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Abstract: This study is concerned with the theory of Cosserat thermoelastic media, whose micro-
particles possess microtemperatures. The mixed initial boundary value problem considered in this
context is transformed in a temporally evolutionary equation on a Hilbert space. Using some results
from the theory of semigroups, the existence and uniqueness of solution is proved. In the same
manner, it approached the continuous dependence of the solution upon initial data and loads. From
what we have studied, neither on the internet nor in the databases, we have not found qualitative
issues addressed regarding the mixed problem in the context of the theory of thermoelasticity of
Cosserat environments, in which the contribution of inner structure and microtemperatures are taken
into account.
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dependence

1. Introduction

The study of elastic materials with microstructure was initiated by the French Cosserat
brothers in a famous book that was published in 1909. Recently, this theory has been
addressed in a large number of specialized studies. Eringen attached great importance to
these environments (for instance, [1]), which improved the theory of these environments
by adding a conservation law for the tensor of inertia. In this way, he laid the foundations
of the theory of micromorphic continua. Important results on the Cosserat media are
presented in the works [2–5]. For instance, in [2], the authors give explicit solutions for
surface waves propagation in a homogeneous half space filled with an isotropic Cosserat
elastic material. Additionally, in [5], in the framework of the linear theory, a uniqueness
result and a solution of Galerkin type are established. In classical theories, the fact, that the
reaction of a body to some external actions is influenced by the intimate structure of that
body, is ignored. In the theory of Cosserat bodies, there are three extra freedom degrees for
the “rotation” of the points in the media. In this way a new tensor appears—the couple
stress tensor, which completes the classical stress tensor. We should give some examples
of bodies with a microstructure, in order to point out how important it is to consider the
micromotions. So, we have: polymers, suspensions, crystals, composites, grid and multibar
systems, or blood. Another theory in this regard is the theory of microstretch materials
(for instance, Eringen [6]). This is an extension of the Cosserat theory, and a particular
case of the theory of micromorphic media, in which there are considered three deformable
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directors that only have microdeformations of the breathing type. Some results on bodies
with a microstructure can be found in [7–10].

For instance, in [8], in a microstretch material, a Toupin-type measure associated
with the corresponding steady-state vibration is used, and by assuming that the angular
frequency of oscillations is lower than a certain critical frequency, it is shown that the
amplitude of the vibrations decays exponentially with the distance to the base.

All of the above generalized theories have a common aim, namely, to eliminate the
disagreements between the experiments and the classical theory of elasticity. The contribu-
tion of the microstructure on the media’s overall evolutions was first noticed in the case
of graphite, human bones, polymers, and granular materials with large molecules. Other
discrepancies that should have disappeared are those observed between short wavelengths
and elastic vibrations of high frequency.

The first studies dedicated to the theory of media having microtemperatures were
published by Grot (for instance, [11]). He proposed a theory of solids with a microstructure,
in which each microelement is endoved with microtemperatures. As a consequence,
the inequality of the entropy production has been modified to evidentiate the presence
of the microtemperatures. Additionally, together with the known energy equations of
bodies with microtemperatures, the first-order moment of the equations of energy has been
considered. There are many studies dedicated to the thermoelasticity of media having
microtemperatures, such as Refs. [12–14].

In [14], in the context of a linear theory of thermoelasticity with microtemperatures,
the basic boundary value problems of steady vibrations are investigated using the potential
method. For different results regarding the inner structures of materials, we recommend
the studies [15–22]. In [16], the authors show that, in the analysis with finite elements of a
solid body having a general rigid motion, additional elements occur, which can change the
dynamic response of the system.

In our present paper, we take into account the effect of the inner structure and mi-
crotemperatures in the deformation of a Cosserat thermoelastic solid. Our study can be
considered as belonging to the generalized theories of continuous media, because the effects
we consider do not prevent the propagation of thermal waves at finite speed. To get the
main results for the mixed problem in the context of Cosserat thermoelastic bodies with
inner structure and microtemperatures, we use a few results from the theory of semi-groups
of operators. The problem in this context will be replaced by an abstract problem of the
Cauchy type, attached to an evolutionary equation, defined on a specific Hilbert space,
built in context. This procedure makes it much easier to get results regarding the existence
of at least one solution and the uniqueness of the solution of our problem. In addition,
this technique eases even the continuous dependence of solutions on both initial values
and loads.

