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Abstract: As efficient separation of variables plays a central role in model reduction for nonlinear and
nonaffine parameterized systems, we propose a stochastic discrete empirical interpolation method
(SDEIM) for this purpose. In our SDEIM, candidate basis functions are generated through a random
sampling procedure, and the dimension of the approximation space is systematically determined
by a probability threshold. This random sampling procedure avoids large candidate sample sets for
high-dimensional parameters, and the probability based stopping criterion can efficiently control
the dimension of the approximation space. Numerical experiments are conducted to demonstrate
the computational efficiency of SDEIM, which include separation of variables for general nonlinear
functions, e.g., exponential functions of the Karhu nen-Loeve (KL) expansion, and constructing
reduced order models for FitzHugh-Nagumo equations, where symmetry among limit cycles is well
captured by SDEIM.

Keywords: approximation theory; discrete empirical interpolation method; empirical interpolation
method; variable separation

1. Introduction

When conducting model reduction for nonlinear and nonaffine parameterized sys-
tems [1], separation of variables is an important step. During the last few decades, many
strategies have been developed to achieve this goal, e.g., empirical interpolation methods
(EIM) [2-5], discrete empirical interpolation methods (DEIM) [6,7], and variable-separation
(VS) methods [8]. To result in an accurate linear representation, these methods typically
need a fine reduced basis approximation space. To construct the corresponding basis func-
tions, repeated evaluations of expensive parameterized systems are required. The accuracy
of the EIM/DEIM approximations depends on candidate parameter samples. Properly
choosing the samples is crucial and is especially challenging when the parameter space is
high dimensional.

For reduced basis approximations [9-14], the work in [15] shows that candidate sam-
ple sets for reduced bases can be chosen as a random set of a specified order and the
resulting approximation satisfies given accuracies with a probability threshold. Rather
than reduced basis approximations, we in this paper focus on separation of variables for
nonlinear and nonaffine systems, and propose a stochastic discrete empirical interpolation
method (SDEIM). In our SDEIM, the interpolation is processed through two steps: the first
is to randomly select sample points to construct an approximation space for empirical inter-
polation, and the second is to evaluate if the approximation accuracy meets the probability
threshold on additional samples. These two steps are repeated until the approximation
space satisfies the given accuracy and probability requirements. The probability correctness
of the approximation space is reassessed by SDEIM each time the approximation space is
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updated. We note that SDEIM does not loop over a fine candidate sample set, which signif-
icantly reduces the computational cost for empirical interpolation for high-dimensional
systems. To demonstrate the efficiency of SDEIM, we utilize it to approximate test functions
including the exponential functions of the Karhu nen-Loeve (KL) expansion, which is
widely used to parameterize random fields. Finally, we use SDEIM to solve ordinary
differential equations (ODEs) arising from the FitzHugh-Nagumo (F-N) system [6,16],
and all these results show that SDEIM is efficient. It is worth noting that many natural
phenomena can have symmetric properties, and symmetry of limit cycles of the F-N system
is well captured by SDEIM.

An outline of the paper is as follows. We first present our problem setting, and then
review the fine collateral reduced-basis approximation space and EIM in Section 2. After a
short introduction of the discrete form, we present SDEIM and analyze its performance in
Section 3. Numerical results are discussed in Section 4. Finally, we conclude the paper in
Section 5.

2. Problem Formulation

Nonlinear terms and functions in complex systems cause significant difficulties for
efficient model reduction, and separation of variables is typically required. In this section,
we refer to nonlinear functions under consideration as the target functions. Let O C R¥
(for d = 1,2 or 3) be a bounded, connected physical domain and I be a high dimensional
parameter space. The target function with a general form is written as

& f(x,8&),xeqQ,¢el.

The target function f(x, ¢) is assumed to be nonlinear. In the following, we review EIM [2],
which is to approximate f(x, ¢) with a separate representation for x and ¢.

2.1. The Linear Approximation Space

Before introducing EIM, we first introduce its fine collateral reduced-basis approxi-
mation space following [2,6,17,18]. Without loss of generality, we assume that the target
function f(x,¢) is uniquely defined in some Hilbert space H for every ¢ € I'. An in-
ner product and a L, norm of H are denoted as < f,g >:= [ f(x,&)g(x,¢) dx and
Il :==+/< -, - >. We define the target manifold M as

M = {f(x,fj)‘é € r}.

when the target manifold M has a low dimension, a low dimensional linear space can ap-
proximate it well. The infimum of the supremum distance between the n-dimensional linear
approximation space and the target manifold M is called the Kolmogorov n-width [3,19],
which is defined as

ko= Ka(M) = _inf  sup|lf(x,8) — Pyf(x, &) 1)
dim(V)=n FeT

Here, Py denotes the orthogonal projection onto V, where V is an arbitrary linear space,
ie.,

<Puf(x,8), f(x,8) = Pyf(x,§) >=0. @

Moreover, from (2) we can get the property

)
<f( ) f(x,8)) = <f(, §) = Puf(x,8) f(x,8) = Puf(x,Q))

2 1f(x8) — Pyf(x )2 ®
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Since the orthogonal projection is linear, (3) means that the error is reduced after the
orthogonal projection. However, the space satisfying (1) is nontrivial to reach. The work
in [20] has proposed a specific greedy procedure for constructing this # dimensional linear
approximation space which optimizes

i dnt | sup [(08) = Pof (6 )] @

instead of «; in a sufficiently fine candidate sample set I'in C I'. Since the candidate
set ['irain contains a finite number of samples, optimizing %, is equivalent to search ¢ (k)
such that

é’(k) — argmaxgertram Hf(x, g) - PVf(xr C)”

Then, we update the linear approximation space V for this target function f (x, ¢ (k)>. A

greedy procedure which constructs a linear approximation space V satisfying x,, < %l,
where tol is a given tolerance, can be stated as follows. First this procedure initializes the
linear approximation space V := span({0}). Then, it selects a new parameter value by

gkt .= argmaxgr, 1f(x, &) — Py f(x, Q).

