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Abstract: The aim of this article is to introduce the Douglas–Rachford splitting method with lineariza-
tion to solve the split feasibility problem (SFP). Our proposed method includes two existing methods
in work of Tang et al. and Wang as special cases. The ranges of the parameters in work of Tang et
al. are extended from (0,1) to (0,2). Under standard conditions, we prove the weak convergence of
proposed algorithms. We also provide two numerical experiments to illustrate the effectiveness of
the proposed algorithm by comparing the algorithms in work of Tang et al. and Wang.
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1. Introduction

In this article, we consider the split feasibility problem (SFP) in the form

find x∗ ∈ C and Ax∗ ∈ Q, (1)

where C and Q are the nonempty closed convex subsets of the real Hilbert spacesH1 and
H2, respectively, and A : H1 → H2 is a bounded linear operator. The SFP was introduced by
Censor and Elfving [1] for inverse problems which arise from phase retrievals and medical
image reconstruction [2] and were later generalized to the multiple-sets split feasibility
problem [3].

Throughout this article, we assume that the SFP (1) is consistent, i.e., its solution set,
denoted by

Γ = {x | x ∈ C and Ax ∈ Q},

is nonempty.
By transforming the SFP as an equivalent constrained optimization problem, Byrne [2,4]

firstly introduced the well-known CQ algorithms, which have received a great deal of
attention from many authors, who improved it in various ways; see, e.g., [5–12].

To solve the SFP (1), Wang [13] introduced the following gradient method which was
called Polyak’s gradient method:

xk+1 = xk − τk

[
(xk − PCxk) + A∗(I − PQ)Axk

]
, (2)

where

τk = ρk
‖xk − PCxk‖2 + ||(I − PQ)Axk||2

2‖(xk − PCxk) + A∗(I − PQ)Axk‖2 ,
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and ρk ∈ (0, 2). In fact, (2) is a special case of the so-called simple projection method in [14].
The authors [15] proposed an iterative method for solving the multiple-sets split feasibility
problem with splitting self-adaptive stepsizes, which reduces to the following scheme when
applied to the SFP (1):

xk+1 = xk −
[
µk(xk − PCxk) + νk A∗(I − PQ)Axk

]
, (3)

where µk ∈ (0, 1) and

νk = σk
‖(I − PQ)Axk‖2

‖A∗(I − PQ)Axk‖2 ,

and σk ∈ (0, 1). Note that the difference of the schemes (2) and (3) is the choices of the stepsizes.
The Douglas–Rachford splitting method introduced in [16] is a popular method to

solve structured optimization problems. Let g and h be proper lower semicontinuous convex
functions from a Hilbert spaceH to (−∞,+∞). Consider the structured optimization problem:

min
x∈H

g(x) + h(x).

Given the initial guess x0, the Douglas–Rachford splitting method generates the
iterative sequence via the following scheme:

yk+1 = argmin
x∈H

{
g(y) +

1
2λk
||y− xk||2

}
,

zk+1 = argmin
z∈H

{
h(z) +

1
2λk
||z− (2yk+1 − xk)||2

}
,

xk+1 = xk + αk(zk+1 − yk+1),

(4)

where {αk}k∈N ⊂ (0, 2) is a parameter sequence and {λk}k∈N ⊂ (0, ∞) is the prox-
imal parameter sequence of the regularization terms. Note that the scheme (4) with
{αk}k∈N ⊂ (0,+∞) was called the general splitting method in [17] and becomes the
Peaceman–Rachford splitting method when {αk}k∈N ⊂ [2,+∞).

It is easy to see that the split feasibility problem (1) also equals the following uncon-
strained minimization problem:

min
x∈H1
{ιC(x) + f (x)}, (5)

where f (x) = 1
2‖(I − PQ)Ax‖2 and ιC(x) is the indicator function of the set C; that is,

ιC(x) = 0 if x ∈ C, otherwise ιC(x) = +∞. Recall that the gradient of f (x) is ∇ f (x) =
A∗(I − PQ)Ax. Letting g = f and h = ιC in (4) and using the linearization technique, the
authors [18] recently introduced the following general splitting methods with linearization
for the SFP (1): 

yk+1 := xk − λk∇ f (xk),

zk+1 := PC(2yk+1 − xk),

xk+1 := xk + αk(zk+1 − yk+1),

(6)

where {αk}k∈N is a sequence of positive numbers and

λk :=

γ
f (xk)

‖∇ f (xk)‖2 , if ∇ f (xk) 6= 0,

0, otherwise,
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and γ ∈ (0, 2). The weak convergence of the algorithm (6) was established under the
standard conditions, and the algorithm (6) has good numerical performance comparing the
algorithm (2) and Algorithm 3.1 in [10].