2. Basic Conditions and Equations

In what follows, we consider a bounded domain D from Euclidean space R3, which is
occupied by a Cosserat thermoelastic body. The closure of D is denoted by D̄ and we have
D̄ = D ∪ ∂D, where, as usual, ∂D is the boundary of the region D, which we consider a
piece-wise smooth surface, with the outward unit normal of components ni. To designate
a vector field and a tensor field, we use letters in boldface. The components of a vector
field w are denoted by wi. To designate the time derivative of a function h, we use the
notation ḣ, that is, a superposed dot. The notation h, m is used for the partial differentiation
of function h with respect to its m-th variable. The Einstein summation rule regarding the
repeated subscripts is also used. If there is no likelihood of confusion, it can be omitted
to write the dependence of a function on its spatial variables or time variable. In order to
characterize the evolution of a Cosserat thermoelastic body, we use a displacement vector
with the components vm, a microrotation vector with the components φm, a microstretch
function ϕ, and the temperature θ measured from the constant absolute temperature T0 of
the body in its reference state.
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With the help of these internal state variables, the components of the strain tensors
emn, εmn and γm can be defined, by means of the following usual kinematic relations:

emn = vn,m + εmnkφk, εmn = φn,m, γm = ϕ,m, (1)

where εijk is the Riccis’s symbol.
We suppose that the stress tensor has the components τmn and the components of the

tensor of the couple stress are denoted by σmn.
According to Iesan and Nappa [5], the motion equations in the theory of Cosserat

thermoelastic media have the following form:

τji,j + $ fi = $v̈i,

σji,j + εijkτjk + $gi = Iijφ̈j. (2)

The moment of the first stress has the following balance [5]:

hi,i − λ + $l = J ϕ̈. (3)

Here, the following notations are used: $ = the mass density in the initial state of the
body, f = ( fm) = the body force, g = (gm) = the body couple, and L = an external body
charge. In addition, the components of inertia are noted by Imn = Inm and J.

The variation of the temperature is denoted by θ and we have θ = T − T0, where T0 is
the temperature of the body in the undeformed state.

In addition, it is assumed that the temperature in the media is given by the following
sum

θ + Tm

(
X
′
m − Xm

)
, (4)

where (X
′
i) are the coordinates of the mass center of an arbitrary microelement in the initial

state of the body and (Xi) are the elements of a generic point of the body. In (4), it is
denoted by Tm microtemperatures of media.

Similar to ϑi, entered above, the variation of the microtemperatures ϑi, relative to the
microtemperatures T0

m in the initial state of the body is considered, namely, ϑm = Tm − T0
m.

The deformation of a Cosserat thermoelastic solis with inner structure and microtem-
peratures will be evaluated using the above introduced variables vm, φm, ϕ and the thermal
fields χ and τm, having the following form:

χ =
∫ t

t0

θdτ, τm =
∫ t

t0

ϑmdτ, (5)

t0 being the initial time.
Being in the context of a linear theory, it is natural to consider that the internal energy

is a quadratic form relative to all its constitutive functions, that is, as follows:

U =
1
2

[
Aijmneijemn + 2Bijmneijεmn + 2aijeij ϕ + 2Dijmneijτm,n

+Cijmnεijεmn + 2bijεij ϕ + 2Eijmnεijτm,n + Aij ϕ,i ϕ,j (6)

+2Hij ϕ,iχ,j + ζφ2 + 2Fijτi,j ϕ + Kijχ,iχ,j + Gijmnτm,nτi,j

]
.

Using a procedure analogous to that in [4], we obtain:

τij =
∂U
∂eij

, σij =
∂U
∂εij

, hi =
∂U
∂ϕ,i

, λ =
∂U
∂ϕ

,

η =
∂U
∂θ

, Si =
∂U
∂χ,i

, Λij =
∂U
∂τi,j

,
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and so we obtain the constitutive equations for a homogeneous and anisotropic Cosserat
thermoelastic media with an inner structure and microtemperatures:

τij = Aijmnemn + Bijmnεmn + aij ϕ− αijχ̇ + Dijmnτm,n,

σij = Bijmn emn + Cijmnεmn + bij ϕ− βijχ̇ + Eijmnτm,n,

hi = Aijγj − dijτ̇j + Hijχ,j,

λ =
∂U
∂ϕ

= aijeij + bijεij + ζϕ− κχ̇ + Fijτi,j, (7)

$η = αijeij + βijεij + κϕ + aχ̇ + Lijτi,j,

$ηi = djiγj + Bijτ̇j + Cijχ,j,

Si = Hjiγj − Cjiτ̇j + Kijχ,j,

Λij = Dijmnemn + Eijmnεij + Fji ϕ− Ljiχ̇ + Gijmnτm,n.

The new notations that appear in (6) have the following significations: τmn and σmn are
the stress tensors in the body, hm is the internal hypertraction function, λ is a generalized
internal charge, η is the mass entropy, ηm is the first vector of the entropy moment, Sm is
the vector of the entropy flux, and Λmn are the components of the tensor of the first entropy
flux moment.

