention to the surplus of the
total production. We compared the equilibrium obtained in both models in cases where
the surplus was either considered or disregarded. We presented an example where the
payoff functions may be non-differentiable, and thus, the classical first- and second-order
conditions cannot be applied.
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