In this article, we present an iterative scheme by letting g = ιC and h = f in (4)
and using the linearization technique. The convergence of the corresponding scheme is
analyzed.

The rest of the paper is constructed as follows. In Section 2, we recall some definitions
and known results for further analysis. In Section 3, we present the Douglas–Rachford
splitting method with linearization and its relaxed version. In Section 4, we show the weak
convergence of the proposed algorithm, which converges weakly to a solution of the SFP.
In Section 5, we give two numerical experiments to show the behavior of the algorithm.
Finally, some concluding remarks are given in Section 6.

2. Preliminaries

LetH be a Hilbert space and K be a nonempty closed convex subset ofH. We use the
notation:

• ⇀ for weak convergence and→ for strong convergence;
• ωw(xk) = {x : ∃xkl ⇀ x} denotes the weak ω-limit set of {xk}k∈N.

The following identity will be used for the main results (see [19], Corollary 2.15):

‖αx + (1− α)y‖2 = α‖x‖2 + (1− α)‖y‖2 − α(1− α)‖x− y‖2 (7)

for all α ∈ R and (x, y) ∈ H×H.

Definition 1 ([19], Definition 6.38). Let K be a nonempty convex subset ofH and let x ∈ H. The
normal cone to K at x is

NK(x) =

{
{u ∈ H | sup〈K− x, u〉 ≤ 0}, if x ∈ K;
∅, otherwise.

For a point x, the the classical metric projection of x onto K, denoted by PK(x), is
defined by

PK(x) := argmin{‖x− y‖ : ∀y ∈ K}.

Lemma 1 ([19], Proposition 4.4). For any x, y ∈ H and z ∈ K, the following hold:

(i) ‖PK(x)− PK(y)‖2 ≤ 〈PK(x)− PK(y), x− y〉;
(ii) ‖PK(x)− z‖2 ≤ ‖x− z‖2 − ‖PK(x)− x‖2;
(iii) 〈(I − PK)x− (I − PK)y, x− y〉 ≥ ‖(I − PK)x− (I − PK)y‖2.

It follows from Lemma 1 (iii) that

〈x− PK(x), x− z〉 ≥ ‖x− PK(x)‖2, ∀x ∈ H, ∀z ∈ K. (8)

Recall that a mapping T : H → H is called to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ H.

Lemma 1 (i) implies that PK is firmly nonexpansive and consequently nonexpansive.
The next lemma shows that the nonexpansive mappings are demiclosed at 0.

Lemma 2 ([19], Theorem 4.27). Let K be a nonempty closed convex subset ofH and T : K → H
be a nonexpansive mapping. Let {xk}k∈N be a sequence in K and x ∈ H such that xk ⇀ x and
Txk − xk → 0 as k→ +∞. Then x ∈ Fix(T).
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Lemma 3 ([19], Lemma 2.47). Let K be a nonempty closed convex subset ofH and {xk}k∈N be a
sequence inH such that the following two conditions hold:

(i) For all x ∈ K, limn→∞ ‖xk − x‖ exists;
(ii) Every sequential weak cluster point of {xk}k∈N is in K.

Then the sequence {xk}k∈N converges weakly to a point in K.

3. Douglas–Rachford Splitting Method with Linearization

In this section, we introduce Douglas–Rachford splitting method with linearization
and its relaxed variant.

Using symmetry, we can set g = ιC and h = f in (4). Now, we present a direct adaptation
of the Douglas–Rachford splitting method (4), which can solve the equivalent problem (5) of
the SFP (1). (see Algorithm 1)

Algorithm 1 Douglas–Rachford splitting method.