The constitutive thermoelastic coefficients Aijmn, Bijmn, . . . , Lji, and Gijmn, which also
appear above, satisfy the following relations of symmetry:

Aijmn = Amnij, Cijmn = Cmnij, Aij = Aji,

Kij = Kji, Dijmn = Djimn, Gijmn = Gmnij. (8)

By using the equation of energy, we obtain the following equation [11]:

$ξm + Sm − Hm = 0, (9)

in which ξm is the internal rate of entropy production, Hm are the components of vector of
the mean entropy flux, and, as above, Sm are the components of the vector of the entropy
flux.

The rate of supply of entropy by s and the first moment components of the rate of
entropy supply by Qm will be denoted. Then, we deduce two more relations of energy [9]:

$η̇ = Sm,m + $s,

$η̇m = Λmn,n + $Qm. (10)

Now, we consider the kinematic Equation (5) and take into account the constitutive re-
lations (7), such that from the motion Equation (1), the equation of first moment of stress (2),
and the energy Equation (10), the following partial differential equations are obtained:

Aijmn

(
vm,nj + εmnkφk,j

)
+ Bijmnφn,mj + aij ϕ,j − αijχ̇,j + Dijmnτm,nj + $Fi = $v̈i;

Bijmn

(
vm,nj + εmnkφk,j

)
+ Cijmnφn,mj + bij ϕ,j − βijχ̇,j + Eijmnτm,nj

+εijk

[
Ajkmn(vm,n+εmnkφk)+Bjkmnφn,m+ajk ϕ− αjkχ̇+Djkmnτm,n

]
+$Gi = Iijφ̈j,

Aijφ,ij−dijτ̇j,i+Hijχ,ij−aij

(
vj,i+εijkφk

)
−bijφj,i−ζϕ−κχ̇−Fijτi,j+$L= J ϕ̈, (11)

Hjiφ,ij − Dijτ̇j,i + Kijχ,ij − αij

(
v̇j,i+εijkφ̇k

)
−βijφ̇j,i−κϕ̇− aχ̈ = −$s,

Dijmn

(
vm,nj + εmnkφk,j

)
+ Eijmnφn,mj + Fji ϕ,j

−Djiχ̇,j + Gijmnτm,nj − dij ϕ̇,j − Bijτ̈j = −$Qi.

in which it is clearer what the unknown functions are, namely vm, φm, ϕ, χ and τm.
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The signification of Dmn is: Dmn = Cmn + Lmn.
In the case of a Dirichlet problem attached to Equation (11), the boundary relations in

the following form are used:

vm = v̄m, φm = φ̄m, ϕ= ϕ̄, χ= χ̄, τm = τ̄m, on ∂D× (0, ∞), (12)

in which v̄m, φ̄m, ϕ̄, χ̄, τ̄m are the prescribed functions.
If we consider a Neumann type boundary value problem, associated to Equation (11),

then the relations to the limit (12) are substituted by the following conditions:

τkmnm = t̄m, σknnk = m̄n, λmnm = λ̄, Smnm = S̄, Λkmnk = Λ̄m, on ∂D×(0, ∞), (13)

in which t̄m, m̄k, λ̄, S̄ and Λ̄m are the known functions.
In what follows, we only take into account a boundary problem with Dirichlet condi-

tions.
In order to complete the mixed problem for the Cosserat thermoelastic bodies with

microtemperatures and inner structure, we need to associate the initial data, which we use
in the following form:

vm(x, 0) = v0
m(x), v̇m(x, 0) = v1

m(x), φm(x, 0) = φ0
m(x),

φ̇m(x, 0) = φ1
m(x), ϕ(x, 0) = ϕ0(x), ϕ̇(x, 0) = ϕ1(x), (14)

χ(x, 0) = χ0(x), χ̇(x, 0) = χ1(x), τm(x, 0) = τ0
m(x), τ̇m(x, 0) = τ1

m(x),

for any x ∈ D. Here, the functions v0
m, v1

m, φ0
m, φ1

m, φ0, φ1, χ0, χ1, τ0
m, and τ1

m are prescribed.
Let us denote by P the mixed problem consisting of basic Equation (11), the boundary

conditions (12), and the initial data (14).

3. Results and Discussion

We address in this section our main results, namely, we formulate and demonstrate a
result regarding the existence of a solution for problemP , which was previously formulated.
We also study under what conditions the formulated mixed problem admits only one
solution, that is, the uniqueness of the solution of problem P is proven. One last and
equally important result that we approach at the end of our study, is whether the solution
to our problem depends continuously on both the initial data and the loads. All three
theorems will be obtained based on results from the semigroup theory of operators. In
order to avoid repeating certain conditions, we impose that all the functions that appear in
the conditions and the equations below are well-defined at the whole of their domain in
order to perform some mathematical operations.

To obtain our first result regarding the uniqueness, we will use the preliminary result,
which is proven in following proposition.