If the error

1Y) =m0 =Pus ()
tol

is greater than 5, we update the linear approximation space V11 = span (Vk Uf (x, ¢ (k+1)) ) .

At the end of this procedure, the linear approximation space V is set to V = V, and V
satisfies 77(&) < % for all ¢ € I'yain. Moreover, that the candidate sample set I'yyain is
sufficiently fine means that the discrete target manifold

M= {f(x.2)|¢ € Tiain}

isa %l—approximation net for target manifold M, i.e,,

d(M, M) = sup_inf [|f(x,8) ~ f(x,8)] < o ©)
¢cel ¢ €T train
Then for any ¢ € I, (3) and (5) give
I£8) = Pofe 2l < inf (|l£08) ~ £ &) + £ 8) ~ Purte 8]
+1Puf (&)~ Puf(x2)])
N (6)
<2 inf |[f(x8) - fx 8]+ 5
2tol  tol

S T + ? = tol.

The inequality (6) means that the standard greedy procedure with a fine candidate
sample set I'yain can generate a linear approximation space which approximates the target
manifold M with any tolerance tol.
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2.2. Empirical Interpolation Method (EIM)

Section 2.1 explains that, when the candidate sample set ['i4in is fine enough, the
greedy procedure can produce a linear approximation space V which is a fol-approximation
space for the original target manifold M, i.e.,

sup || f(x,&) = Puf(x, &) < tol. )
flxg)eM

For this linear approximation space V), if we denote a set of orthonormal basis functions
of Vas {¢1(x), -+ ,¢u(x)}, the orthogonal projection Py can be expressed as

Pyf(x,¢) = iﬁi(‘f)@(x)- (8)

Here, B;({) € R,i = 1,---,n, are the coefficients corresponding to the basis function
¢i(x). Since the basis functions ¢;(x),i = 1, - - , n are orthonormal, the coefficient p; can be
calculated by

Bile) =< fx, ) i(x) >= [ fr i) dx, Vi1 <i<n, ©)

However, in order to get the coefficient §;(¢) in (9), we need to evaluate an integration
with target function f(x, ), which is inconvenient.

The interpolation method [2,18,21] is widely used in function approximation. It approx-
imates the target function f(x, {) by restricting the values of this function on n interpolation
points x(), - .., x(" € Q. If we denote the approximation function as Zn f(x, &) ~ f(x, ),
the restrictions are

fo(x“),z;) - f(x(”,g), VEeT, Vi 1<i<n. (10)

In addition, if we approximate the target function f(x, {) using interpolation methods
in a linear approximation space V, and denote it as Zy f(x,¢), then (8) and (10) can be
written as

Lof (x0,8) = L p@n(x?) = f(x0,8), veerwii<isn  ay
i=1

Here, B;(¢),i =1,--- ,n, are the unknown coefficients. Moreover, we denote the matrix
® ¢ R"™ " a5
o1 (x(l)) e (x(l))

" (,;<n>) s (ch)

Then, the coefficient (&) := (B1(¢), - , Bn (&))" satisfying (11) is the solution of the linear
system

b =

1 (xu)) %(x(l)) By ()
DB(¢) = : : :
¢ (x(”)) c n (x(”)> Bn(E)

1 Bil@)gi (x ) £(x,2) (12)

iz1 Bi(S)¢i (x(”)> f(x(’.”, 6)
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Compared with (9), B which is evaluated by the interpolation method (12) avoids the
integration and only needs to know the value of target function f(x, ¢) on n interpolation
points x(1), ..., x(")_ The target function f(x, &) can then be approximated by

F(0,8) ~ Ty f(5,8) = 21 B:(2)91(x), 13)

where the coefficients ;(¢),i = 1,--- ,n are the solution of (12). Then, (13) naturally
satisfies the restriction (11) by the definition of the coefficients p;(¢),i =1,--- ,n.

In EIM [2,3,17,21], systematical approaches to choose suitable interpolation points
are given. Here, approximation basis functions and interpolation points are typically
obtained alternately by minimizing the error between the target function f(x,¢) and its
approximation function Zy, f (x, {), of which the produce can be summarized as follows.
First, we initialize Vj = span(0), and select a new parameter value as

g(k-i-l) = argmax;.r, Ilf(x, &) — Ika(xr OIl-

k+1)

For the parameter value ¢ k1), if the error

(€)= [ (220) - Bp (et )

is greater than tol, the linear approximation space is updated as Vi3 =
span(Vk Uf (x, g0+1)) ). Then, we orthonormalize the target function f (x, §(k+l)) with

the basis functions ¢ (x), - - - , ¢x(x) by Schmidt orthogonalization for numerical stability
and denote it as ¢y, 1 (x), i.e.,

o) = £(1,E50) = (7 (5,540,010 (o),

i=1

Pri1(x) =

where <f (x, C(kﬂ)), (pi(x)>,i =1,2,-- -, k, are the coefficients of the projection off(x, §(k+1))

over Vi, = span({¢$1(x), ¢2(x), -, ¢x(x)}). The next interpolation point is selected by
maximizing the absolute value of the error 7 (x) = ¢y11(x) — Ly, Pri1(x), ie.,

x k1) — argmax, . |7 (x)|.