Step 0. Input k := 0, x0 ∈ H1.
Step 1. Generate xk+1 by

yk+1 := PC(xk),

zk+1 := argmin
z∈H1

{
f (z) +

1
2λk
‖z− (2yk+1 − xk)‖2

}
,

xk+1 := xk + αk

(
zk+1 − yk+1

)
,

(9)

where {αk}k∈N and {λk}k∈N are sequences of positive numbers.
Step 2. If a termination criterion is not met, then set k := k + 1 and go to Step 1.

By the first-order optimality condition of the second formula of (9) in Algorithm 1,

0 =∇ f (zk+1) +
1

λk

[
zk+1 − (2yk+1 − xk)

]
=A∗(I − PQ)Azk+1 +

1
λk

[
zk+1 − (2yk+1 − xk)

]
.

To calculate zk+1, we need to get (I + λk A∗(I − PQ)A)−1, which is very difficult. In
order to overcome this difficulty, we linearize f (z) at xk. Then, the second formula of (9)
becomes

zk+1 : = argmin
z∈H1

{
f (xk) + 〈∇ f (xk), z− xk〉+ 1

2λk
‖z− (2yk+1 − xk)‖2

}
= argmin

z∈H1

{
〈∇ f (xk), z− xk〉+ 1

2λk
‖z− (2yk+1 − xk)‖2

}
.

Its first-order optimality condition is

∇ f (xk) +
1

λk
[zk+1 − (2yk+1 − xk)] = 0.

Then we have
zk+1 = 2yk+1 − xk − λk∇ f (xk).



Symmetry 2022, 14, 537 5 of 13

Thus, we get the following linearized Douglas–Rachford splitting method:
yk+1 := PC(xk),

zk+1 := 2yk+1 − xk − λk∇ f (xk),

xk+1 := xk + αk

(
zk+1 − yk+1

)
.

After a simple calculation, we get

xk+1 := xk + αk

[
PC(xk)− xk − λk∇ f (xk)

]
.

In what follows, we present the Douglas–Rachford splitting method with linearization.
(see Algorithm 2)

Algorithm 2 Douglas–Rachford splitting method with linearization.

Step 0. Input k := 0, x0 ∈ H1.
Step 1. Given xk, generate xk+1 by

xk+1 := xk − αk

[
(xk − PC(xk)) + λk A∗(I − PQ)Axk

]
,

where {αk}k∈N and {λk}k∈N are two sequences of positive numbers.
Step 2. If ∇ f (xk) = 0 and xk+1 = xk, then terminate. Otherwise, set k := k + 1 and go to
Step 1.

Remark 1. Algorithm 2 is a general scheme with two parameters sequences {αk}k∈N and {λk}k∈N,
which includes the algorithms (2) and (3) as special cases. Indeed,

(i) Let αk = τk and λk ≡ 1, ∀k ∈ N; then, Algorithm 2 becomes the algorithm (2);
(ii) Let αk = µk and λk =

νk
µk

, ∀k ∈ N; then, Algorithm 2 becomes the algorithm (3).

In the following, we extend the ranges of the parameter sequences {µk}k∈N and
{σk}k∈N in the algorithm (3). To this end, let αk = βkθ and

λk =
(1− βk)ρ

αk
ηk,

where βk ∈ (0, 1), θ ∈ (0, 2), ρ ∈ (0, 2) and

ηk =
‖(I − PQ)Axk‖2

‖A∗(I − PQ)Axk‖2 .

Then, Algorithm 2 becomes

xk+1 = xk − βkθ(xk − PC(xk))− (1− βk)ρηk A∗(I − PQ)Axk. (10)

Note that βkθ ∈ (0, 2) and (1− βk)ρ ∈ (0, 2). Comparing (3) and (10), the ranges of
the parameter sequences {µk}k∈N and {σk}k∈N in the algorithm (3) are extended from (0,1)
to (0,2). It is worth noting that {µk}k∈N and {σk}k∈N cannot both be in (1,2). In fact, one is
in (0,2), while the other is in (0,1). Due to αk ∈ (0, 2), Algorithm 2 is the Douglas–Rachford
splitting method with linearization.