Proposition 1. Between the internal functions that describe the evolution of a thermoelastic
Cosserat solid having microtemperatures and inner structure, the next identity takes place:

τijeij + σijεij + λiφ,i + σϕ + $ηχ̇ + $ηiτ̇i + Siχ,i + Λijτi,j

= Aijmneijemn + 2Bijmneijεmn + 2aijeij ϕ + 2Dijmneijτm,n

+Cijmnεijεmn + 2bijεij ϕ + 2Eijmnεijτm,n + Aij ϕ,i ϕ,j (15)

+2Hijφ,iχ,j + ζϕ2 + 2Fijτi,j ϕ + Kijχ,iχ,j

+Gijmnτm,nτi,j + aχ̇2 + Bijτ̇iτ̇j.

Proof. We multiply, in the following manner, τmn.emn, σmn.εmn, λm.ϕ,m, σ.ϕ, $η.χ̇, $ηm.τ̇m,
Sm.χ,m and Λmn.τm,n in all equations from the constitutive relations (6).

After that, all obtained equalities are gathered member by member. Finally, if it takes
into account the symmetry relations (7) we are led to the anticipated relation (14).



Symmetry 2022, 14, 511 6 of 13

Taking into account the expression of the internal energy and taking into account
the identity (15), the first result of uniqueness can be obtained, regarding the solution of
problem P .

This will be obtained in the following proposition.

Proposition 2. Suppose that the following hypotheses take the place:
It is assumed that the following hypotheses take places:

1. $, a, Iij and J are positive (strictly);
2. The relations of symmetry (8) are satisfied;
3. The internal energy U is a positive semi-definite quadratic form;
4. The tensor, having as components the constitutive expressions Bij, is a positively defined one.

Then, the mixed problem P has a unique solution.

Proof. Using the same procedure as in the proof of Proposition 1 we begin by multiplying
any of the constitutive relations from (7) in the following manner: τmn.ėmn, ε̇mn.σmn, λm.φ̇,m,
ϕ̇.σ, $χ̇.η̇, $τ̇mη̇m., Sm.χ̇,m and Λmn.τ̇m,n. After that, the equalities equals that result are
added, member to member, so that after we take into account the symmetry relations (8)
and the internal energy U having the form from (15), we are led to the following identity:

τij ėij + σij ε̇ij + λi ϕ̇,i + σϕ̇ + $η̇χ̇ + $η̇iτ̇i + Siχ̇,i + Λijτ̇i,j

=
∂

∂t

(
U +

1
2

aχ̇2 +
1
2

Bijτ̇iτ̇j

)
. (16)

Now there are considered the kinematic Equation (5), the motion Equation (1), the first
stress moment Equation (2), and the equations of energy (9), and in this way the following
equality is obtained:

τij ėij + ε̇ijσij + ϕ̇,iλi + σϕ̇ + $χ̇η̇ + $τ̇iη̇i + Siχ̇,i + Λijτ̇i,j

=
(
τij u̇i+ σijφ̇i+ ϕ̇hj + χ̇Sj + Λijτ̇i

)
,j (17)

+$(Fi v̇i + Giφ̇i + Lϕ̇ + sχ̇ + Qiτ̇i)− $v̈i v̇i − Iijφ̈iφ̇j − J ϕ̈ϕ̇.

Of course, by using the equalities (16) and (17), the following identity is deduced:

1
2

∂

∂t

(
2U + $v̇i v̇i + Iijφ̇iφ̇j + J ϕ̇2 + aχ̇2 + Bijτ̇iτ̇j

)
=
(
τijv̇i+σijφ̇i+λj ϕ̇+Sjχ̇+Λijτ̇i

)
,j+$(Fi v̇i+Giφ̇i+Lϕ̇+sχ̇+Qiτ̇i). (18)

Now, over the domain D the identity (18) is integrated, and then the theorem of
divergence is used in order to obtain the relation:

1
2

∂

∂t

∫
B

(
2U + $v̇i v̇i + Iijφ̇iφ̇j + J ϕ̇2 + aχ̇2 + Bijτ̇iτ̇j

)
dV

=
∫

∂B

(
τji v̇i+σiφ̇i+λj ϕ̇+Sjχ̇+Λijτ̇i

)
njdA+

∫
B
$(Fi v̇i+Giφ̇i+Lϕ̇+sχ̇+Qiτ̇i)dV. (19)

Let us designate by “*” the difference between two arbitrary solutions of the problem
P , i.e.,

v∗m = v2
m − v1

m, φ∗m = φ2
m − φ1

m, ϕ∗ = ϕ2 − ϕ1, χ∗ = χ2 − χ1, τ∗m = τ2
m − τ1

m.

With the same mark “*”, any other sizes relative to the previous differences are
designated.