The above procedure is repeated until the error (&) < tol (see (14)) forall ¢ € T'iyain, and we
denote V =V, for the final step. The relationship between the error || f(x, ) — Zy f(x, ) ||
and || f(x,&) — Pyf(x,¢)| are discussed in [2] (see [6] for its discrete version).

3. Discrete Empirical Interpolation Method and Its Stochastic Version

We evaluate the values of f (x, ¢ (k)) on a discrete physical domain, that is, computing

a vector function
& £,(8),

T
where f,(§) = (f (x(l), C),- . ,f(x(Nh), {;')) with Nj, components is the discrete version

of f(x,&) on N, physical points x1), - -, x(Ni), The number of discrete points Nj, is usu-
ally large to meet certain appropriation accuracy. On the other hand, since the physical
domain has been discretized, selecting interpolation points is to find proper indices from
1,2,--+,Ny. If iy, -+ ,iy denote the indices of the interpolation points and P € RNuxn
denote the matrix of interpolation points defined as
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P = [eill. .. /ein]

with e; € RNi*1 the i-th canonical unit vector, the values of target function f;(¢) on the
interpolation points can be written as PTf;,(Z). As a result, the corresponding interpolation
only needs the values of f,(¢) on iy, - - - , i, components with n < Nj,.

3.1. Discrete Empirical Interpolation Method (DEIM)

Before presenting our stochastic discrete empirical interpolation method, we here
review the original DEIM [6]. In the discrete formulation, a linear approximation space V

can be expressed as
v =span({1(20), - 0 (e) ),

which is an approximation of the discrete target manifold

My = {8 e,

Denoting a set of orthonormal basis functions of this linear approximation space
V by {q; € RN*1i=1,2,... 1}, and denoting the matrix of basis functions by Q =
[q1, -+, qu] € RNi*", the approximation of the target function f, (&) corresponding to (8)
can be written as

£,(8) ~ B := QB(Z) = Y_ Bi(§)ai,

M-

=1

where B(&) = (B1,--+,Bn)! is the coefficient. The restriction of interpolation points
corresponding to (13) is

PT£,(2) = PTQB(S),
which gives (&) = (PTQ) “'PT§,(¢). Then, it can naturally derive

o -1
B.(2) = 08(2) = Q(P"Q) PTH({). (15)
N —— V.

o B@)
By the way B is obtained, the values of the approximation function f;, (&) are equal to the

target function (&) on the components iy, - - - , iy for any & € T, i.e., PT#,(¢) = PTf,(¢).

Moreover, the calculation of the new matrix of basis functions Q = Q (PTQ) - € RNwx1 ig
required once only. For a new realization ¢, DEIM only computes the values of the target
function f,(&) on the components iy, - - - , i, as the new coefficient (&) = PTf,(&) € R"*1.
The procedure of DEIM to construct a linear approximation space and select interpola-
tion points can be stated as follows. For a fine candidate sample set I'y4in, it first chooses

5(1) = argmaxgertmm ||fh (C) H2’

where || - |2 is the vector L, norm for a discrete function. Then, we orthonormalize fj, (§ (1))

£, (¢
Chizif ((1>) .
£ (2D)],

The index of the first interpolation point i; is initialized as

as qi and denote Q; = [q1] with

, T
i1 = argmax;_ ... v, |e; qul, (16)
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and we let Py = [e;,|. For the (k 4 1)-th basis function and interpolation point, a parameter
value ¢ (k+1) is chosen from the candidate sample set ['iy,in by finding the maximum error

between the target function f; (&) and its approximation £, (¢) in the linear approximation
space Vi = span({q1,--- ,qx}), ie.,

é’(k"rl) — argmaxgertram

1£.(2) — B0, a7

2

If the error ({f(kﬂ)) = Hfh <§(k+1)) 1, (@’(k“)) H2 is greater than a given tolerance tol,

we orthonormalize f;, (é (k+1)> with q1, - - -, qx by Schmidt orthogonalization and denote it
as qy.1, thatis,

e(k+1) . f, (é(k‘“)) _ QkQ]{fh (g(k-&-l)),

18
S o(k+1) | (18)
el
Then, the matrix of basis functions is updated as Q.1 = [Qy, qx+1]. The residual of

interpolation projecting g1 to the linear approximation space Vi can be written as

. Ty \ 'pT
= Qi1 — Grr1 = Qi1 — Qk (Pk Qk) P i1 (19)

An index of (k + 1)-th interpolation point iy 1 is selected by finding the maximum compo-
nent of residual ry, i.e.,

; T

lkr1 = argmax;_; .. y, le; 1xl, (20)

and we update Py = [Py, ¢;_,]. Finally, we denote VV = V;;, Q = Q, and P = P,,. This
linear approximation space V then satisfies

sup |[£(&) — £u(©)||, < tol.

g er'crain

The whole procedure is stated in Algorithm 1, where # means the error in (14) or its discrete
form (17).

Algorithm 1 Discrete empirical interpolation method (DEIM) [6]

Input: A candidate sample set I'y;qin and a target function £, (¢).
1. Initialize &1 = argmaxgcr, ||f4(¢)[, and orthonormalize fj (C (1)) as

@ =6 (20) /6 (V)]

2: Initialize i1 = argmax;_; .. y, lelqu].
3: Initialize Q = [q;] and P = [e;, ].

