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Abstract: We review the concept of purely virtual particle and its uses in quantum gravity, primor-
dial cosmology and collider physics. The fake particle, or “fakeon”, which mediates interactions
without appearing among the incoming and outgoing states, can be introduced by means of a new
diagrammatics. The renormalization coincides with one of the parent Euclidean diagrammatics,
while unitarity follows from spectral optical identities, which can be derived by means of algebraic
operations. The classical limit of a theory of physical particles and fakeons is described by an ordinary
Lagrangian plus Hermitian, micro acausal and micro nonlocal self-interactions. Quantum gravity
propagates the graviton, a massive scalar field (the inflaton) and a massive spin-2 fakeon, and leads
to a constrained primordial cosmology, which predicts the tensor-to-scalar ratio r in the window
0.4 . 1000r . 3.5. The interpretation of inflation as a cosmic RG flow allows us to calculate the
perturbation spectra to high orders in the presence of the Weyl squared term. In models of new
physics beyond the standard model, fakeons evade various phenomenological bounds, because
they are less constrained than normal particles. The resummation of self-energies reveals that it is
impossible to get too close to the fakeon peak. The related peak uncertainty, equal to the fakeon
width divided by 2, is expected to be observable.

Keywords: quantum gravity; inflationary cosmology; particle physics

1. Introduction

Nature “is written in that great book which ever is before our eyes—I mean the
universe—but we cannot understand it if we do not first learn the language and grasp
the symbols in which it is written. The book is written in mathematical language, and
the symbols are triangles, circles and other geometrical figures. . . ” Since Galileo’s time,
the language of the book of nature has evolved considerably. For some time, the power
of infinitesimal calculus gave us the illusion of the continuum and determinism. Then,
unexpectedly, quantum mechanics turned everything upside down, by injecting uncertainty
into the laws of physics. Mathematics successfully made room for the new concepts, but
several problems remained unresolved, or so it appeared to us. With the advent of quantum
field theory (renormalization, the challenges of perturbation theory and the impossibility
to move beyond the perturbative expansion in a systematic way), the mathematization of
physical phenomena became more challenging.

As far as we know today, the language spoken by the elementary particles is diagram-
matic and, consequently, perturbative. Beyond that, we have hints, but no satisfactory
formal setup. A nonperturbative language might not even exist.

Strictly speaking, there is no reason why nature should be mathematizable by one of
the living species it generates around the universe. In the end, we are just clumps of atoms,
and logic is a net of brain connections among memorized, mainly acoustic perceptions,
which are our words (hence the word, verb, or logos), shaped by experience through
repetition, custom and mental habit (à la Hume), rather than having an existence per se,
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although the idea of logic existing “before nature” is one of those which hardly die and
periodically come back under different spells. Actually, our size and the relative scales
involved in the phenomena of the universe suggest that the logicization of nature is most
likely impossible beyond certain limits. The question is whether we reached ours or there
is still room for improvement.

The challenge of quantum gravity inspired many to call everything into question
again (this time, for free) and suggest thoroughly new approaches “beyond” quantum
field theory, despite the lack of data pointing to such a turmoil. Probably, the underlying
assumption was, again, that logic is not just a tool, a language, but pre-exists nature (in
principio erat verbum), so we should be able to grasp the theory (of something, or even
everything) without or with very little experimental data, by overthinking (banking on a
special connection with divinities?) or following personal or social tastes (“string theory is
so beautiful that it can only be true”).

“It’s the diagrammatics, stupid”: what if, instead, quantum gravity were just a step
away from the standard model? Just a fairly guessable missing piece of the puzzle? The
diagrammatic approach has worked very well so far for the elementary particles and
the standard model. Yet, despite decades of efforts, there is still a lot to understand
about it and the basic principles on which it is founded, which are locality, unitarity and
renormalizability. Quantum field theory never ceases to surprise, so to speak.

A new concept in the world of diagrammatics is the concept of purely virtual particle,
which we review in this paper together with its applications. Purely virtual particles, or
fake particles, or “fakeons”, are “non particles”, or particles that have no classical limit.
That is to say, they have a purely quantum nature. Their effects reach the classical limit
as effective interactions among the physical particles. Normally, we take for granted that
everything belonging to the quantum world should be obtained by quantizing something
classical, but if we view the matter the other way around, we can easily make room for
entities that are classically hidden and exist only at the quantum level.

The diagrammatics of fakeons [1] is obtained from the usual one by means of surgical
operations that selectively remove degrees of freedom at all energies and preserve the
optical theorem. The only requirement is that fake particles should be massive and non-
tachyonic. The main application of fakeons is the formulation of a consistent theory of
quantum gravity [2], which is observationally testable due to its predictions in inflationary
cosmology [3]. At the phenomenological level, fakeons evade common constraints that
limit the employment of normal particles. Among the other things, they can be used to
propose new physics beyond the standard model [4] and solve discrepancies with data [5].
We stress that the fakeon diagrammatics is relatively straightforward, to the extent that it
can be implemented in software like FeynCalc, FormCalc, LoopTools and Package-X [6–12]
and used to work out physical predictions. For proofs to all orders, see [1,13]. It is also
possible [14,15] to avoid certain troubles of the Lee-Wick models [16–21] by switching to
theories of particles and fakeons. Finally, the fakeon prescription can be used to give sense
to higher-spin massive multiplets [22]. Coupled to gravity, higher-spin massive multiples
change the ultraviolet behavior and open the way to asymptotic freedom [23].

The paper is organized as follows. In Section 2, we review some key concepts con-
cerning unitarity. In Section 3, we introduce the fakeon diagrammatics. In Section 4, we
briefly recall how the quantization of gravity works by means of fakeons. In Section 5, we
discuss the main predictions of quantum gravity with fakeons in primordial cosmology.
In Section 6, we present some ways to use fakeons in phenomenology. In Section 7, we
discuss the main two new features of the theories with fakeons: the peak uncertainty and
the violation of microcausality. Section 8 contains the conclusions and outlook.



Symmetry 2022, 14, 521 3 of 18

2. Particles, Fakeons and Ghosts

Unitarity is the statement that the scattering matrix S is unitary, S†S = 1. Writing
S = 1 + iT, it is also expressed by the optical theorem

iT − iT† + T†T = 0, (1)

which admits a diagrammatic, off-shell version in terms of identities

G + Ḡ + ∑
c

Gc = 0 (2)

among cut diagrams [24–29]. Here, G denotes an ordinary (uncut) diagram and stands for
iT, Ḡ is its complex conjugate and stands for −iT†, while Gc are the so-called cut diagrams,
obtained by cutting internal lines: they stand for T†T. The vertices and propagators that
lie to one side of the cut are the normal ones (as in T), while those that lie to the other
side of the cut are the complex conjugate ones (as in T†). The cut propagators give us
information about the on-shell content of a particle. The Equations (2) single out certain
analytic properties of the loop integrals, which encode, among the other things, the physical
processes where the virtual particles circulating in the loops turn real, which occurs above
certain thresholds. A purely virtual particle cannot turn real, by definition, so its cut
propagator must vanish.

Denoting the space of physical states by V and inserting a complete set of orthonormal
states |n〉 ∈ V, Equation (1) implies, in particular,

2Im〈a|T|a〉 = ∑
|n〉∈V

|〈n|T|a〉|2, (3)

where |a〉 ∈ V is an arbitrary state: the total cross section for production of all final states
is proportional to the imaginary part of the forward scattering amplitude. The simplest
cutting equations are

2Im
[
(−i)〉−〈

]
= 〉−
/
〈 =

∫
dΠ f

∣∣∣∣〉−∣∣∣∣2, (4)

2Im
[
(−i)−©−]

= −©
/
− =

∫
dΠ f

∣∣∣∣−〈∣∣∣∣2, (5)

where the integrals are over the phase spaces Π f of the final states. In particular, (4) implies
Re[P] > 0, if P is the propagator.