Of course, because of linearity, the above differences also satisfy the motion Equa-
tion (1), the first stress moment balance (2), and the equations of energy (9). Clearly, all
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these equations are satisfied in the case of null body charges. Obviously, in this situation
the initial relations become homogeneous, so that for every x ∈ D, it results:

v∗m(0, x) = 0, v̇∗m(0, x) = 0, φ∗m(0, x) = 0, φ̇∗m(0, x) = 0, ϕ∗(0, x) = 0,

φ̇∗(0, x) = 0, χ∗(0, x) = 0, χ̇∗(0, x) = 0, τ∗m(0, x) = 0, τ̇∗m(0, x) = 0. (20)

In addition, in this situation, boundary values are null:

v∗m =0, φ∗m =0, φ∗ =0, χ∗ =0, τ∗m =0, on ∂D× (0, ∞), (21)

and

e∗mn(0, x) =0, ε∗mn(0, x) =0, ϕ∗,m(0, x) =0, χ∗,m(0, x) =0, τ∗m,n(0, x) =0, x ∈ D. (22)

Based on the above considerations, the relation (19) is written for the considered
differences and we obtain:∫

B

(
2U∗ + $v̇∗mv̇∗m + Imnφ̇∗mφ̇∗n + J(ϕ̇∗)2 + a(χ̇∗)2 + Bmnτ̇∗mτ̇∗n

)
dV = 0, t ≥ 0. (23)

Considering hypothesis 3 of the theorem, and taking into account (22), it is obtained
that the internal energy U, which is written for the differences, becomes zero, such that
from (23), we deduce:∫

D

[
$v̇∗mv̇∗m + Imnφ̇∗mφ̇∗n + J(ϕ̇∗)2 + a(χ̇∗)2 + Bmnτ̇∗mτ̇∗n

]
dV = 0. (24)

Based on hypothesis 4 of Proposition, with respect to the tensor Bmn and taking into
account hypothesis 1 of the Proposition with respect to the quantities $, Imn, J and a,
from (24) we deduce that:

v̇∗m =0, φ̇∗m =0, ϕ̇∗ =0, χ̇∗ =0, τ̇∗m =0, on D×(0, ∞),

and, as a consequence, based on (20), we obtain:

v∗m =0, φ∗m =0, ϕ∗ =0, χ∗ =0, τ∗m =0, on D× (0, ∞),

and this ends the proof of Proposition 2.

Our main result will be regarding the existence of a solution of the mixed problem P .
For a start, it is considered that the boundary relations are homogeneous, namely,

vm = φm = ϕ =χ= τm = 0, on ∂D× (0,∞). (25)

As we can easily see, both the conditions and the equations that define the above
mixed problem P are very complicated. As such, a new procedure is necessary in order
to demonstrate the existence of at least one solution of our problem in this situation. For
this aim, our problem is associated with a problem of the Cauchy type, for an evolutionary
equation on a suitable built space of Hilbert type.

Considering the known Hilbert spaces W1,2
0 and L2, a new Hilbert space H is intro-

duced by means of the relation:

H = W1,2
0 × L2 ×W1,2

0 × L2 ×W1,2
0 × L2 ×W1,2

0 × L2 ×W1,2
0 × L2,

in which the notation W1,2
0 = W1,2

0 × W1,2
0 × W1,2

0 were used. In short, we have:

W1,2
0 =

[
W1,2

0

]3
. Also, L2 =

[
L2]3.
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We remember that Wk,p(R), for 1 ≥ p ≥ ∞ is defined as the subset of functions
f ∈ Lp(R) such that f and its weak derivatives up to order k have a finite Lp norm. For
more notions regarding the Hilbert and Sobolev spaces, the basic book is recommended [23].

We can introduce a scalar product on the spaceH, as follows:

〈(vm, Um, φm, Ψm, ϕ, Φ, χ, µ, τm, νm), (v∗m, U∗m, φ∗m, Ψ∗m, ϕ∗, Φ∗, χ∗, µ∗, τ∗m, ν∗m)〉

=
1
2

∫
D
($UmU∗m + ImnΨmΨ∗n + JΦΦ∗ + aµµ∗ + Bmnνmν∗n)dV

+
1
2

∫
D

[
Aijmneije∗mn + Bijmn

(
eijε
∗
mn + e∗ijεmn

)
+ aij

(
eij ϕ

∗ + e∗ij ϕ
)

+Dijmn

(
eijτ
∗
m,n + e∗ijτm,n

)
+ Cijmnεijε

∗
mn + bij

(
εij ϕ

∗ + ε∗ij ϕ
)

(26)

+Eijmn

(
εijτ
∗
m,n + ε∗ijτm,n

)
+ Aij ϕ,i ϕ

∗
,j + Hij

(
ϕ,iχ

∗
,j + ϕ∗,iχ,j

)
+ζϕϕ∗ + Fij

(
τi,j ϕ

∗ + τ∗i,j ϕ
)
+ Kijχ,iχ

∗
,j + Gijmnτm,nτ∗i,j

]
dV.