We give two choices of βk, as follows:

• Constant choice: βk := β ∈ (0, 1) for all k ∈ N;
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• Adaptive choice: Let β, β ∈ (0, 1),

β∗k =
1
2
+

θ(2− θ)
∥∥∥xk − PC(xk)

∥∥∥2
− ρ(2− ρ)ηk

∥∥∥(I − PQ)Axk
∥∥∥2

2
∥∥θ(xk − PC(xk))− ρηk A∗(I − PQ)Axk

∥∥2 , (11)

and βk = max{β, min{β∗k , β}}.
Note that the upper and lower bounds are imposed in the adaptive choice of βk to

guarantee βk ∈ (0, 1). Therefore, it is not fully adaptive.
Now, the following lemma shows the validity of the stopping criterion through Step 2

of the Douglas–Rachford splitting method with linearization.

Lemma 4. If ∇ f (xk) = 0 and xk+1 = xk for some k, then xk generated by Algorithm 2 is a
solution of the SFP (1).

Proof. Using ∇ f (xk) = 0 and xk+1 = xk, we get xk = PC(xk), which implies xk ∈ C.
Thus, 0 ∈ NC(xk). We deduce that xk is a solution of the SFP (1) because of the first-order
optimality condition 0 ∈ NC(x) +∇ f (x) of problem (5).

In Algorithm 2, we generally assume that the projections PC and PQ are easy to calculate.
However, projection is sometimes impossible or difficult to calculate. In order to solve this
problem, we consider a general situation of C and Q in SFP (1). C = {x ∈ H1 : c(x) ≤ 0}
and Q = {y ∈ H2 : q(y) ≤ 0} are level sets, where c : H1 → R and q : H2 → R are convex
functions. We assume that ∂c and ∂q are bounded operators and define the sets Ck and Qk
as follows:

Ck =
{

x ∈ H1 : c(xk) + 〈ξk, x− xk〉 ≤ 0
}

,

where ξk ∈ ∂c(xk), and

Qk =
{

y ∈ H2 : q(Axk) + 〈ηk, y− Axk〉 ≤ 0
}

,

where ηk ∈ ∂q(Axk).
Next, we define fk(x) := 1

2‖(I − PQk )Ax‖2 and introduce the relaxed Douglas–
Rachford splitting method with linearization. (see Algorithm 3)

Algorithm 3 Relaxed Douglas–Rachford splitting method with linearization.

Step 0. Input k := 0, x0 ∈ H1.
Step 1. Given xk, generate xk+1 by

xk+1 := xk − αk

[
(xk − PCk (xk)) + λk A∗(I − PQk )Axk

]
, (12)

where {αk}k∈N and {λk}k∈N are two sequences of positive numbers.
Step 2. If ∇ fk(xk) = 0 and xk+1 = xk, then terminate. Otherwise, set k := k + 1 and go
to Step 1.

4. Convergence Analysis

In this section, we prove the weak convergence of Algorithm 2 under the standard
conditions.

Firstly, we present two lemmas which are key for the convergence of Algorithm 2.
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Lemma 5. Let {xk}k∈N be the sequence generated by Algorithm 2 from any initial point x0 ∈ H1
and x∗ ∈ Γ. Let βk ≡ β ∈ (0, 1), ∀k ∈ N. Then it holds∥∥∥xk+1 − x∗

∥∥∥2
≤
∥∥∥xk − x∗

∥∥∥2
− βθ(2− θ)

∥∥∥xk − PC(xk)
∥∥∥2

− (1− β)ρ(2− ρ)ηk

∥∥∥(I − PQ)Axk
∥∥∥2

− β(1− β)
∥∥∥θ(xk − PC(xk))− ρηk A∗(I − PQ)Axk

∥∥∥2
.

(13)

Proof. By (10) and (7), we have∥∥∥xk+1 − x∗
∥∥∥2

=‖βk[xk − θ(xk − PC(xk))− x∗] + (1− βk)[xk − ρηk A∗(I − PQ)Axk − x∗]‖2

=β
∥∥∥xk − x∗ − θ(xk − PC(xk))

∥∥∥2

+ (1− β)
∥∥∥xk − x∗ − ρηk A∗(I − PQ)Axk

∥∥∥2

− β(1− β)
∥∥∥θ(xk − PC(xk))− ρηk A∗(I − PQ)Axk

∥∥∥2
.