Physical particles, ordinary ghosts, Lee-Wick (LW) ghosts and purely virtual particles
have propagators

i
p2 −m2 + iε

, − i
p2 −m2 + iε

, − i
p2 −m2 − iε

, ±P i
p2 −m2 ,

respectively, where P denotes the Cauchy principal value. They all satisfy Re[P] > 0,
except for the ordinary ghost, which violates unitarity. The propagators of physical particles
and ordinary ghosts can be used “as is” inside Feynman diagrams, which means as they
appear in the formulas just written, by integrating on real loop energies and momenta.
Instead, the propagators of LW ghosts and purely virtual particles cannot, because the iε
and −iε prescriptions cannot coexist inside Feynman diagrams without violating unitarity,
the locality and Hermiticity of counterterms and stability [30]. These two options need
suitable integration prescriptions or, in the case of fakeons, a new diagrammatics.

The removal of degrees of freedom from the incoming and outgoing states is consistent
only if it is compatible with unitarity, in which case it is called “projection” and the reduced
action is called “projected action”. This means that the Equation (3) holds in a subspace V
of the total space W of states one uses to build the theory. Working in an extended space W
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and projecting to V at the end is normally useful to manipulate simpler Feynman rules,
like those of a local theory.

A well-known example of projection is the one concerning the Faddeev–Popov ghosts
and the longitudinal/temporal components of the gauge fields in gauge theories. There,
the consistency of the projection is ensured by the symmetry. In the case of the LW ghosts,
instead, one has to make them unstable, to kick them out of the set of strictly asymptotic
states (which are to be taken literally at t = ±∞): the projection is the very same decay of
the LW ghosts. In the case of fakeons, the consistency is ensured by the diagrammatics, so
there is no need for giving fakeons nonvanishing widths, dynamically or explicitly. The
“width” of a purely virtual particle has a completely different physical interpretation. It is
the “peak uncertainty”, which measures the impossibility of experimentally approaching
the fakeon too closely. The fakeon projection is compatible with unitarity order by order
(and diagram by diagram) in the perturbative expansion [1].

3. Purely Virtual Particles: A New Diagrammatics

The simplest way to introduce fakeons is by means of the diagrammatics developed
in ref. [1], which is useful for physical particles as well. It is based on the threshold decom-
position of ordinary (cut and uncut) diagrams and the suppression of all the thresholds
that involve fakeon frequencies. The fakeon procedure works with both signs in front of
the propagators (fake particles and fake ghosts), since a sign flip can at most flip the overall
signs of the identities (2), which encode unitarity, thus keeping them valid. For definiteness,
we concentrate on fakeons obtained from physical particles.

At the tree level, we start from the usual Feynman prescription, decompose the
propagators by means of the identity

i
x + iε

= P i
x
+ πδ(x) (6)

and suppress all the delta functions that refer to fakeons.
Apart from some caveats, this simple recipe can be implemented to all orders. The

key ingredient is the possibility of reducing the optical theorem to a set of purely algebraic
operations and identities. In brief, the procedure is:

— Ignore the integral on the space components of the loop momenta (which defines
the skeleton diagram);

— Perform the integral on the loop energies by means of the residue theorem (which
can be viewed as an algebraic operation);

— Decompose the result in terms of principal values and delta functions by means of
the identity (6);

— Organize the decomposition properly;
— Drop all the deltas that contain fakeon frequencies.
A caveat, which can be appreciated starting from the box diagram, is that the decom-

position must be properly organized, due to certain nontrivial identities that are met along
the way.

Let us illustrate the procedure on the bubble diagram, which gives the skeleton integral

Bs =
∫ dk0

2π

2

∏
a=1

2ωa

(k− pa)2 −m2
a + iεa

=
∫ dk0

2π

2

∏
a=1

2ωa

(k0 − ea)2 −ω2
a + iεa

,

where k0 = (k0, k) is the loop momentum, pµ
a = (ea, pa) are the external momenta (one

for each internal leg, the redundancy being useful to have more symmetric expressions)

and ωa =
√
(k− pa)2 + m2

a are the frequencies. For convenience, a product
2

∏
a=1

(2ωa) is

inserted after dropping the integral on k.
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The residue theorem gives

Bs = − i
e1 − e2 −ω1 −ω2 + iε

− i
e2 − e1 −ω1 −ω2 + iε

.

The threshold decomposition using identity (6) gives

Bs = −P i
e1 − e2 −ω1 −ω2

− πδ(e1 − e2 −ω1 −ω2)

−P i
e2 − e1 −ω1 −ω2

− πδ(e2 − e1 −ω1 −ω2). (7)

Repeating the same procedure with the conjugate diagram and the cut diagrams, we
obtain the table

〉©〈 〉©〈 〉©〈
/

〉̃©〈
/

— −iP̂12 iP̂12 0 0

∆12 −1 −1 0 2

∆21 −1 −1 2 0

(8)

where

P ab = P 1
ea − eb −ωa −ωb

, P̂ ab = P ab + P ba, ∆ab = πδ(ea − eb −ωa −ωb),

and the cut diagram with a tilde is the one where the sides corresponding to T and T†

are interchanged.
Here and below, if Cij denote the entries of the table, a (cut or uncut) diagram Gj is the

jth column of the table (j > 1), by which we mean the sum

Gj ≡ ∑
i>1

Ci1Cij, (9)

where C21 = 1. The spectral optical identities are the rows of the table, by which we mean
the sums

Ri ≡ Ci1 ∑
j>1

Cij = 0, (10)

for i > 1, which vanish separately. They decompose the “spectral optical theorem”, which
is the whole table, i.e., the sum

∑
j>1

Gj = ∑
i>1

∑
j>1

Ci1Cij = 0 (11)

of all its entries. Finally, the optical theorem is the integral of this identity, divided by
4ω1ω2, over the space components k of the loop momentum, with measure d3k/(2π)3.

If an internal leg, say leg 1, is a fakeon, we drop the delta functions containing its
frequency from Equation (7) and so obtain

Bs
f = −P

i
e1 − e2 −ω1 −ω2

−P i
e2 − e1 −ω1 −ω2

. (12)

In Equation (8), we drop the rows containing ∆12, which gives

〉©〈 〉©〈 〉©〈
/

〉̃©〈
/

— −iP̂12 iP̂12 0 0
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Dropping whole rows preserves the (spectral) optical theorem in an obvious way.
Moreover, the last two columns, corresponding to the cut diagrams, disappear as well,
since their surviving entries are just zeros. We can understand their disappearance by
noting that those diagrams contain a cut fakeon leg and the cut propagator of a fakeon
must vanish, because the fakeon cannot be on shell. This leaves us with the table

〉©〈 〉©〈

— −iP̂12 iP̂12

In the case of the skeleton triangle Ts, we can proceed similarly. Without giving details
(which can be found in ref. [1]), the decomposition is

Ts = −iPT − ∑
perms

∆abQac +
i
2 ∑

perms
∆ab(∆ac + ∆cb), (13)

where

PT = P12P13 + cycl + (e→ −e), Qab = P ab −P 1
ea − eb −ωa + ωb

,

and the sums are on {a, b, c} equal to the permutations of 1, 2 and 3. The conjugate diagram
is T̄s and the cut diagrams read

Ts
c = 2∆21(Q23 − i∆31 − i∆23), T̃s

c = 2∆12(Q13 + i∆13 + i∆32), (14)

plus the ones obtained by cyclically permuting 1, 2 and 3.
If the internal leg 3 is a fakeon, the rows containing ∆13, ∆23, ∆31 and ∆32 must be

suppressed. Then, the cut diagrams containing a cut leg 3 become trivial and their columns
disappear automatically. We remain with the table

Ts
f T̄s

f Ts
fc T̃s

fc

— −iPT iPT 0 0

∆12 −Q13 −Q13 0 2Q13

∆21 −Q23 −Q23 2Q23 0

(15)

If two internal legs are fakeons, the last two rows disappear, which make the last two
columns disappear as well:

Ts
ff T̄s

ff

— −iPT iPT

Other examples (triangle with “diagonal”, box, box with diagonal, pentagon, hexagon,
etc.) and the proof to all orders can be found in ref. [1]. The threshold decomposition and
the fakeon diagrammatics are compatible with gauge invariance and general covariance,
through the WTST identities [31–34]. Indeed, the WTST identities are algebraic relations
among the integrands of certain diagrams, so the decomposition and the fakeon projection
go through them straightforwardly. Gauge independence is preserved as well, since the
thresholds associated with the gauge-trivial modes depend on the gauge-fixing parameters
and cannot interfere with the other (physical/fakeon) thresholds, which are gauge invariant
and gauge independent.
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4. Quantum Gravity

Quantum gravity with fakeons propagates the graviton, a scalar field φ of mass mφ (the
inflaton) and a spin 2 field χµν of mass mχ. It is formulated starting from the classical action

SQG = − 1
16πG

∫
d4x

√
−g

(
2Λ + R +

λ

2m2
χ

CµνρσCµνρσ − R2

6m2
φ

)
, (16)

where Cµνρσ is the Weyl tensor, G is the Newton constant, Λ is the cosmological constant
and λ = m2

χ(3m2
φ + 4Λ)/(m2

φ(3m2
χ − 2Λ)) is a parameter very close to 1. The theory is

renormalizable by power counting [35], since the renormalizability of a theory with fakeons
coincides with the one of the Euclidean parent theory.

The three fields can be made explicit by eliminating the higher derivatives as shown
in [36]. In particular, the action Sχ(g, φ, χ) of χµν is the sum

Sχ(g, φ, χ) = − λ

8πG
SPF(g, χ) + Sχint(g, φ, χ) (17)

of a term proportional to the non-minimally coupled covariantized Pauli–Fierz action

SPF(g, χ) =
1
2

∫
d4x

√
−g
[

DρχµνDρχµν − DρχDρχ + 2DµχµνDνχ− 2DµχρνDρχ
µ
ν

−m2
χ(χµνχµν − χ2) + Rµν(χχµν − 2χµρχ

ρ
ν)
]

(18)

plus further interactions Sχint(g, φ, χ), where χ = gµνχµν is the trace of χµν.
Since Λ is much smaller than m2

χ, λ is positive, so the χµν kinetic term has the wrong
sign. This is the reason why χµν must be quantized as a fakeon. Then, χµν is purely virtual
and does not belong to the sets of incoming and outgoing states.

It is convenient to postpone the fakeon projection to the very end, to deal with local
diagrammatic rules. An early projection forces us to work with rather involved nonlocal
vertices. This situation is similar to the one of gauge theories, where it is preferable to work
with the local diagrammatic rules of a gauge-fixed action propagating gauge-trivial modes
and Faddeev–Popov ghosts and remove them only at the very end.

The projection must also be performed classically. In this sense, the action (16) does not
describe the true classical limit, because it is unprojected. The true classical action, which is
useful to study primordial cosmology, is obtained by “classicizing” quantum gravity [37]
and collects the tree diagrams that only have physical particles on the external legs.

5. Inflationary Cosmology from Quantum Gravity

Quantum gravity with fakeons can be used to study primordial cosmology and work
out predictions that could even be tested within our lifetime. For this purpose, it is
convenient the consider the action (16) at Λ = 0, make the inflaton field φ explicit through
a field redefinition and keep the fakeon χµν implicit. We obtain the equivalent action:

SQG = − 1
16πG

∫
d4x

√
−g

(
R +

1
2m2

χ
CµνρσCµνρσ

)
+

1
2

∫
d4x

√
−g
(

DµφDµφ− 2V(φ)
)
, (19)

where

V(φ) =
3m2

φ

32πG

(
1− eφ

√
16πG/3

)2
(20)

is the Starobinsky potential.
As said, the classical limit is not described by either (16) or (19), which are unprojected.

The classicization is nontrivial when the metric is expanded around curved backgrounds
rather than flat space. Nevertheless, if the background is the FLRW metric, the degrees of
freedom decouple from one another at the quadratic level in the de Sitter limit [3]. Thanks
to this fact, the fakeon projection can be perturbatively obtained from the flat-space one.
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It can be shown that this procedure works under the consistency condition mχ >
mφ/4 [3]. This lower bound on the mass of the fakeon χµν with respect to the mass of the
inflaton φ is crucial for the prediction on the tensor-to-scalar ratio r, which is determined
within less than an order of magnitude, even before knowing the actual value of mχ [3].

Note that the theory does not predict other degrees of freedom besides the curvature
perturbation R and the tensor perturbations, when the matter sector is switched off.
The fakeon projection eliminates the possibility of having additional scalar and tensor
perturbations, as well as vector perturbations.

5.1. Cosmic RG flow

Parametrizing the background metric as gµν =diag(1,−a2,−a2,−a2), the Friedmann
equations and the φ equation read

Ḣ = −4πGφ̇2, H2 =
4πG

3

(
φ̇2 + 2V(φ)

)
, φ̈ + 3Hφ̇ = −V′(φ), (21)

where H = ȧ/a is the Hubble parameter. For the purposes of this paper, we can assume
φ̇ > 0. Defining the conformal time

τ = −
∫ +∞

t

dt′

a(t′)
(22)

and the “coupling”

α =

√
4πG

3
φ̇

H
=

√
− Ḣ

3H2 , (23)

it is easy to show that α satisfies an equation of the form βα = dα/d ln|τ|, where βα is a
function of α that can be worked out to arbitrarily high orders in α:

βα = −2α2
[

1 +
5
6

α +
25
9

α2 +
383
27

α3 +O(α4)

]
. (24)

The interpretation of inflation as a “cosmic RG flow”, βα being the beta function, is
predicated on the possibility of viewing the perturbation spectra PT and PR of the tensor
and scalar fluctuations as correlation functions that satisfy RG evolution equations of the
Callan–Symanzik type, in the superhorizon limit [38].

Let us introduce the running coupling α(x), which is the solution of

ln
τ

τ′
=
∫ α(−τ)

α(−τ′)

dα

βα(α)
.

For brevity, α will stand for α(−τ) and αk for α(1/k), where k is just a constant for now:

ln(−kτ) =
∫ α

αk

dα′

βα(α′)
.

At the leading-log level, the running coupling reads

α =
αk

1 + 2αk ln(−kτ)
. (25)

Its expression to the next-to-next-to leading log (NNLL) order can be found in [38].
Viewing the spectra as functions of τ and α, their RG evolution equations are

dP
d ln |τ| =

(
∂

∂ ln |τ| + βα(α)
∂

∂α

)
P = 0. (26)
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Viewing them as functions of α and αk, the dependence on α actually drops out and
the spectra depend on the momentum k only through the running coupling αk:

P = P̃(αk),
dP̃(αk)

d ln k
= −βα(αk)

dP̃(αk)

dαk
. (27)

Finally, viewing the spectra as functions of k/k∗ and α∗ = α(1/k∗), where k∗ is the
pivot scale and α∗ is the “pivot coupling”, they satisfy(

∂

∂ ln k
+ βα(α∗)

∂

∂α∗

)
P(k/k∗, α∗) = 0. (28)

The correspondence between the cosmic RG flow and the one of quantum field theory
is summarized in Table 1.

Table 1. Correspondence between QFT RG flow and cosmic RG flow.

QFT RG Flow Cosmic RG Flow

RG flow ↔ slow roll

couplings α, λ. . . ↔ slow-roll parameters ε, δ. . .

beta functions ↔ equations of the background metric

sliding scale µ ↔ conformal time τ (or η = −kτ)

correlation functions ↔ perturbation spectra

Callan-Symanzik equation ↔ RG equation at superhorizon scales

RG invariance ↔ conservation on superhorizon scales

asymptotic freedom ↔ de Sitter limit in the infinite past

subtraction scheme ↔ Einstein frame, Jordan frame, etc.

dimensional transmutation → τ drops out from the spectra, “replaced” by k

running coupling → ok

resummation of leading logs → ok

anomalous dimensions → 0

5.2. Spectra

In high-energy physics, a low-energy effective theory is good enough to make predic-
tions about low energies. In cosmology, it is not so: we must properly treat the high-energy
(sub-horizon) limit, even if our purpose is just to make predictions about the low-energy
(super-horizon) limit. This is a highly nontrivial problem, since the sub-horizon region is
experimentally and observationally inaccessible. We can say something reasonable about it
only if the system reduces to one we have experience of around us. This is where fakeons
play a crucial role in primordial cosmology.