Of course, the product scalar (26) will induce a specific norm, and it is not difficult to
prove the equivalence between this norm and the initial norm on spaceH, which is also a
Hilbert space.

Now, inspired by the equations from (10), we consider the operators:

A1
i v =

1
$

Aijmnvm,nj, A2
i φ =

1
$

[
Aijmnεmnkφk,j + Bijmnφn,mj

]
, B1

i ϕ =
1
$

aij ϕ,j,

C1
i µ=−1

$
αijε ,j, D1

i τ=
1
$

Dijmnτm,nj, A3
i u=

1
Iij

(
Bijmnvm,nj+εijk Ajkmnvm,n

)
,

A4
s φ=Wsi

[
Aijmnεjmnφj+Bijmnεjmnφn,m+Cijmnφn,mj

]
, B2

s ϕ=Wsi

(
bij ϕ,j+ajkεijk ϕ

)
C2

s µ = −Wsi

(
βijµ,j + εijkαjkµ

)
, D2

s τ = Wsi

(
Eijmnτm,nj + εijkDjkmnτm,n

)
,

Eϕ =
1
J
(

Aij ϕ,ij − ζϕ
)
, Fν = −1

J
dijνj,i, Gχ =

1
J

Hijχ,ij, Hu = −1
J

aijvj,i, (27)

Kφ=−1
J

(
aijεijkφk+bijφj,i

)
, Lµ =

1
J

κµ, Mτ = −1
J

Fijτi,j, Nχ =
1
a

Kijχ,ij,

Pϕ=
1
a

Hij ϕ,ij, Qν=−1
a

Dijνj,i, R1v=−1
a

αijvi,j, R2Ψ=−1
a

(
αijεijkΨk+βijΨj,i

)
SΦ=−1

a
κΦ, A5

s u=ΓsiDijmnvm,nj, A6
s φ=Γsi

(
Dijmnεmnkφk,j+Eijmnφn,mj

)
,

Ws ϕ = ΓsiFij ϕ,j, Xsµ = −ΓsiDijµ,j, Ysτ = ΓsiGijmnτm,nj, ZsΦ = −ΓsidjiΦ,j,

where the matrices Γsi and Wsi satisfy the equations :

ΓsiBir = δsr, Wsi Jir = δsr.

Let us introduce the matrix operator Γ, whose elements are even the operators consid-
ered in (27). In this way, the mixed problem P is equivalent with an abstract problem of
the Cauchy type associated to an evolution equation, namely

dV
dt

= ΓV(t) +F (t),

V(0) = V0. (28)

The set D(Γ) is the domain for the operator Γ and to facilitate the next theoretical, we
take it of the form:
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(
W1,2

0 ∩W2,2
)
×W1,2

0 ×
(

W1,2
0 ∩W2,2

)
×W1,2

0 ×
(

W1,2
0 ∩W2,2

)
×W1,2

0 ×
(

W1,2
0 ∩W2,2

)
×W1,2

0

×
(

W1,2
0 ∩W

2,2
)
×W1,2

0 ×
(

W1,2
0 ∩W

2,2
)
×W1,2

0 ×
(

W1,2
0 ∩W2,2

)
×W1,2

0 ×
(

W1,2
0 ∩W2,2

)
×W1,2

0 .

In addition, the matrix of unknown function V , the initial values V0, and the matrix of
loads F are introduced by means of the following relations:

V =
(

vm, Um, φm, Ψm, ϕ, Φ, χ, µ, τm, νm

)
,

V0 =
(

v0
m, U0

m, φ0
m, Ψ0

m, ϕ0, Φ0, χ0, µ0, τ0
m, ν0

m

)
,

F=(0, Fm, 0, Gm, 0, L, 0, s, 0, Qm).

The result, which is proved in the following theorem, highlights a quality of the matrix
operator Γ that is necessary for demonstrating the theorem of the existence of a solution of
the problem (28).

Theorem 1. Suppose that the next hypotheses are satisfied:

1. $ > 0, Imn > 0, J > 0, a > 0;
2. Take place the symmetry relations (7);
3. The internal energy U defined in (15) is a positively definite quadratic form;
4. Bij is a positively definite tensor.

Then, we have fulfilled the following estimate:

〈ΓV ,V〉 ≤ 0, ∀ U ∈ D(Γ). (29)

that is, operator Γ has the property of being dissipative.