4: while supsr  77(¢) = Hfh((j) - fh((;‘)Hz > tol do

5: Compute the error y (C(i)) for C(i) €Thain, i=1,2,- -, |Tirain|-

6 Let &kl = argmaxgcr, . 1().

7: Compute qy1 through orthonormalizing f;, (§ (k+1)) with qq, -, qx by (18).

8: Solve the equation PTq;; = PTQg for .

9: Compute the residual 1 = qx11 — k1 = qrr1 — QB.

10: Select the interpolation index iy, as ixy1 = argmax;_; . y, lelry].

11:  Update Q = [Q, qxy1]and P = [P,e; ].

12: end while

Output: The matrix of basis functions Q and the matrix of interpolation points P.
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3.2. Stochastic Discrete Empirical Interpolation Method (SDEIM)

For standard EIM (or DEIM), to satisfy the tol-approximation (see (7)), the candidate
sample set I'iain typically needs to be fine enough (i.e., the condition (5) holds). However,
if the size of I'iain is large, it can be expensive to construct the DEIM approximation (15).
In this section, we propose a stochastic discrete empirical interpolation method (SDEIM).
In SDEIM, we accept the approximation with probability instead of giving a threshold
with certainty, and we then avoid fine candidate sample sets. We note that a weight EIM
strategy is developed in [4], while the purpose of our work is to give a stochastic criterion
for updating training sets.

Our problem formulation is still to approximate the target manifold M), with a linear
approximation space V, such that it satisfies

1(8) = 1£4(¢) — Zy£4(S) |2 < tol.

However, assuming that a probability measure [P exists in the parameter space I, we herein
do not ensure 7 (&) < tol for all € T, but concern about the failure probability

pi= P(Cef‘q({,‘) >tol), 1)

which measures the size of the parameter set where the approximation is not accurate
enough. While the probability p can hardly be exactly evaluated, we evaluate its empirical
probability among N samples

1 N ,
5. @\ _
P N;H(U(C ) —tol), (22)
where I(x) is the indicator function defined as

1, ifx>0,
H(x)_{o, if x < 0.

The probability (22) is to calculate the average number of occurrences of () > tol on N
samples. By the law of large numbers [22], the empirical probability p converges to the
probability p with probability one as N goes to infinite, i.e.,

#(gm, 3 E1(0(2) ~1) =) =1

Since the implicit constant p reflects the probability that ¢ does not satisfy the tolerance
tol, we hope that p is small enough. On the other hand, p can not be evaluated explicitly,
and the empirical probability 7 is an approximation of p. In SDEIM, therefore, f is set to be
small enough. For convenience, we take p = 0 in the verifying stage and use the sample
size N to control the accuracy of p to approximate p.

The procedure of SDEIM has two steps: constructing a linear approximation space
V, and verifying whether the empirical probability p = 0 for this linear approximation
space V in N consecutive samples. Our SDEIM algorithm can be described as follows. First,

a sample ¢ W eris randomly selected, and the target function fj, (é (1)> is normalized

as q1. The linear approximation space is initialized as V; = span({qi}) and the matrix
of basis function is denoted as Q; = [q1]. The index of the first interpolation point i;
is initialized in the same way as (16) and the matrix of interpolation point is denoted as
Py = [e;,]. Then, the empirical probability 7 is verified for this linear approximation space
V1. We sample N consecutive samples. If one of these N samples makes (&) > tol, we
orthonormalize q 1 for this sample ¢, find the index of the (k 4 1)-th interpolation point
ixy1 as DEIM in (19) and (20) and update Py 1 = [Py, eikH}. The linear approximation space
is updated as Vi1 = span(V; U qk;1) and the matrix of the basis function is updated
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as Q11 = [Qg qr+1)- Then, the empirical probability p is verified again for this linear
approximation space Vi 1. The above steps are repeated alternately until there is a linear
approximation space V, such that 77(&()) < tol for N consecutive samples. Finally, a linear
approximation space V = V), is obtained, such that the empirical probability 7 = 0 for N
consecutive samples. Details of SDEIM are stated as Algorithm 2.

Algorithm 2 Stochastic discrete empirical interpolation method (SDEIM)

Input: A constant number N and a target function f;,(¢).
1: Sample ¢ randomly.

2: Evaluate the target function f;,(¢) and initialize qq = £,(¢) / 1£,(8) |-

3: Initialize iy = argmax;_; ... y, lelqy].

4: Initialize Q = [qq] and P = [e;, ].

5: Initialize the counting index j = 0.

6: while j < N (if j > N, it means that 7 = 0 in verifying stage) do

7: Sample ¢ € I randomly.

8 if errory(§) = Hfh(g) —£,(8) H2 > tol then

9: Set counting index j = 0.
10: Compute q 1 through orthonormalizing f;, () with the qq, - - -, qx by (18).
11: Solve PTq;.; = PTQg for B.
12: Compute the residual 1y = qxr1 — k1 = Q1 — QB-
13: Select the interpolation index i1 as ixq = argmax;_; ..\, |eiTrk|.
14: Update Q = [Q, q41] and P = [P, e; ,|.
15: else
16: Updatej =j + 1.
17: end if

18: end while
Output: The matrix of basis functions Q and the matrix of interpolation points P.