If χµν is quantized by means of the Feynman prescription instead of the fakeon one,
the theory has ghosts and so violates unitarity [35]. From the point of view of primordial
cosmology, the problem of ghosts shows up as follows.

On a nontrivial background, the study of the metric fluctuations reduces, in the end, to
the problem of harmonic oscillators with time-dependent frequencies. We need to provide
a proper quantization condition to study such a system. Normally, the Bunch–Davies
vacuum condition [39–41] is chosen, which does refer to the sub-horizon limit of the theory,
where the problem can be handled because the frequencies of the oscillators becomes time
independent. If ghosts are present, no matter how heavy they are, they do not disappear at
high energies, but just become massless. A condition like the Bunch–Davies one on ghost
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oscillators is not robust, even if their frequencies are constant, because we do not have
examples of elementary systems of that type that can justify it.

The situation changes in the theory with fakeons. We must ensure that the fakeons are
indeed fake at all scales, including the sub-horizon ones. In the low energy regime fakeons
disappear for free, because they are massive, but in the opposite limit the consistency
of the fakeon projection and in particular its classicization [37] on a curved background,
requires that we impose a condition, which is the bound mχ > mφ/4 of ref. [3]. In the end,
this condition turns out to be rather powerful, because it gives constrained predictions,
even if mχ is still unknown. We see that fakeons provide a second reason, besides the
Bunch–Davies vacuum condition, why we must properly treat the high energies to make
predictions about the low energies in primordial cosmology.

The spectra of the theory with ghosts are studied in [42–49] and the comparison with
those of the theory with fakeons, which we report below, can be found in [3].

We briefly describe the strategy of the calculation in the theory with fakeons. First, the
metric is expanded as

gµν = diag(1,−a2,−a2,−a2)− 2a2
(

uδ1
µδ1

ν − uδ2
µδ2

ν + vδ1
µδ2

ν + vδ2
µδ1

ν

)
,

+2diag(Φ, a2Ψ, a2Ψ, a2Ψ)− δ0
µδi

ν∂iB− δi
µδ0

ν∂iB (29)

in the comoving gauge, where u = u(t, z) and v = v(t, z) are the tensor fluctuations and Ψ,
B are the other scalar fluctuations. The φ fluctuation δφ is set to zero by a gauge choice, so
the curvature perturbationR coincides with Ψ. For reviews on the parametrizations of the
fluctuations, see [50–52]. Second, the action (19) is expanded to the quadratic order in the
fluctuations. Third, the higher derivatives are eliminated by introducing extra fields. Forth,
the new Lagrangian is diagonalized in the de Sitter limit α = 0. Fifth, the fakeon projection
is performed, which means that the fakeon fields are integrated out by means of (the
classical limit of) the fakeon prescription. Sixth, a number of field redefinitions and time
reparametrizations are applied to cast the action into the standard Mukhanov–Sasaki form.
Seventh, the equations of motion are solved with the Bunch–Davies vacuum condition.
Eighth, all the transformations are undone, to get to the desired two-point functions and
the spectra of the fluctuations in the super-horizon limit. For details, see [38].

Thanks to the RG techniques presented above, “RG improved” tensor and scalar
power spectra PT and PR can be worked out to high orders. This means that, although PT
and PR are expanded in powers of α∗, the product α∗ ln(k/k∗) is considered of order zero
and treated exactly. The results to the NNLL order are

PT(k) =
4m2

φζG

π

[
1− 3ζαk

(
1 + 2αkγM + 4γ2

Mα2
k −

π2α2
k

3

)
+

ζ2α2
k

8
(94 + 11ξ)

+3γMζ2α3
k(14 + ξ)−

ζ3α3
k

12
(614 + 191ξ + 23ξ2) +O(α4

k)

]
, (30)

PR(k) =
Gm2

φ

12πα2
k

[
1 + (5− 4γM)αk +

(
4γ2

M −
40
3

γM +
7
3

π2 − 67
12
− ξ

2
Fs(ξ)

)
α2

k +O(α
3
k)

]
where

ξ =
m2

φ

m2
χ

, ζ =

(
1 +

ξ

2

)−1
, γM = γE + ln 2,

Fs(ξ) = 1 +
ξ

4
+

ξ2

8
+

ξ3

8
+

7ξ4

32
+

19
32

ξ5 +
295
128

ξ6 +
1549
128

ξ7 +
42271

512
ξ8 +O(ξ9)

γE being the Euler–Mascheroni constant. While PT is exact in ξ, so far the NNLL contribu-
tion to PR has been determined only as an asymptotic expansion in powers of ξ.
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5.3. Predictions

A number of other quantities can be calculated from the spectra, such as the “dynami-
cal” tensor-to-scalar ratio

r(k) =
PT(k)
PR(k)

(31)

the tilts
nT = −βα(αk)

∂ lnPT
∂αk

, nR − 1 = −βα(αk)
∂ lnPR

∂αk
,

and the running coefficients

dnnT
d ln kn =

(
−βα(αk)

∂

∂αk

)n
nT ,

dnnR
d ln kn =

(
−βα(αk)

∂

∂αk

)n
nR.

Using (30), we find, for example,

nT = −6
[
1 + 4γMαk + (12γ2

M − π2)α2
k

]
ζα2

k + [24 + 3ξ + 4(31 + 2ξ)γMαk]ζ
2α3

k

−1
8
(1136 + 566ξ + 107ξ2)ζ3α4

k +O(α
5
k), (32)

nR − 1 = −4αk +
4α2

k
3

(5− 6γM)−
2α3

k
9

(338− 90γM + 72γ2
M − 42π2 + 9ξFs) +O(α4

k).

The first two corrections to the usual relation r + 8nT ' 0 are

r + 8nT = −192ζα3
k + 8(202ζ + 65ξζ − 144γM − 8π2 + 3ξFs)ζα4

k +O(α
5
k). (33)

We discuss the validity of the predictions by expressing the results in terms of a
pivot scale k∗ and evolving α(1/k) from k∗ to k by means of the RG evolution equations.
The spectra become functions of ln(k∗/k) and the pivot coupling α∗ ≡ α(1/k∗). With
k∗ = 0.05 Mpc−1 and (for definiteness) ξ∼Fs∼1, the data reported in [53] give ln(1010P∗R) =
3.044± 0.014 and n∗R = 0.9649± 0.0042, where the star superscript means that the quantity
is evaluated at the pivot scale. The second formula of (30) and Formula (32) give the values

α∗ = 0.0087± 0.0010, mφ = (2.99± 0.37)× 1013GeV

for the “fine structure constant” α∗ and the inflaton mass, respectively. The value of mχ will
be known as soon as the tensor-to-scalar ratio r will be measured. The bound mχ > mφ/4
gives 4× 10−4 . r . 3.5× 10−3 at the pivot scale.

The first formula of (30) predicts the tensor spectrum PT with a relative theoretical
error ∼α4

∗∼10−8. The relative error on the tensor tilt nT is ∼α3
∗∼10−6. As far as the

quantities involving the scalar fluctuations are concerned, we have to take into account
that the function Fs(ξ) is only partially known. It can be shown that the relative theoretical
errors of the scalar spectrum PR and the scalar tilt nR − 1 are around α3

∗∼10−6 for ξ < 1/2,
10−5 for 1/2 < ξ < 1 and 10−4 for 1 < ξ < 16.

If primordial cosmology turns into an arena for precision tests of quantum gravity, the
predictions might have a chance to be tested in the incoming years [54].