Proof. An element V is taken and arbitrary chosen in the domain of the definition of the
operator Γ. Considering the scalar product from (26) and taking into account the definition
of operators from (27), we obtain:

〈ΓV ,V〉 = −
∫

∂D

(
τjiUi + σijΨi + λjΦ + Sjµ + Λijνi

)
njdA

+
∫

D

[
Aijmnεije∗mn + Bijmn

(
eijε
∗
mn + e∗ijεmn

)
+ aij

(
eij ϕ

∗ + e∗ij ϕ
)

+Dijmn

(
eijτ
∗
m,n + e∗ijτm,n

)
+ Cijmnεijε

∗
mn + bij

(
εij ϕ

∗ + ε∗ij ϕ
)

(30)

+Eijmn

(
εijτ
∗
m,n + ε∗ijτm,n

)
+ Aij ϕ,i ϕ

∗
,j + Hij

(
ϕ,iχ

∗
,j + ϕ∗,iχ,j

)
+ζϕϕ∗ + Fij

(
τi,j ϕ

∗ + τ∗i,j ϕ
)
+ Kijχ,iχ

∗
,j + Gijmnτm,nτ∗i,j

]
dV.

The integrant of the second integral of (30) is an expression in the form of a square form,
with respect to to the elements w and w∗ of the form
w = (vm, φm, ϕ, χ, τm) and w∗ = (Um, Ψm, Φ, µ, νm). In other words, the respective in-
tegral is of the following form:∫

D
W(w,∗ )dV =

∫
D

W((vm, φm, ϕ, χ, τm), (Um, Ψm, Φ, µ, νm))dV.

Now, the theorem of the divergence is applied in the first integral of identity (30) so
that if we take into account the previous observation, the following relation results:

〈ΓV ,V〉 = −
∫

D
(τnmUm,n + σnmΨm,n + λnΦ,n + Snµ,n + Λmnνm,n)dV

+
∫

D
W((vm, φm, ϕ, χ, τm), (Um, Ψm, Φ, µ, νm))dV = 0,
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and this ends the proof of Theorem 1.

In the next theorem, a new property of Γ is proven, namely that the operator Γ meets
the condition of range. This property is important for evaluating the solution of the
problem (28).

Theorem 2. If all the conditions of Theorem 1 are satisfied, then the operator Γ is a subjective one.

Proof. Any element V∗ of the Hilbert spaceH is of the form

V∗ = (v∗m, U∗m, φ∗m, Ψ∗m, ϕ∗, Φ∗, χ∗, µ∗, τ∗i , ν∗m).

If such an element V∗ is arbitrarily taken, then the statement of the theorem can be
reformulated in this form: there is at least one solution V ∈ D(Γ) of the equation ΓV = V∗.

To this aim, taking into account the operators (27), the following vector notations are
introduced:

A1 = (A1
m), A2 = (A2

m), A3 = (A3
m), A4 = (A4

s ), A5 = (A5
s ), A6 = (A6

s ),

B1 = (B1
m), B2 = (B2

s ), C1 = (C1
m), C2 = (C2

s ), D1 = (D1
m), D2 = (D2

s ), (31)

W = (Ws), X = (Xs), Y = (Ys), Z = (Zs).

By using the notations (31) and considering the operators defined in (27), the differen-
tial Equation (10) receives the following form:

U = v∗,

A1v + A2φ + B1 ϕ + C1µ + D1τ = U∗,

Ψ = ϕ∗,

A3v + A4φ + B2 ϕ + C2µ + D2τ = Ψ∗,

Φ= ϕ∗, (32)

Hv + Eϕ+Gχ+Lµ+Mτ+ Fν = Φ∗,

µ=χ∗,

RU+ Pϕ +SΦ+Nχ+Qν=µ∗,

ν=τ∗,

A5v + A6φ + Wϕ + ZΦ + Xµ + Yτ=ν∗.

We go through another stage so that from the above system, (32) obtains new equations,
whose basic constitutive functions are principal unknowns functions: (v,ϕ, φ, χ, τ). The
other variables, which are automatically secondary, will be passed to the right-hand member
with the “free term” status. Thus, the new system of equations is deduced, which has the
following form:

A1v + A2φ + B1 ϕ + D1τ = U∗ − C1χ∗,

A3v + A4φ + B2 ϕ + D2τ = Ψ∗ − C2χ∗,

Hv + Eϕ + Gχ + Mτ =Φ∗−Lχ∗−Fτ∗, (33)

Pϕ + Nχ =µ∗ −Rv∗−Sϕ∗−Qτ∗,

A5v + A6φ + Wϕ + Yτ = ν∗ − Zϕ∗ − Xχ∗.