(14)

Using (8), we get 〈
xk − x∗, xk − PC(xk)

〉
≥
∥∥∥xk − PC(xk)

∥∥∥2
, (15)

and 〈
xk − x∗, A∗(I − PQ)Axk

〉
=
〈

Axk − Ax∗, (I − PQ)Axk
〉
≥
∥∥∥(I − PQ)Axk

∥∥∥2
. (16)

By (15), we obtain∥∥∥xk − x∗ − θ(xk − PC(xk))
∥∥∥2

=
∥∥∥xk − x∗

∥∥∥2
+ θ2

∥∥∥xk − PC(xk)
∥∥∥2
− 2θ

〈
xk − x∗, xk − PC(xk)

〉
≤
∥∥∥xk − x∗

∥∥∥2
− θ(2− θ)

∥∥∥xk − PC(xk)
∥∥∥2

.

(17)

From (16) and the definition of ηk, it follows∥∥∥xk − x∗ − ρηk A∗(I − PQ)Axk
∥∥∥2

=
∥∥∥xk − x∗

∥∥∥2
+ ρ2η2

k

∥∥∥A∗(I − PQ)Axk
∥∥∥2
− 2ρηk

〈
xk − x∗, A∗(I − PQ)Axk

〉
≤
∥∥∥xk − x∗

∥∥∥2
+ ρ2η2

k

∥∥∥A∗(I − PQ)Axk
∥∥∥2
− 2ρηk

∥∥∥(I − PQ)Axk
∥∥∥2

=
∥∥∥xk − x∗

∥∥∥2
− ρ(2− ρ)ηk

∥∥∥(I − PQ)Axk
∥∥∥2

.

(18)

Combining (14), (17) and (18), we deduce (13). The proof is completed.
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Remark 2. The inequality (13) with the ranges of the parameters β, θ, ρ shows the monotonically
decreasing property of the sequence {‖xk − x∗||}k∈N. It is not the same as the inequality in [15],
and the latter reduces to the following form for the SFP (1):∥∥∥xk+1 − x∗

∥∥∥2
≤
∥∥∥xk − x∗

∥∥∥2
− 2µk(1− µk)

∥∥∥xk − PC(xk)
∥∥∥2

− 2σk(1− σk)ηk

∥∥∥(I − PQ)Axk
∥∥∥2

.

It is difficult to compare them and show which is better in theory. The numerical experiments
in Section 5 illustrate that the optimal choices of the parameters of {µk}k∈N and {σk}k∈N is that
one is in (0,2) while the others are in (0,1).

Lemma 6. Let {xk}k∈N be the sequence generated by Algorithm 2 from any initial point x0 ∈ H1,
x∗ ∈ Γ. Let βk is given adaptively.

(i) If β∗k ∈ [β, β], it holds∥∥∥xk+1 − x∗
∥∥∥2

≤
∥∥∥xk − x∗

∥∥∥2
− 1

2
θ(2− θ)

∥∥∥xk − PC(xk)
∥∥∥2

− 1
2

ρ(2− ρ)ηk

∥∥∥(I − PQ)Axk
∥∥∥2

− 1
4

∥∥∥θ(xk − PC(xk))− ρηk A∗(I − PQ)Axk
∥∥∥2

−

[
θ(2− θ)

∥∥∥xk − PC(xk)
∥∥∥2
− ρ(2− ρ)ηk

∥∥∥(I − PQ)Axk
∥∥∥2
]2

4
∥∥θ(xk − PC(xk))− ρηk A∗(I − PQ)Axk

∥∥2 ;

(19)

(ii) If β∗k /∈ [β, β], it holds∥∥∥xk+1 − x∗
∥∥∥2
≤
∥∥∥xk − x∗

∥∥∥2
− βθ(2− θ)

∥∥∥xk − PC(xk)
∥∥∥2

− (1− β)ρ(2− ρ)ηk

∥∥∥(I − PQ)Axk
∥∥∥2

− (β− β
2
)
∥∥∥θ(xk − PC(xk))− ρηk A∗(I − PQ)Axk

∥∥∥2
.

(20)

Proof. (i) In this case, βk = β∗k . Similar to Lemma 5, we have∥∥∥xk+1 − x∗
∥∥∥2
≤
∥∥∥xk − x∗

∥∥∥2
− βkθ(2− θ)

∥∥∥xk − PC(xk)
∥∥∥2

− (1− βk)ρ(2− ρ)ηk

∥∥∥(I − PQ)Axk
∥∥∥2

− βk(1− βk)
∥∥∥θ(xk − PC(xk))− ρηk A∗(I − PQ)Axk

∥∥∥2
.