6. Phenomenology of Fake Particles

Fakeons can be used to propose models of new physics beyond the standard model.
For example, the popular inert doublet model [55–59] has rather different phenomenological
properties if the second doublet is taken to be a fakeon [4]. Since the fake doublet avoids
the Z-pole constraints regardless of the chosen mass scale, there is room for new effects
below the electroweak scale. In addition, the absence of on-shell propagation prevents
fakeons from inducing missing energy signatures in collider experiments.

Other types of standard model extensions by means of fakeons predict measurable
interactions at energy scales that are usually precluded. For example, the interactions
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between a fake scalar doublet and the muon can explain discrepancies concerning the
measurement of the muon anomalous magnetic moment [5]. The experimental results can
be matched for fakeon masses below the electroweak scale without contradicting precision
data and collider bounds on new light degrees of freedom.

An important topic for the phenomenology of particle physics is the treatment of
dressed propagators. Since a fakeon appears to have a sort of “mass” and a sort of “width”,
but it is not a particle, we should provide physical meanings for such two quantities. In the
next section, we explain that the mass is the scale of the violation of microcausality. The
width, instead, has a thoroughly new interpretation.

The resummation of self-energy diagrams into dressed propagators in the case of
purely virtual particles reveals some unexpected facts, which, in turn, highlight nontrivial
properties of long-lived unstable particles. We summarize here the main points, the details
being available in ref. [60].

We factor out the normalization factor Z of the propagator. We also include the
corrections ∆m to the mass m into m itself by default. This way, we can focus our atten-
tion on the width Γ, since Z and ∆m do not play crucial roles. The formally resummed
dressed propagators of physical particles ϕ, fake particles χ and ghosts φ then read, around
the peaks,

P̂ϕ ' i
p2 −m2 + i(ε + mΓ)

, P̂χ '
i(p2 −m2)

(p2 −m2)(p2 −m2 + imΓ) + ε2 ,

P̂φ ' − i
p2 −m2 + i(ε−mΓ)

, (34)

respectively. It is easy to show that they differ by infinitely many contact terms, which do
not admit well-defined sums, such as

∆Γ̂(x) ≡
∞

∑
n=0

(−Γ̂2)n

(2n)!
δ(2n)(x), (35)

where x ≡ (p2 −m2)/m2 and Γ̂ = Γ/m (Γ > 0). Specifically,

Im[im2(P̂ϕ − P̂φ)]
∣∣∣
ε→0

= 2π∆Γ̂(x), Im[im2(P̂ϕ − P̂χ)]
∣∣∣
ε→0

= π∆Γ̂(x).

It turns out that ∆Γ̂(x) is not a well-defined mathematical distribution. What does
that mean? The problem is that the peak region is outside the convergence domain of
the geometric series and can only be reached in the case of physical particles, from the
convergence region, by means of analyticity. In the other cases, non-perturbative effects
become important.

Not only. Ill-defined quantities also appear in the case of unstable, long-lived physical
particles, when we separate their observation from the observation of their decay products.
By the optical theorem, the imaginary part 2Re[P̂ϕ] is equal to the sum of the cross sections
Ωϕparticle and Ωϕdecay of the processes e+e− → ϕ and e+e− → decay products of ϕ, which
can be read by cutting the diagrams contributing to the dressed propagators. The former is
the process where the particle is physically observed before it decays (as in the case of the
muon). The latter is the process where its decay products are observed, instead (as in the
case of the Z boson).

We find

Ωϕparticle '
ε

(p2 −m2)2 + (ε + mΓ)2 , Ωϕdecay '
mΓ

(p2 −m2)2 + (ε + mΓ)2 , (36)

so the limit ε→ 0 tells us that the muon is unobservable:

Ωϕparticle → 0, Ωϕdecay →
mΓ

(p2 −m2)2 + m2Γ2 . (37)
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This is not a surprising result, if we recall that the scattering processes are supposed to
occur between incoming states at t = −∞ and outgoing states at t = +∞, which makes it
impossible to observe an unstable particle. However, the observation of the muon is a fact,
and we should be able to account for it.

In practical situations, the scattering processes take some finite time interval ∆t, much
larger than the duration ∆̄t of the interactions involved in the process, but not equal to
infinity. The prediction Ωϕparticle = 0 remains correct when ∆t is much larger than, say, the
muon lifetime τµ, but fails for ∆̄t� ∆t . τµ.

To solve the impasse, we introduce the energy resolution ∆E∼1/∆̄t. In principle, we
should undertake the task of rederiving all the basic formulas of quantum field theory for
scattering processes where incoming and outgoing states are separated by a finite ∆t. The
results will depend on ∆E, since ∆E = 0 is only compatible with ∆̄t = ∞, hence ∆t = ∞. A
clever shortcut is to guess how ∆E may affect the results.

Generically, we can expect that ∆E will affect the formulas more or less everywhere.
However, in most places we can neglect it, especially when it redefines quantities that are
already present (like the mass m). The ∆E dependence cannot be ignored if it affects a
“zero”, such as the imaginary part of the denominator of the propagator around the peak.

Thus, we assume that when ∆E is different from zero, the predictions coincide with
the ones we have written above, provided we make the replacement

ε→ ε + 2m∆E, (38)

after which we can legitimately take ε to zero. The form of the ∆E dependence appearing
here is not crucial, as long as the correction vanishes when ∆E tends to zero. Making the
replacement in Formula (36) and letting ε tend to zero, we obtain

Ωϕparticle ' 2m∆E
(p2 −m2)2 + m2(2∆E + Γ)2 , (39)

Ωϕdecay ' mΓ
(p2 −m2)2 + m2(2∆E + Γ)2 , (40)

The results show that Ωϕparticle is no longer zero. Phenomenologically we may distin-
guish two opposite cases:

— The case of the Z boson, which is ∆E� Γ/2. There,

Ωϕparticle ' 0, Ωϕdecay '
mΓ

(p2 −m2)2 + m2Γ2 ,

so we do not see the particle: we see its decay products. The results do not depend on ∆E
to the first degree of approximation.

— The case of the muon, which is m� ∆E� Γ/2. There,

Ωϕparticle '
2∆E

(p2 −m2)2 + 4m2∆E2 ' πδ(p2 −m2), Ωϕdecay ' 0, (41)

so we see the particle and not its decay products. Again, the results do not depend on ∆E
to the first degree of approximation.

In the intermediate situations, where ∆E and Γ are comparable, we see both the particle
and its decay products and the results depend on ∆E.

Ultimately, this has to do with the energy-time uncertainty relation ∆E∼1/∆̄t. Indeed,
∆E = 0 implies an infinite time uncertainty, during which every unstable particle has
enough time to decay before being observed. An infinite amount of time is required to
determine an energy with absolute precision, and such an amount of time is available only
for stable particles. It is impossible to observe an unstable particle with infinite resolving
power on its energy.
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However, quantum field theory is not quantum mechanics, where wave functions
allow us to keep time, coordinates, energy and momenta, and their uncertainty relations,
under a satisfactory control. In quantum field theory, as it is usually formulated, we
renounce any determination of time and coordinates and tacitly assume infinite resolving
powers on energy and momenta. This means that we have a worse control on the built-in
uncertainty relations. It may occur that we unawaredly try and calculate something that
is impossible to calculate, because it violates such relations, as in the case of Ωϕparticle
with no ∆E. The theory cannot return a meaningful result there, otherwise it would be
in contradiction with the premises it is built on. Not unexpectedly, we find mathematical
problems in the forms of ill-defined distributions, which may appear term by term or in
the resummations.

In the case of fakeons, something similar happens, but more invasively, since analytic-
ity is less powerful there. Making the replacement ε→ m∆E (with a different factor with
respect to (38), for convenience), the convergence region of P̂χ is delimited by the condition

mΓ|p2 −m2|
(p2 −m2)2 + m2∆E2 < 1,

which holds for every p if and only if

∆E >
Γ
2

. (42)

With the conventions just chosen, this bound coincides with the one of physical
particles. The difference is that in the case of physical particles we can cross the obstacle by
means of analyticity (unless we separate the observation of the particle from the observation
of its decay products, as said). Instead, we cannot cross it in the case of purely virtual
particles, because the fakeon prescription is not analytic.