3.3. Performance and Complexity of SDEIM

In SDEIM, we ensure that the empirical probability p = 0 for N consecutive samples in
the verifying stage, i.e., the number of ¢ such that 77(¢) > tol is zero in these N consecutive
samples. The probability p is adjusted through the samples size N, which affects the
accuracy of p for approximating p. For any tolerance tol and sample size N, there is
always a linear approximation space V such that #(&) = ||£,(¢) — Zy£, (&) |2 < tol for N
consecutive samples—in the worst case, when the dimension of the linear approximation
space dim(V) = N, this linear approximation space V obviously satisfies the condition.

Although the probability value p cannot be evaluated explicitly, the empirical proba-
bility p approximates the probability p with probability one as N goes to infinite. Hence,
for a given threshold ¢ and a confidence (1 — J), we can consider this question, whether
there is

P(lp—pl<e) >1-0. (23)

By the law of large numbers, the answer is always correct for a suitable N. Before
describing the relationship between N and the probability p, the threshold & and the
confidence level (1 — ¢), we first introduce the Hoeffding’s inequality as Lemma 1.

Lemma 1 (Hoeffding’s inequality [23]). Let random variables X1, Xp, - - - , Xn be independent
and identically distributed with values in the interval [0, 1] and expectation EX, then for any € > 0

|

P EX—lix-n < exp(—2Ne2)
N = PEE) = eP '

Ly
EX - — Y X;
Ni:l

> s) < 2exp(—2N£2),
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The Hoeffding’s inequality characters the relationship between the arithmetic mean
& YN, X; and its expectation EX for bounded random variables. In SDEIM, when a linear
approximation space V is given, the error 77(¢) can only be greater than tolerance tol or
not greater than fol for any realization ¢. Hence, the indicator I(#(¢) — tol) is a random
variable taking value of zero or one with expectation EI(#(¢) — tol) = p. Note that we
set the empirical probability p = 0 in the verifying stage. Then, the problem (23) can be
answered with Theorem 1.

Theorem 1. For any significant level § (0 < § < 1) and threshold ¢, the linear approximation
space V is produced by SDEIM with sample size N. Then, if N > ﬁ In %, we have

P(p<e)>1-0.
Proof. By Lemma 1 and p = 0 in SDEIM, we have

P(p<e)=1—-P(p >e)
=1-P(p-p=¢
> 1 —exp(—2Ne?)
>1 7eXp(72€221?11’1%)
=1-4.
O

Moreover, the relationship between probability p and the sample size N, the threshold
¢, the confidence (1 — §), can be explicitly described as Theorem 2.

Theorem 2. For any significance level § (0 < & < 1), the linear approximation space V is produced
by SDEIM with sample size N. There is at least confidence (1 — &) satisfying

1
0<p<ygying
It means that, if the error estimator in SDEIM is set to (&) = ||£,(&) — Zy£,,(&) ||, with confidence

(1 —6), we have

| =

IP’(Hfh(g) —Ivfh(g)H2 > tol) < ﬁln% (24)
and
P(Hfh(g) —Ivfh(g)H2 < tol) >1- %m% (25)

Proof. Without loss of generality, we set

5 = exp(—2N¢?)

for suitable ¢, that is

By Lemma 1 and p = 0 in SDEIM, we have

[1 1 )
>4/ =—=—In-| < — = 0.
IP’(p >\ 5§ ln(s> < exp(—2Ne®) =

That is
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with confidence (1 — §). In addition, when the error estimator is set to 17(¢) = ||£,(&) —
Zy£,(8) |2, since the definition of p in (21) is

p= P(C € F‘;y((;‘) > tol),
(24) and (25) can be derived directly. O

Theorem 2 ensures that the linear approximation space V given by the SDEIM algo-
rithm (Agorithm 2), can approximate the target function f; () with the tolerance tol and
the probability threshold e. Actually, in Algorithm 2, we reset the counting index each time
17(&) > tol occurs, which means that there are more than N samples such that #() < tol.

Hence, 4/ ﬁ In % is a more strict upper bound.

In the procedure of Algorithm 2, the best situation is that n consecutive samples are
compared to generate the linear approximation space V with dimension dim(V) = n and
then N samples are compared to verify the error #(¢) < tol. In this case, the number
of comparisons is O(n + N). The worst situation is that, each sample ¢ is found with
7(&) > tol at the end of the N comparisons for verification and this procedure is repeated n
times. It is clear that, the number of comparisons in SDEIM is much smaller than that in
standard DEIM, where large training sets typically need to be looped over.

4. Numerical Experiments

In this section, four test problems are considered to show the efficiency of SDEIM.
The first one is a nonlinear parameterized function with spatial points in one dimension.
The second one is to extend the first experiment to two dimensions. The third one focuses
on the property of SDEIM for random fields. The last experiment is a nonlinear ordinary
differential equation arising in neuron modeling.

4.1. A Nonlinear Parameterized Function with Spatial Points in One Dimension

Consider a nonlinear parameterized function f : (O x I' — R defined by

f(x, &) = 10xsin(27¢x),

wherex € O =1[0,1] CRand ¢ € T = [1, T] C R for a constant T. For a given parameter
¢, the function f(x, ¢) has the period 1/¢. Figure 1 plots the function f(x, ¢) for different
¢ = 1,2 and 8. It shows that the target function can have different complexities for different

parameter ranges. Let {x(i),i =12,---, Nh} be a uniform grid points in Q) for N;, = 400,
and define f;, (&) : T — RN as

() = [£(x,8), - ,f(xmm,g)f € RN

for ¢ € T. Let the range of the parameter be I' = [1, T] for T = 2 and let I'y,in be selected
uniformly over I with |Tzain| = 50 for DEIM. The tolerance fol is set to tol = 10~* and the
confidence is set to 0.99 (6 = 10~2) for Algorithms 1 and 2.
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Figure 1. The parameterized function f(x, &) for ¢ = 1,2 and 8.