(21)

Let
dk = θ(2− θ)

∥∥∥xk − PC(xk)
∥∥∥2

,

ek = ρ(2− ρ)ηk

∥∥∥(I − PQ)Axk
∥∥∥2

,

mk = ‖θ(xk − PC(xk))− ρηk A∗(I − PQ)Axk‖2.

The inequality (21) becomes

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − βkdk − (1− βk)ek − βk(1− βk)mk. (22)
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After simple calculations, we get

− βkdk − (1− βk)ek − βk(1− βk)mk

=mkβ2
k − (dk − ek + mk)βk − ek

=mk(βk −
dk − ek + mk

2mk
)2 −mk(

1
2
+

dk − ek
2mk

)2 − ek

=− 1
2

dk −
1
2

ek −
mk
4
− (dk − ek)

2

4mk
,

(23)

where the last equality holds due to (11). Combining (22) and (23), we get (19);
(ii) In this case, βk = β or βk = β. By Lemma 5, it is easy to obtain (20).

Theorem 1. Let {xk}k∈N be generated by Algorithm 2; then, {xk}k∈N converges weakly to a
solution of the SFP (1).

Proof. By (13), (19) and (20), we have

‖xk+1 − x∗‖ ≤ ‖xk − x∗‖,

which implies that {xk}k∈N is bounded and limk→∞ ‖xk − x∗‖ exists. From the definition
of ηk, it follows

ηk =
‖(I − PQ)Axk‖2

‖A∗(I − PQ)Axk‖2 ≥
‖Axk − PQ(Axk)‖2

‖A‖2‖Axk − PQ(Axk)‖2 =
1
‖A‖2 . (24)

Combining (13), (19), (20) and (24), we deduce

lim
k→∞
‖PC(xk)− xk‖ = 0, (25)

and
lim
k→∞
‖(I − PQ)Axk‖ = 0. (26)

To use Lemma 3, we need to show ωw(xk) ⊆ Γ. To this end, take arbitrarily x̂ ∈ ωw(xk)
and let xkl ⇀ x̂ where {xkl}l∈N is a subsequence of {xk}k∈N. From Lemma 2 and (25), we
get x̂ ∈ C. Combining (26) and the weak lower semicontinuity of f , we obtain

0 ≤ f (x̂) ≤ lim inf
l→∞

f (xkl ) = lim
k→∞

f (xk) = 0.

Hence, f (x̂) = 1
2‖(I − PQ)Ax̂‖ = 0, i.e., Ax̂ ∈ Q. Thus, we have ωw(xk) ⊆ Γ.

By Lemma 3, we deduce that {xk}k∈N converges weakly to a point in Γ. The proof is
completed.

Combining Theorem 1 and [18] (Theorem 3.2), it is easy to verify the convergence of
Algorithm 3.

Theorem 2. Let {xk}k∈N be generated by Algorithm 3; then, {xk}k∈N converges weakly to a
solution of the SFP (1).

5. Numerical Results

In this section, we show the behavior of Algorithm 2 by comparing it with the
algorithms (3) and (2) through two numerical examples.

For convenience, we denote the vector with all elements 0 by e0 and the vector with all
elements 1 by e1 in what follows. In the next two numerical examples, we take the objective
function value p(x) = 1

2‖x− PC(x)‖2 + 1
2‖Ax− PQ(Ax)‖2 ≤ ε as the stopping criterion.
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Example 1 ([6]). Consider the SFP, where A = (aij)m×n ∈ Rm×n (m = 200, n = 500) and
aij ∈ (0, 1) generated randomly and

C = {x ∈ Rn : ‖x− d‖ ≤ r},
Q = {y ∈ Rm : L ≤ y ≤ U},

where d is the center of the ball C, e0 ≤ d ≤ e1, r ∈ (10, 20) is the radius, d and r are both generated
randomly. L and U are the boundary of the box Q and are also generated randomly, satisfying
10e1 ≤ L ≤ 20e1 and 20e1 ≤ U ≤ 30e1, respectively.