To simplify the writing, the new variables ṽ, φ̃, ϕ̃, χ̃ and τ̃ are introduced, defined by:
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ṽ = A1v + A2φ + B1 ϕ + D1τ,

φ̃ = A3v + A4φ + B2 ϕ + D2τ,

ϕ̃ = Hv + Eϕ + Gχ + Mτ, (34)

χ̃ = Pϕ + Nχ,

τ̃ = A5v + A6φ + Wϕ + Yτ.

In this way, a new bilinear form defined on W1,2
0 is obtained, by means of the following

scalar product: such that the scalar product 〈(ṽ, φ̃, ϕ̃, χ̃, τ̃), (v, φ, ϕ, χ, τ)〉. Furthermore,
after simple calculations, the following scalar product is obtained:

〈(v, φ, ϕ, χ, τ), (v, φ, ϕ, χ, τ)〉

=
∫

D

[
Aijmneijemn + 2Bijmneijεmn + 2aijeij ϕ + 2Dijmneijτm,n

+Cijmnεijεmn + 2bijεij ϕ + 2Eijmnεijτm,n + Aij ϕ,i ϕ,j (35)

+2Hij ϕ,iχ,j + ζϕ2 + 2Fijτi,j ϕ + Kijχ,iχ,j + Gijmnτm,nτi,j

]
dV.

Taking into account the hypotheses of the theorem, from the above relation, the
coerciveness of this expression is deduced in all points of the Sobolev space W1,2

0 .
In addition, it is not difficult to show that the functions from the right side of the

system of Equation (33), i.e.,

V∗ − C1χ∗, Ψ∗ − C2χ∗, Φ∗−Lχ∗−Fτ∗, µ∗−Ru∗−Sϕ∗−Qτ∗, ν∗−Zϕ∗−Xχ∗,

are elements from the Sobolev space W1,2. Based on the last observation, it results that all
the conditions are satisfied in order to be able to use the theorem of Lax-Milgram, based on
which the elements of vector U = (v, φ, ϕ, χ, τ) form a solution of our above system (33).
As a consequence, it is deduced that the system (32) has a solution.
This concludes the proof of Theorem 2.

Our results regarding the operator Γ, from Theorems 1 and 2, are exactly the conditions
of the corollary Lumer-Phillips’s, obtained by the Hille-Yosida theorem (Pazy, [24]). Based
on this, our first main result is obtained, proven in the next theorem.

Theorem 3. Assume that all the conditions of Theorem 1 are satisfied. Then, the matrix operator Γ
generates a semi-group of contraction type operators, all defined on Hilbert spaceH.

Furthermore, by using the same Lumer-Phillips corollary, the second main result of
our paper is deduced, which is the one that ensures the uniqueness of the solution.

Theorem 4. Assume that all the conditions of Theorem 1 are satisfied. Furthermore, we suppose
that the loads Fm, Gm, L, s, Qm ∈ C1([0, ∞), L2) ∩ C0([0, ∞), W1,2

0 ) and the initial data V0 are
included in the domain of matrix operator Γ.

In these conditions, our Cauchy problem (28) has only one solution, namely V(t) ∈ C1([0, ∞),H).

In the third important result of our study, it is shown that the solution of the Cauchy
problem (28) depends continuously on the initial data and charges. Based on the above con-
siderations, it is deduced that the solution of our mixed problem P depends continuously
on the initial data and charges. As with the previous two results, we use Lumer-Phillips’s
corollary again.
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Theorem 5. If all the conditions of Theorem 1 are satisfied, then the matrix solution V =
(v, φ, ϕ, χ, τ) of the problem of Cauchy type (28) continuously depends on charges Fm, Gm, L, s, Qm
and the initial data V0, i.e.,

|V(t)| ≤
∫ t

0
‖(Fm, Gm, L, s, Qm)‖ds + |V0|.

4. Conclusions

For a better description of the behaviour of many materials, some suggestions that
have a great impact on the development of these materials have been made, e.g., the inner
structure of the media and the fact that the microparticles have micro temperatures.

In classical theories, the fact that the reaction of a body to some external actions is
influenced by the intimate structure of that body and microtemperatures is ignored [25].
Consequently, many more unknown functions have appeared, as the system of differential
equations includes many more relations, which has increased the number of the initial
values and of the boundary relations. Additionally, their complexity is much higher. That
is why we turned to results from the theory of contraction semigroups and due to the
elegance of this theory, the above mentioned complications failed to affect the main results
regarding the mixed problem from the theory of Cosserat thermoelastic media with inner
structure and microtemperatures. Thus, we could demonstrate both the existence and
uniqueness results and also that the solutions continuously depend on the charges and the
initial values.

It is worth noting that, from what we have studied, neither on the internet nor in
the databases, that we did not find any qualitative issues addressed regarding the mixed
problem in the context of the theory of the thermoelasticity of Cosserat environments, in
which the contribution of inner structure and microtemperatures are taken into account.
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