Ghosts exhibit somewhat similar features, in this respect, but we do not discuss
them here.

It is conceivable that (42) encodes a new type of uncertainty relation, a “peak uncer-
tainty”, which expresses the impossibility of approaching the fakeon too closely, given its
nature of particle that cannot be brought to reality. It also gives a meaning to the fakeon
width, while the fakeon mass codifies the violation of microcausality/microlocality.

These properties suggest that certain processes may involve non-perturbative aspects.
A way to avoid them is by restricting the invariant masses M =

√
p2 of the sets of external

states mediated by fakeons by means of the conditions

|M2 −m2| > mΓ. (43)

So doing, we keep the processes far enough from the regions of the fakeon peaks, which
allows us to take ∆E to zero. Under these assumptions, we can make predictions about
scattering processes at arbitrarily high energies.

However, conditions like (43) do not allow us to sum over the whole phase spaces of
the final states, because such a sum includes contributions from the regions of the fakeon
peaks. For that purpose, we may propose effective formulas for the complete dressed
propagators, argued from the general properties of fakeons. An example is

P̂χ =
i(p2 −m2)

(p2 −m2)(p2 −m2 + imΓ) + γ2m2+2δΓ2−2δ
, (44)

where γ and δ are constants, satisfying γ > 0, 0 < δ < 1. This formula can be obtained
by choosing

∆E = γΓ
(m

Γ

)δ
, (45)
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which fulfills (42) in the classical limit Γ → 0, where (44) correctly tends to the principal
value of i/(p2−m2). An expression like (45) could be originated by nonperturbative effects
or describe the impact of the experimental setup.

If some relatively light fakeon exists in nature, it should be possible to detect the
peak uncertainty experimentally. Instead of seeing a resonance, as we expect for a normal
particle, we should see a bump, or a smeared peak, with a shape that might even depend
on the experimental setup in a way that could be difficult, or impossible, to predict.

7. Peak Uncertainty and Micro Acausality

A violation of microcausality, with typical scale equal to the fakeon mass, is associated
with the intrinsic nonlocal nature of the fakeon projection. Consider the toy model described
by the Lagrangian

L(x, Q, t) =
m
2

ẋ2 −mẋQ̇ +
mM2

2
Q2 + xFext(t),

where x is the coordinate of a physical particle of mass m, Q is the one of a purely vir-
tual particle of mass M and Fext(t) is a time-dependent external force. The equations of
motion give

ẍ = −M2Q, Q̈ + M2Q = − 1
m

Fext(t).

The solution of the Q equation, which reads

mQ = −P 1
d2

dt2 + M2
Fext(t) = −

1
2M

∫ ∞

−∞
duFext(t− u) sin(M|u|),

is given by the fakeon prescription. The equation of motion for x then reads

mẍ =
M
2

∫ ∞

−∞
duFext(t− u) sin(M|u|). (46)

We see that the integral appearing on the right-hand side receives contributions
from the external force in the past and in the future. Due to the oscillating behavior of
(M/2) sin(M|u|), the amount of future effectively contributing is

|∆u| ' 1
M

(47)

and disappears for M → ∞, since limM→∞(M/2) sin(M|u|) = δ(u). Thus, (47) implies
that we cannot make predictions for time intervals shorter than τ. In principle, we could
check (46) a posteriori, if we manage to measure x(t) and Fext(t) independently.

This example shows that the violation of microcausality, being encoded in the fakeon
mass, does not need a nonvanishing width and survives the classical limit. The peak
uncertainty, instead, is encoded in the radiative corrections that give Γ, so it disappears
in the classical limit. This does not prevent us, though, from making predictions about
processes occurring at higher energies. Finally, the violation of microcausality is always
present, while it is possible to have no peak uncertainty (42), as in the models of ref. [4],
where fakeons have identically vanishing widths due to a Z2 symmetry.

8. Conclusions

Purely virtual particles have a variety of applications, which range from collider
physics, to quantum gravity and primordial cosmology. Fakeons mediate interactions with-
out appearing among the incoming and outgoing states. Their consistency with unitarity
can be proved by means of algebraic spectral optical identities. The renormalization of a
theory with fakeons coincides with the one of the parent Euclidean theory. Its classical
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limit is described by an ordinary Lagrangian plus Hermitian, microscopically acausal and
nonlocal self-interactions among the physical particles.

Quantum gravity with fakeons propagates the graviton, the inflaton and a massive
spin-2 fakeon. It can be coupled straightforwardly to the standard model and its classi-
cization leads to a constrained primordial cosmology, which predicts the tensor-to-scalar
ratio r in the window 0.4 . 1000r . 3.5. The interpretation of inflation as a cosmic RG flow
allows us to calculate the perturbation spectra up to high orders.

Fakeons evade various phenomenological constraints that apply to physical particles.
It is impossible to get too close to the fakeon peak, because of a peak uncertainty, equal
to the fakeon width divided by 2, which is expected to be observable. Instead, the fakeon
mass is the scale of the violation of microcausality.

In conclusion, the fakeon diagrammatics gives quantum field theory a chance to sur-
pass its own limitations and offer solutions to long-standing problems, without leaving
the realm of perturbation theory and without advocating leaps of faith or uncertain ap-
proaches, such as string theory [61–64], loop quantum gravity [65–67], holography and
the AdS/CFT correspondence [68–71]. The way paved by purely virtual particles tops
the competitors in calculability, predictivity and falsifiability. For example, the sharp pre-
dictions about inflationary cosmology leave little room for artificial adjustments, in the
case of discrepancies with data. Instead, the main weakness of string theory is its lack of
predictivity, because of the landscape of 10500 or so false vacua [72,73]. Loop quantum
gravity is extremely challenging from the mathematical point of view, when, in contrast,
the fakeon diagrammatics is a relatively simple extension of the usual diagrammatics of
physical particles. The AdS/CFT correspondence does have a quantum field theoretical
side, but it is a strongly coupled one, which leads to use non-perturbative methods, mostly
based on conjectures. A separate discussion applies to the idea of asymptotic safety [74–77],
which is purely quantum field theoretical. Nevertheless, it also requires nonperturbative
methods, to deal with the interacting ultraviolet fixed points.

Funding: This work was supported in part by the European Regional Development Fund through
the CoE program grant TK133 and the Estonian Research Council grant PRG803.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Anselmi, D. Diagrammar of physical and fake particles and spectral optical theorem. J. High Energy Phys. 2021, 11, 030. [CrossRef]
2. Anselmi, D. On the quantum field theory of the gravitational interactions. J. High Energy Phys. 2017, 6, 086. [CrossRef]
3. Anselmi, D.; Bianchi, E.; Piva, M. Predictions of quantum gravity in inflationary cosmology: Effects of the Weyl-squared term. J.

High Energy Phys. 2020, 7, 211. [CrossRef]
4. Anselmi, D.; Kannike, K.; Marzo, C.; Marzola, L.; Melis, A.; Müürsepp, K.; Piva, M.; Raidal, M. Phenomenology of a fake inert

doublet model. J. High Energy Phys. 2021, 10, 32. [CrossRef]
5. Anselmi, D.; Kannike, K.; Marzo, C.; Marzola, L.; Melis, A.; Müxuxrsepp, K.; Piva, M.; Raidal, M. A fake doublet solution to the

muon anomalous magnetic moment. Phys. Rev. D 2021, 104, 035009. [CrossRef]
6. Van Oldenborgh, G.J.; Vermaseren, J.A.M. New Algorithms for One Loop Integrals. Z. Phys. C 1990, 4, 425–438. [CrossRef]
7. Kublbeck, J.; Bohm, M.; Denner, A. Feyn Arts: Computer Algebraic Generation of Feynman Graphs and Amplitudes. Comput.