In the numerical experiment, we take the objective function value p(xk) ≤ ε = 10−5

as the stopping criterion.
In Figure 1, the initial point x0 ∈ (0, 100e1) is randomly chosen. For comparing

Algorithm 2 with the algorithms (2) and (3), we take θ = 1.59, ρ = 1.86 and βk ≡ β = 0.37 in
Algorithm 2, ρk = 1.99 in the algorithm (2) and µk = 0.72 and νk = 0.88 in the algorithm (3).

0 20 40 60 80 100 120 140 160
10-10

10-5

100

105

1010

1015

Alg.2
alg (2)
alg (3)

Figure 1. The value of p(xk) versus the iteration numbers for Example 1.

In Table 1, we show the iteration steps and CPU time of Algorithm 2, algorithm (2)
and algorithm (3) for 3 initial points. For case 1, x0 = (100, · · · , 100); for case 2, x0 = (100,
−100, · · · , 100, −100); and for case 3, x0 ∈ (−100e1, 100e1).

Table 1. Comparison of Algorithm 2, algorithms (2) and (3) under different initial points.

Cases
Algorithm 2 algorithm (2) algorithm (3)

Iter. CPU Time Iter. CPU Time Iter. CPU Time

Case 1 18 0.0313 155 0.0313 38 0.0469
Case 2 22 0.0469 372 0.0781 37 0.0469
Case 3 16 0.0313 256 0.0469 35 0.0313

As shown in Figure 1 and the iteration steps in Table 1, Algorithm 2 behaves better
than the algorithms (2) and (3).

Example 2. Suppose that H1 = H2 = L2([0, 1]) with norm ‖x‖ =
(∫ 1

0 |x(t)|
2dt
) 1

2 and inner
product

〈x, y〉 =
∫ 1

0
x(t)y(t)dt.
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Let
C := {x ∈ H1 : 〈a, x〉 = b},

where a = sin(5t3) and b = 0. In this case, we have

PC(x) = x +
b− 〈a, x〉
‖a‖2 a.

Additionally, let
Q := {x ∈ H2 : 〈c, x〉 ≤ d},

where c = sin(t/4) and d = 1/5; then, we obtain

PQ(x) =

{
x if 〈c, x〉 ≤ d
x + d−〈c,x〉

‖c‖2 c if 〈c, x〉 > d.

Consider the matrix

A =
1

200



0 0 0 · · · 0 0
1 1 0 · · · 0 0
1 2 1 · · · 0 0
...

...
...

. . .
...

...
1 2 2 · · · 1 0
1 2 2 · · · 2 1


101×101

resulting from a discretization of the operator question of the first kind

y(t) = (Ax)(t) :=
∫ t

0
x(s)ds, s, t ∈ [0, 1]; x, y : [0, 1] −→ [0, 1].

In the numerical experiment, the initial function is x0(t) = 10 sin(t2 + 2t). We take
p(xk) ≤ ε = 10−10 as the stopping criterion.

For comparing Algorithm 2 with the algorithms (2) and (3), we take θ = 1.99, ρ = 1.99
and βk ≡ β = 0.41 in Algorithm 2, ρk = 1.89 in the algorithm (2) and µk = 0.5 and νk = 0.99
in the algorithm (3). From Figure 2, we can see that the performance of Algorithm 2 is
better than the algorithms (2) and (3).

0 5 10 15 20 25 30 35 40
10-12

10-10

10-8

10-6

10-4

10-2

100

102

Alg.2
alg (2)
alg (3)

Figure 2. The value of p(xk) versus the iteration numbers for Example 2.
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6. Some Concluding Remarks

In this article, we introduce the Douglas–Rachford splitting method with linearization
for the split feasibility problem, which is a general method and includes the methods
in [13,15] as special cases. The weak convergence of the proposed method is established
under the standard conditions. Numerical experiments illustrate the effectiveness of our
methods.

The methods proposed in this article can be generalized to solve the multiple-sets
split feasibility problem. It is interesting to investigate the other possible choices of the
parameters {αk}k∈N and {λk}k∈N.

Recently, some authors have applied self-adaptive step sizes to split generalized
equilibrium and fixed point problems [20] and pseudo-monotone equilibrium problems [21].
The numerical examples illustrate that the step sizes have excellent behaviour. Applying
the self-adaptive step size to the split feasibility problem is worth investigating.
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