Figure 2 shows the training procedures for different methods. Figure 2a is the training
procedure of SDEIM with threshold € = 0.70. An epoch in Figure 2a is a training procedure
for a new realization ¢. The black curve indicates that the error changes in the training
procedure. The green point is the first successful sample with #({) < tol. In DEIM,
after traversing the candidate sample set, if the sample with the largest error is less than
tolerance tol, the algorithm stops and the linear approximation space satisfies 77(¢) < tol
for all { € I'rain. In SDEIM, we continue to find whether there are failed samples (the
red crosses) in I with (&) > tol. The SDEIM algorithm (Algorithm 2) stops when the
samples satisfy #7(&) < tol for N consecutive samples. In this case, the probability for the
appearance of a failed sample is considered to be very low in SDEIM. Figure 2b shows
the relationship between the number of comparisons and the average error in the training
procedure for SDEIM (with p < 0.70 and p < 0.10) and DEIM, where the average error is
computed on N = 10* samples defined as

7i=5 L(e”): (26)

Since a basis function is found after searching the candidate sample set I'i4in in DEIM, its
average error decreases in a ladder shape. In SDEIM, errors for an extra N consecutive
samples need to be computed, and its numbers of comparisons have a long flat tail.

Table 1 shows more details for the linear approximation space V produced by the
two methods. The average errors 7j for different methods are computed using (26) with
N = 10* samples and the empirical probabilities 7 are calculated using (22) with the same
N = 10* samples which are the approximation of p. The number of comparisons is the
times in different methods to compare the error #(&). From Table 1, it can be seen that since
SDEIM does not need to search the sample ¢ in a candidate sample set I'y,in, it has fewer
comparisons.

Figure 3a,b show the first six basis functions (i.e., the first six columns of matrix Q) for
DEIM and SDEIM. Figure 3c shows the samples ¢ which generate the basis functions for
DEIM and SDEIM. The black dots in Figure 3¢ are the samples in the candidate sample set
I'train, and the black dots circled by the blue circles are the samples selected by DEIM. The
numbers above them are the order in which they are selected. The red stars are the samples
selected by SDEIM, which are generated in random order. Note that the consecutive
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samples in DEIM are separated further because they are selected after searching the fine
candidate sample set I'train.

—+—SDEIM p < 0.70
0 0 —o- SDEII\Ip<UL{)r‘
0 y 10 il
e}
102 /\ E 102
9
o
2 10" \JA & 10'41,
= 6 g 6|1
10° é 1071,
108 108
-10 -10
10
10 0 5 10 15 20 0 200 400 600
Epoch Number of comparisons
(a) (b)

Figure 2. (a) The training procedure of SDEIM with probability threshold ¢ = 0.70, i.e., p < 0.70,
where each epoch is to test a new sample ¢ for updating the basis. (b) The relationship between the
number of comparisons and the average error in the training procedure for SDEIM (with p < 0.70
and p < 0.10) and DEIM.

Table 1. The average error 7, the number of basis functions n for the approximation space V), the
empirical probability p and the number of comparisons for SDEIM (with p < 0.70 and p < 0.10) and
DEIM (with |Tirain| = 50).

i n p Number of Comparisons
spEM P <070 2.8815x 107> 9 736 x 1072 14+ N(N =5)
p < 0.10 1.0145 x 1077 10 0 22+ N(N =231)
DEIM  |Tain| =50 1.9514 x 1078 10 0 550
1.
> 1
QO DEM
¥ SDEIM

> BSIB K e YB DS
-1
0 05 1 1 121416 18 2
T T 3
(a) (b) ()

Figure 3. (a) The first six basis functions for DEIM. (b) The first six basis functions for SDEIM. (c) The
samples for generating the basis functions.
4.2. A Nonlinear Parameterized Function with Spatial Points in Two Dimensions

Consider a nonlinear parameterized function f : (3 X I' — R defined by

f(x,&) = 10x1xp sin(27t&1x1) cos(27rx2),

where x = (x1,x) € Q=1[0,1]> C R?and & = (¢1,&) € T = [1,T]> C R? for a constant T.
Similarly to Section 4.1, for a large &3 (or &2), f(x, &) changes more quickly in the x; (or x7)
direction. Let {x(i),i =12,---, Nh} be a uniform grid in Q) for Nj, = 50 x 50 = 2500, and
define f;,(¢) : T — RN as

£,(8) = {f(x(l)@),... ,f(x(Nh)lg)}T c RN

for & € T. Let the range of the parameter be I' = [1, T]? for T = 4. Figure 4 shows the image
of f(x,¢) for & = [4,4]. The tolerance tol is set to tol = 10~* and the confidence is set to
0.99 for 6 = 10~ for Algorithms 1 and 2.
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Figure 5 shows the training procedures for the two methods. Where Figure 5a is the
training procedure of SDEIM with threshold ¢ = 0.10. An epoch in Figure 5a is a comparison
of the error for a new realization of ¢. The trend of black dots is the trend of errors, which
decrease rapidly at early epochs. For these early epochs, the linear approximation space
is updated for each realization ¢ in this stage. After the first successful sample (the green
point with #(&) < tol), the error becomes relatively stable near the tol. Then, for SDEIM,
the linear approximation space is updated only for the failed samples (the red crosses with
17(&) > tol), and Algorithm 2 stops when the samples satisfy #(&) < tol for N consecutive
samples. Figure 5b shows the relationship between the number of comparisons and the
average error among N = 10* samples in the training procedure for SDEIM and DEIM.
Compared with DEIM, SDEIM has fewer comparisons.