Phys. Commun. 1990, 60, 165–180. [CrossRef]
8. Denner, A. Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at

LEP-200. Fortsch. Phys. 1993, 41, 307–420.
9. Hahn, T. Loop calculations with FeynArts, FormCalc, and LoopTools. Acta Phys. Polon. B 1999, 30, 3469. [CrossRef]
10. Hahn, T. Generating Feynman diagrams and amplitudes with FeynArts 3. Comput. Phys. Commun. 2001, 140, 418–431. [CrossRef]
11. Alloul, A.; Christensen, N.D.; Degrande, C.; Duhr, C.; Fuks, B. FeynRules 2.0—A complete toolbox for tree-level phenomenology.

Comput. Phys. Commun. 2014, 185. [CrossRef]
12. Patel, H.H. Package-X: A Mathematica package for the analytic calculation of one-loop integrals. Comput. Phys. Commun. 2015,

197, 276–290. [CrossRef]
13. Anselmi, D. Fakeons and Lee-Wick models. J. High Energy Phys. 2018, 2, 141. [CrossRef]
14. Anselmi, D.; Piva, M. A new formulation of Lee-Wick quantum field theory. J. High Energy Phys. 2017, 6, 066. [CrossRef]
15. Anselmi, D. Fakeons versus Lee-Wick Ghosts: Physical Pauli-Villars Fields, Finite QED and Quantum Gravity. arXiv 2022,

arXiv:2202.10483.

http://doi.org/10.1007/JHEP11(2021)030
http://dx.doi.org/10.1007/JHEP06(2017)086
http://dx.doi.org/10.1007/JHEP07(2020)211
http://dx.doi.org/10.1007/JHEP10(2021)132
http://dx.doi.org/10.1103/PhysRevD.104.035009
http://dx.doi.org/10.1007/BF01621031
http://dx.doi.org/10.1016/0010-4655(90)90001-H
http://dx.doi.org/10.1016/S0920-5632(00)00848-3
http://dx.doi.org/10.1016/S0010-4655(01)00290-9
http://dx.doi.org/10.1016/j.cpc.2014.04.012
http://dx.doi.org/10.1016/j.cpc.2015.08.017
http://dx.doi.org/10.1007/JHEP02(2018)141
http://dx.doi.org/10.1007/JHEP06(2017)066


Symmetry 2022, 14, 521 17 of 18

16. Lee, T.D.; Wick, G.C. Negative metric and the unitarity of the S-matrix. Nucl. Phys. B 1969, 9, 209–243. [CrossRef]
17. Lee, T.D.; Wick, G.C. Finite theory of quantum electrodynamics. Phys. Rev. D 1970, 2, 1033. [CrossRef]
18. Lee, T.D. A relativistic complex pole model with indefinite metric. In Quanta: Essays in Theoretical Physics Dedicated to Gregor

Wentzel; Chicago University Press: Chicago, IL, USA, 1970; p. 260.
19. Nakanishi, N. Lorentz noninvariance of the complex-ghost relativistic field theory. Phys. Rev. D. 1971, 3, 811. [CrossRef]
20. Cutkosky, R.E.; Landshoff, P.V.; Olive, D.I.; Polkinghorne, J.C. A non-analytic S matrix. Nucl. Phys. B 1969, 12, 281. [CrossRef]
21. Grinstein, B.; O’Connell, D.; Wise, M.B. Causality as an emergent macroscopic phenomenon: The Lee-Wick O(N) model. Phys.

Rev. D 2009, 79, 105019. [CrossRef]
22. Anselmi, D. Quantum field theories of arbitrary-spin massive multiplets and Palatini quantum gravity. J. High Energy Phys. 2020,

7, 176. [CrossRef]
23. Piva, M. Massive higher-spin multiplets and asymptotic freedom in quantum gravity. Phys. Rev. D 2022, 105, 045006. [CrossRef]
24. Cutkosky, R.E. Singularities and discontinuities of Feynman amplitudes. J. Math. Phys. 1960, 1, 429. [CrossRef]
25. Veltman, M. Unitarity and causality in a renormalizable field theory with unstable particles. Physica 1963, 29, 186. [CrossRef]
26. Hooft, G. Renormalization of massless Yang-Mills fields. Nucl. Phys. B 1971, 33, 173.
27. Hooft, G. Renormalizable Lagrangians for massive Yang-Mills fields. Nucl. Phys. B 1971, 35, 167–188. [CrossRef]
28. Hooft, G.; Veltman, M. Diagrammar; CERN Report; CERN: Meyrin, Switzerland, 1973; Available online: https://cdsweb.cern.ch/

record/186259 (accessed on 1 March 2020).
29. Veltman, M. Diagrammatica. The Path to Feynman Rules; Cambridge University Press: New York, NY, USA, 1994.
30. Anselmi, D. The quest for purely virtual quanta: Fakeons versus Feynman-Wheeler particles. J. High Energy Phys. 2020, 3, 142.

[CrossRef]
31. Ward, J.C. An identity in quantum electrodynamics. Phys. Rev. 1950, 78, 182. [CrossRef]
32. Takahashi, Y. On the generalized Ward identity. Nuovo Cim. 1957, 6, 371. [CrossRef]
33. Slavnov, A.A. Ward identities in gauge theories. Theor. Math. Phys. 1972, 10, 99–107. [CrossRef]
34. Taylor, J.C. Ward identities and charge renormalization of Yang-Mills field. Nucl. Phys. 1971, B33, 436–444. [CrossRef]
35. Stelle, K.S. Renormalization of higher derivative quantum gravity. Phys. Rev. D 1977, 16, 953–969. [CrossRef]
36. Anselmi, D.; Piva, M. Quantum gravity, fakeons and microcausality. J. High Energy Phys. 2018, 11, 21. [CrossRef]
37. Anselmi, D. Fakeons, microcausality and the classical limit of quantum gravity. Class. Quantum Grav. 2019, 36, 065010. [CrossRef]
38. Anselmi, D. High-order corrections to inflationary perturbation spectra in quantum gravity. J. Cosmol. Astropart. Phys. 2021, 2, 29.

[CrossRef]
39. Chernikov, N.A.; Tagirov, E.A. Quantum theory of scalar field in de Sitter space-time. Ann. Inst. H. Poincaré 1968, 2, 109–141.
40. Schomblond, C.; Spindel, P. Conditions d’unicité pour le propagateur ∆1(x; y) du champ scalaire dans l’univers de de Sitter. Ann.

Inst. H. Poincaré 1976, 1, 67.
41. Bunch, T.S.; Davies, P. Quantum field theory in de Sitter space: Renormalization by point splitting. Proc. R. Soc. Lond. A 1978, 360,

117–134.
42. Clunan, T.; Sasaki, M. Tensor ghosts in the inflationary cosmology. Class. Quant. Grav. 2010, 27, 165014. [CrossRef]
43. Deruelle, N.; Sasaki, M.; Sendouda, Y.; Youssef, A. Inflation with a Weyl term, or ghosts at work. J. Cosmol. Astropart. Phys. 2011,

1103, 040. [CrossRef]
44. Deruelle, N.; Sasaki, M.; Sendouda, Y.; Youssef, A. Lorentz-violating vs. ghost gravitons: The example of Weyl gravity. J. High

Energ. Phys. 2012, 2012, 9. [CrossRef]
45. Fang, C.; Huang, Q.G. The trouble with asymptotically safe inflation. Eur. Phys. J. C 2013, 73, 2401. [CrossRef]
46. Myung, Y.S.; Moon, T. Primordial massive gravitational waves from Einstein-Chern-Simons-Weyl gravity. J. Cosmol. Astropart.

Phys. 2014, 8, 62. [CrossRef]
47. Kannike, K.; Hütsi, G.; Pizza, L.; Racioppi, A.; Raidal, M.; Salvio, A.; Strumia, A. Dynamically induced Planck scale and inflation.

J. High Energy Phys. 2015, 5, 65. [CrossRef]
48. Ivanov, M.M.; Tokareva, A.A. Cosmology with a light ghost. J. Cosmol. Astropart. Phys. 2016, 12, 18. [CrossRef]
49. Salvio, A. Inflationary perturbations in no-scale theories. Eur. Phys. J. C 2017, 77, 267. [CrossRef]
50. Mukhanov, V.F.; Feldman, H.A.; Brandenberger, R.H. Theory of cosmological perturbations. Phys. Rept. 1992, 215, 203. [CrossRef]
51. Baumann, D. TASI Lectures on Inflation. arXiv 2009, arXiv:0907.5424.
52. Weinberg, S. Cosmology; Oxford University Press: Oxford, UK, 2008.
53. Planck Collaboration. Planck 2018 results. X. Constraints on inflation. arXiv 2018, arXiv:1807.06211.
54. Abazajian, K.N.; Adshead, P.; Ahmed, Z.; Allen, S.W.; Alonso, D.; Arnold, K.S.; Baccigalupi, C.; Bartlett, J.G.; Battaglia, N.; Benson,

B.A. CMB-S4 Science Book, First Edition. arXiv 2016, arXiv:1610.02743.
55. Deshpande, N.G.; Ma, E. Pattern of symmetry breaking with two Higgs doublets. Phys. Rev. D 1978, 18, 02574. [CrossRef]
56. Ma, E. Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 2006, 73, 077301. [CrossRef]
57. Barbieri, R.; Hall, L.J.; Rychkov, V.S. Improved naturalness with a heavy Higgs: An alternative road to LHC physics. Phys. Rev. D

2006, 74, 015007. [CrossRef]
58. Honorez, L.; Nezri, E.; Oliver, J.F.; Tytgat, M.H.G. The Inert Doublet Model: An archetype for dark matter. J. Cosmol. Astropart.

Phys. 2007, 2, 028. [CrossRef]

http://dx.doi.org/10.1016/0550-3213(69)90098-4
http://dx.doi.org/10.1103/PhysRevD.2.1033
http://dx.doi.org/10.1103/PhysRevD.3.811
http://dx.doi.org/10.1016/0550-3213(69)90169-2
http://dx.doi.org/10.1103/PhysRevD.79.105019
http://dx.doi.org/10.1007/JHEP07(2020)176
http://dx.doi.org/10.1103/PhysRevD.105.045006
http://dx.doi.org/10.1063/1.1703676
http://dx.doi.org/10.1016/S0031-8914(63)80277-3
http://dx.doi.org/10.1016/0550-3213(71)90139-8
https://cdsweb.cern.ch/record/186259
https://cdsweb.cern.ch/record/186259
http://dx.doi.org/10.1007/JHEP03(2020)142
http://dx.doi.org/10.1103/PhysRev.78.182
http://dx.doi.org/10.1007/BF02832514
http://dx.doi.org/10.1007/BF01090719
http://dx.doi.org/10.1016/0550-3213(71)90297-5
http://dx.doi.org/10.1103/PhysRevD.16.953
http://dx.doi.org/10.1007/JHEP11(2018)021
http://dx.doi.org/10.1088/1361-6382/ab04c8
http://dx.doi.org/10.1088/1475-7516/2021/02/029
http://dx.doi.org/10.1088/0264-9381/27/16/165014
http://dx.doi.org/10.1088/1475-7516/2011/03/040
http://dx.doi.org/10.1007/JHEP09(2012)009
http://dx.doi.org/10.1140/epjc/s10052-013-2401-2
http://dx.doi.org/10.1088/1475-7516/2014/08/061
http://dx.doi.org/10.1007/JHEP05(2015)065
http://dx.doi.org/10.1088/1475-7516/2016/12/018
http://dx.doi.org/10.1140/epjc/s10052-017-4825-6
http://dx.doi.org/10.1016/0370-1573(92)90044-Z
http://dx.doi.org/10.1103/PhysRevD.18.2574
http://dx.doi.org/10.1103/PhysRevD.73.077301
http://dx.doi.org/10.1103/PhysRevD.74.015007
http://dx.doi.org/10.1088/1475-7516/2007/02/028


Symmetry 2022, 14, 521 18 of 18

59. Belyaev, A.; Cacciapaglia, G.; Ivanov, I.P.; Rojas-Abatte, F.; Thomas, M. Anatomy of the Inert Two Higgs Doublet Model in the
light of the LHC and non-LHC Dark Matter Searches. Phys. Rev. D 2018, 97, 035011. [CrossRef]

60. Anselmi, D. Dressed Propagators, Fakeon Self-Energy and Peak Uncertainty. arXiv 2022, arXiv:2201.00832.
61. Green, M.B.; Schwarz, J.H.; Witten, E. Superstring Theory I & II; Cambridge University Press: Cambridge, UK, 1987.
62. Polchinski, J. String Theory I & II; Cambridge University Press: Cambridge, UK, 1998.
63. Becker, K.; Becker, M.; Schwarz, J. String Theory and M-Theory: A Modern Introduction; Cambridge University Press: Cambridge,

UK, 2007.
64. Blumenhagen, R.; Lust, D.; Theisen, S. Basic Concepts of String Theory; Springer: Heidelberg, Germany, 2012.
65. Ashtekar, A. (Ed.) 100 Years of Relativity. Space-Time Structure: Einstein and Beyond; World Scientific: Singapore, 2005.
66. Rovelli, C. Quantum Gravity; Cambridge University Press: Cambridge, UK, 2004.
67. Thiemann, T. Modern Canonical Quantum General Relativity; Cambridge University Press: Cambridge, UK, 2007.
68. Maldacena, J. The Large N limit of superconformal field theories and supergravity. Theor. Math. Phys. 1997, 2, 231. [CrossRef]
69. Gubser, S.; Klebanov, I.; Polyakov, A. Gauge theory correlators from non-critical string theory. Phys. Lett. B 1998, 428, 105.

[CrossRef]
70. Witten, E. Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 1998, 2, 253. [CrossRef]
71. Hubeny, V.E. The AdS/CFT correspondence. Class. Quantum Grav. 2015, 32, 124010. [CrossRef]
72. Douglas, M. The statistics of string/M theory vacua. J. High Energy Phys. 2003, 5, 046. [CrossRef]
73. Ashok, S.; Douglas, M. Counting flux vacua. J. High Energy Phys. 2004, 1, 060. [CrossRef]
74. Weinberg, S. Ultraviolet divergences in quantum theories of gravitation. In An Einstein Centenary Survey; Hawking, S., Israel, W.,

Eds.; Cambridge University Press: Cambridge, UK, 1979; p. 790.
75. Lauscher, O.; Reuter, M. Ultraviolet fixed point and generalized flow equation of quantum gravity. Phys. Rev. D 2002, 65, 025013.

[CrossRef]
76. Lauscher, O.; Reuter, M. Flow equation of quantum Einstein gravity in a higher-derivative truncation. Phys. Rev. D 2002, 66,

025026. [CrossRef]
77. Falls, K.G.; King, C.R.; Litim, D.F.; Nikolakopoulos, K.; Rahmede, C. Asymptotic safety of quantum gravity beyond Ricci scalars.

Phys. Rev. D 2018, 97, 086006. [CrossRef]

http://dx.doi.org/10.1103/PhysRevD.97.035011
http://dx.doi.org/10.4310/ATMP.1998.v2.n2.a1
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://dx.doi.org/10.4310/ATMP.1998.v2.n2.a2
http://dx.doi.org/10.1088/0264-9381/32/12/124010
http://dx.doi.org/10.1088/1126-6708/2003/05/046
http://dx.doi.org/10.1088/1126-6708/2004/01/060
http://dx.doi.org/10.1103/PhysRevD.65.025013
http://dx.doi.org/10.1103/PhysRevD.66.025026
http://dx.doi.org/10.1103/PhysRevD.97.086006

	Introduction
	Particles, Fakeons and Ghosts
	Purely Virtual Particles: A New Diagrammatics
	Quantum Gravity
	Inflationary Cosmology from Quantum Gravity
	Cosmic RG flow
	Spectra
	Predictions

	Phenomenology of Fake Particles
	Peak Uncertainty and Micro Acausality
	Conclusions
	References