Table 2 shows more details for DEIM and SDEIM with different parameters, where
the average errors 7j and the empirical probability p for different parameters are computed
using (22) and (26) on the same N = 10* samples. It can be seen that the empirical
probability p for DEIM is similar to that of SDEIM. Moreover, by comparing DEIM with the
size of candidate sample set |T'iain| = 400 and SDEIM with probability threshold € = 0.10,
the number of comparisons for SDEIM is far less than DEIM.

0
I 0 T

Figure 4. The parameterized function f(x,¢) for ¢ = [4,4].

2
102 By 10
'.'%';
100) % 5
ol £ 10
2
5 10 el oxox i
Z 10* ¥102
M 8
10° : L EEe
108 10 %
tol = 10 \‘
10-10
0 200 400 600 800 1000 1200 10° 10" 102 10® 10* 10°
Epoch Number of comparisons
(a) (b)

Figure 5. (a) The training procedure of SDEIM with probability threshold ¢ = 0.10, i.e., p < 0.10,
where each epoch is to test a new sample ¢ for updating the basis. (b) The relationship between the
number of comparisons and the average error in the training procedure for DEIM and SDEIM with
different parameters.
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Table 2. The average error 77, the number of basis functions n for the approximation space V), the
empirical probability p and the number of comparisons for SDEIM with (p < 0.70 and p < 0.10) and
DEIM with (|Train| = 225 and |Tipain| = 400).

i n p Number of Comparisons
spEmM P <070 3.7000 x 103 173 2.631 x 107! 186+ N(N = 5)
p <0.10 4.0844 x 107 204 2.500 x 1073 869 + N(N = 231)
DEv  |Dtrain| =225 11881 x 107* 177 1.876 x 107! 40,050
ITirain| =400 2.1180 x 107> 184 2.520 x 1072 74,000

4.3. Random Fields

Consider a nonlinear parameterized function f : O x I' — R defined by

f(x,8) = exp(z(x,8)),

where x = (x1,x) € Q = [0,1)2 C R? and z(x, ) is assumed to be a stochastic process
with mean function zg(x) = 1 and covariance function Cov(x, y) defined as

Cov(x,y) = 02 exp(— |1 Zy1| x Zy2|>‘ 27)

Here x = (x1,x2) € O,y = (y1,52) € Q and L is the correlation length. The Karhu
nen-Loeve (KL) expansion (see [24,25] for details) gives a representation of z(x, {) as

(X C: - ZO + 2 \/74)1 gl/

where {¢;(x),i =1,2,- - - } are the orthonormal eigenfunctions and {A;,i = 1,2, - - - } are the
corresponding eigenvalues of the covariance function Cov(x, y). Moreover, {¢;,i =1,2,--- }
are mutually uncorrelated random variables. In this example, we truncate the expansion to
M terms as our surrogate model according the retaining of the energy for z(x, §):

( ‘: —ZO +Z\/7(PI (;rzr

where { = ({1,---,{um) is the parameter in the surrogate model whose distribution is
assumed to be a uniform distribution in T = [~1,1]M ¢ RM and M satisfies

MoA;
Zlb—'l(ﬂl > 0.95.
Here, |Q)| is the area of the physical domain Q) and the standard deviation ¢ is set to
o = 0.5 for (27). We focus on the cases L = 1 and L = 0.5 in this experiment, and the
corresponding dimensions of the parameter spaces are M = 33 and M = 109 respectively.
The physical grid is set to a uniform grid with N, = 50 x 50 = 2500. We consider the
nonlinear parameterized function f;, (&) : T — RNt defined by

£4(8) = [fu(x1,€), (xwh),g)r c RN

for ¢ € T, where fj(x, &) = exp(zm(x,§)).

Figure 6a,b show the error for SDEIM with dimensions M = 33 and M = 109 for
N = 10° samples respectively. The tolerance is set to tol = 103, the threshold is set to
¢ = 0.30 and the confidence is set to 0.99 for § = 10~2 in Algorithm 2. Here the black points
are the samples satisfying #(&) < tol and the red crosses are the failed samples satisfying
7(&) > tol. The empirical probabilities p are p = 0.062 and § = 0.051, which are both
smaller than our probability threshold e = 0.30.

5KL =
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200 400 600 800
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Figure 6. (a) The error for SDEIM with M = 33. (b) The error for SDEIM with M = 109. Each point
or fork corresponds to a sample of the parameter.

Table 3 shows more details about the property of SDEIM in different parameter settings.
The data in Table 3 are calculated with N = 10* samples and the data in Figure 6 are the
first 103 of these 10* samples. From Table 3, it can be seen that for different dimensions of
parameter spaces (M = 33 and M = 109) and different tolerances (tol = 10~1,1072, 10’3),
SDEIM can produce a linear approximation space V satisfying different probability thresh-
olds (¢ = 0.70,0.50,0.30,0.10). Table 4 shows the average number of comparisons for
each basis function in SDEIM with different parameter settings. The average number of
comparisons is the ratio of the number of comparisons to the number of basis functions
for the linear approximation space V. It is clear that SDEIM has a very small number of
comparisons to generate each basis function.

Table 3. The empirical probability p for different parameter settings in SDEIM.

e =0.70 e = 0.50 e =0.30 e =0.10
N=5 N =10 N =26 N = 231
tol =1071  3.060 x 101 2189 x 10! 4770 x 1072 2.700 x 103
M=33 til=10"2 2766x10"1 1550x10"1 6420%x1072 6.700 x 1073
tol =103 5344 x 107! 2406 x 1071 5550 x 1072  1.890 x 102
tol =1071  5.664x 1071 2567 x 10! 1.173x 10!  1.050 x 102
M=109 tol=10"2 4233x1071 2143x1071 4740x1072 9.900 x 1073
tol =107% 1.863x 107! 1403 x10"! 5.020x 1072  4.400 x 103

Table 4. The average number of comparisons for each basis function in SDEIM with different
parameter settings.

e =0.70 e =0.50 £ =0.30 e =0.10
tol = 1071 1.1037 1.1841 1.7954 5.4669

M =33 tol =102 1.0612 1.1284 1.3482 2.8485
tol =103 1.0346 1.1065 1.5488 2.5069
tol = 1071 1.0372 1.1270 1.2069 2.6813

M =109 tol =102 1.0172 1.0527 1.1066 1.8194
tol = 1073 1.0291 1.0446 1.1196 2.2821

4.4. The FitzHugh—Nagumo (F-N) System

This test problem considers the F-N system, which is a simplified model of spiking
neuron activation and deactivation dynamics [6,16]. Within the F-N system, the nonlinear
function f(v) is defined as

f(v) =0v(v—10.01)(1—0), (28)
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where v is the voltage and satisfies the F-N system

evp(x, 1) = 20y (%, 1) + f(v(x, 1)) —w(x,t) +c, 29)
wi(x, t) = bo(x, t) — yw(x,t) +¢,

with e = 0.015,b = 0.5, =2,c = 0.05and x € O = [0, L], t > 0. The variable w represents

the recovery of voltage, and the variable L is set to L = 1. Following the settings in [6],

initial and boundary conditions are set to

v(x,0) =0, w(x,0) =0, x€Q=10L], 20

vy(0,8) = —ig(t), vx(L,t)=0, t>0, (30)
where the stimulus ip(t) = 50,000t exp(—15t). We discretize the physical domain Q) using
a uniform grid with N = 2500. The dimension of the finite difference system is 2500. We
take 2501 time nodes at evenly in the interval [0, 8], of which 500 are randomly selected
as the candidate sample set I'yqin for DEIM and SDEIM training, and the remainder are
utilized to test the probability features.

The solution of the F-N system has a limit cycle for each spatial variable x, and

we display the phase-space diagram of v and w at various spatial positions in Figure 7.
Symmetry in the limit cycles of the F-N system is well captured by SDEIM, as seen in
Figure 7. Tolerances are set to tol = 102 for solutions v, w and tol = 10~* for nonlinear
function f(v). The probability of errors exceeding the corresponding tolerances among 1500
verifying samples are depicted in Figure 8a. The probabilities of v converge to a constant
value in this case, because the accuracy of the solution v is dependent on the accuracy of
the solution w for both DEIM and SDEIM. Figure 8b shows the number of comparisons
increases as the number of basis functions increases. The black dotted line represents the
number of comparisons in DEIM, which is (2|Tiyain| — 1 + 1)n/2 (1 is the number of the
basis functions). It is clear that SDEIM is very efficient solve this F-N system.

Full 02 o
o s]l:)EIM ,,,,, \\ o
‘ \ |— DEIM
0.15 ¢
N
i Y
£ 01 \
S \
E
0.05 /’
.—.ﬂf?f—szfwrf/
0
-0.5 0 0.5 1 -

Figure 7. (a) Phase-space diagram of v and w at different spatial points x from the FD system
(dim2500), DEIM reduced system (dim67) and SDEIM reduced system (dim72). (b) Corresponding
projection of the solution onto the v — w plane.
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Figure 8. (a) Probability properties for DEIM reduced system and SDEIM reduced system. (b) The
number of comparisons for DEIM reduced system and SDEIM reduced system.

5. Conclusions

Empirical interpolation is a widely used model reduction method for nonlinear and
nonaffine parameterized systems through a separate representation of the spatial and the
parametric variables. This kind of method typically requires a fine candidate sample set,
which can lead to high computational costs. With a focus on randomized computational
methods, we in this paper propose a stochastic discrete empirical interpolation method
(SDEIM). In SDEIM, large candidate sample sets are replaced by gradually generated
random samples, such that the computational costs of constructing the corresponding
interpolation formulation can be dramatically reduced. With our analysis, the stopping
criterion based on a probability threshold in SDEIM can guarantee the interpolation is
accurate with a given confidence. Our numerical results show that this randomized
approach is efficient, especially for variable separation for high dimensional nonlinear and
nonaffine systems. However, as we use the Hoeffding’s inequality to estimate the failure
probability in the verifying stage, SDEIM is efficient when this probability is not too small,
but it can be inefficient when the probability is very small. For applying SDEIM to systems
which require high reliability, current efforts are focused on combining subset simulation
methods, and implementing such strategies will be the focus of our future work.
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