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Abstract: Since there are often few or no samples and asymmetry information in the problems,
uncertainty theory is introduced to study uncertain multi-objective programming (UMP), which
cannot be solved by probability theory. Generally speaking, there are two types of methods for solving
the UMP problem: in deterministic method, using the numerical characteristics of an uncertain
variable, the UMP problem is transformed into a deterministic multiobjective programming, and
then solved by the weighting method and ideal point method; in the uncertain method, the UMP
problem is transformed into an uncertain single-objective programming, and then is solved by
the evaluation criteria of the uncertain variables. The theoretical analysis and the data results for
numerical examples solved by the AC algorithm designed in the paper show that the two types of
methods are obviously different. Further, using this comparison, the essential difference between the
two methods is whether the uncertainty relation between objective functions sholud be considered.
Therefore, when the uncertainty relation is closely related, the uncertain method is more appropriate;
otherwise, the deterministic method should be chosen.

Keywords: uncertainty theory; uncertain multiobjective programming; asymmetry; deterministic
method; AC algorithm

1. Introduction

To study decision-making problems with multiple and conflicting objectives in the real
world, multiobjective programming has been widely studied by researchers in a variety of
fields, especially in the field of operational research, which can be referred to in the literature
[1–5]. It can be seen that the above literature on multiobjective programming mainly
focuses on the deterministic environment. When uncertain factors are involved, many
scholars regard them as random phenomena and put forward stochastic multi-objective
programming (SMP). SMP is generally closer to practical problems and has been widely
developed in many areas of application, which can be referred to in References [6–10].

Most of the above literature remains at the application level, and the adopted theo-
retical solution methods are relatively simple. The main method used to deal with the
random factors in SMP is taking the expected value of the objective functions and then
transforming the initial SMP into a determined, multi-objective programming problem;
namely, the expected value model of SMP. However, in a practical decision-making prob-
lem, in addition to considering the lowest average cost, the decision scheme with the lowest
fluctuation is necessary. Therefore, the expected value model of SMP is not very close to
the actual problem. More problematically, a fundamental premise of employing probability
theory is that the estimated probability distribution is close enough to the real frequency.
Due to the non-experimental and complex nature of the practical problem, the sample size
in the multiobjective programming problem is often too small to estimate the probability
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distribution, so the uncertainties cannot be dealt with using probability theory, especially
when the information is vague. This can be seen in Reference [11], for example. Therefore,
we cannot deal with multiobjective programming problems with this type of indeterminacy
based on probability theory, as the final decision would not be in line with reality. In order
to solve this type of indeterminacy, called uncertainty, with an expert degree of belief, this
paper introduces the uncertainty theory founded by professor Liu in 2007 [12] and refined
in 2010 based on normality, duality, subadditivity, and product axioms [13]. To date, a high
number of studies have proved that uncertainty theory is a branch of mathematics used to
model human uncertainty and has been widely used, not only in theoretical fields such
as Liu [14], Wang et al. [15], Liu and Yao [16], Wen et al. [17], etc., but also in application
fields such as Zheng et al. [18], Zheng et al. [19], Zhang et al. [20], and Wang et al. [21],
etc. However, except for the concepts of efficient solution and the expected-value model
based on uncertain variables mentioned in the literatures [14,22], the research on uncertain
multi-objective programming (UMP) based on uncertain theory is not in-depth enough.

In view of the disadvantages of the above research, based on uncertainty theory,
this paper carries out research into the solution methods of the UMP problem, which are
defined as deterministic method and uncertain method, respectively. To date, there are few
relevant results on the comparison of these two types of solution method, and only two
pieces of relevant literature have been found in the stochastic environment, by Caballero
[23] and Gutjahr [24]. In the literature [23], based on the expected value criterion of
random variables, Caballero only uses the linear weighting method to compare these two
types of solution methods for stochastic multiobjective programming. In this case, it was
concluded that the efficient solutions were exactly the same, but in other criteria, such as
minimum variance criterion, maximum probability criteria, etc., they were different. In
the literature [24], Gutjahr only mentions the ideas of these two solution methods, and
does not carry out detailed and specific research contents. However, in the environment
of uncertainty with an expert’s degree of belief, there are few research results on the two
types of solution to the UMP problem, based on uncertainty theory. Further, unlike random
variables, the expected values of uncertain variables do not have linear properties; thus,
except for cases where uncertain variables are independent of each other or comonotonic,
even with the expected value criterion and the linear weighting method used, the efficient
solutions obtained by the two types of solution method are different. This differs from the
results obtained in the literature [23]. In addition, based on the ideal point method, the
efficient solutions obtained in these two types of solution method are completely different
whether used in a stochastic environment or uncertainty environment with expert’s degree
of belief. The mainly innovative research contents proposed in this paper are as follows:

(a) Research on the deterministic method. Firstly, the UMP model with uncertain
vectors in the objective functions is presented. Based on the expected value of the uncertain
vector, the expected value model of the UMP (E-UMP) problem is proposed. Secondly,
since the E-UMP problem only considers the minimum average cost of the uncertain
objective functions, in the practical problem, it often needs to take consider the minimum
fluctuation. Therefore, in order to consider the fluctuation in the practical problem, the
expected-value variance model of the UMP (EV-UMP) problem is proposed, taking both
expectation and variance for the uncertain objective functions. Whether the E-UMP model
or the EV-UMP model is used, their common point is to transform the initial UMP problem
into a deterministic multi-objective programming problem. Therefore, this type of solution
method is called a deterministic method. Finally, the E-UMP model and EV-UMP model
are transformed into the determined single-objective programming (DSP) problems by the
weighting method and ideal point method proposed in this paper, and it is proved that
the optimal solutions to the DSP problems are the expected-value efficient solutions to the
initial UMP problem.

(b) Research into the uncertain method. It is easy to see that the deterministic method
first transforms the uncertain multi-objective functions in the UMP problem into the deter-
ministic multi-objective functions, so the uncertainty relation between them is separated
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and also disappeared. When the uncertainties between uncertain objective functions are
closely related, the deterministic method is infeasible. To overcome this disadvantage, we
first transform the initial UMP problem into an uncertain single-objective programming
(USP) problem by introducing a measurable function, G, which remains the uncertainty
relation between uncertain objective functions. This type of solution method is called the
uncertain method. Then, in order to provide the optimal solution concept to the USP prob-
lem, we define the order relationship between the uncertain variables based on different
evaluation criterions. Since the average value is frequently used in real-world problems,
the CE evaluation criterion is employed throughout this paper. Based on the CE evaluation
criteria and the measurable function G constructed by the linear weighted construction
method and ideal point construction method, CE-optimal solutions to the USP problem can
be obtained. Finally, we prove that the CE-optimal solutions to the USP problem are the
CE-efficient solutions to the initial UMP problem under the CE evaluation criterion.

(c) Comparison of two types of solution method. On the one hand, from theoretical
analysis, we can see that the deterministic method first uses their expectation of the objective
functions in the UMP problem, and then transforms it into a single-objective programming,
while the uncertain method does the opposite. Generally speaking, for the uncertain
variable, we have

G
(
E[ f1(x, ξ1)], · · · , E[ fs(x, ξs)]

)
6= E

[
G
(

f1(x, ξ1), · · · , fs(x, ξs)
)]

,

where G(·) is a measurable function. Therefore, the theoretical results for these two types of
method are different. On the other hand, according to the solution results of the numerical
examples illustrated in this paper, the efficient solutions obtained by the two types of
solution methods are also different.

The paper is organized as follows. Some basic results of uncertainty theory are
reviewed in the next section. In Section 3, based on uncertainty theory, the UMP model is
proposed. In Section 4, the deterministic method is studied, and a numerical example is
provided to illustrate the solution method. In Section 5, the uncertain method is proposed
when the uncertainties between uncertain objective functions are closely related, and a
numerical example is also given to illustrate the uncertain method. Furthermore, the two
types of solution methods are compared and analyzed according to the data results of the
numerical examples. Finally, a brief summary is given in Section 4.

2. Theoretical Background

Let Γ be a nonempty set, and L a σ-algebra over Γ. Each element Λ in L is called an
event. A set function M from L to [0, 1] is called an uncertain measure if it satisfies the
following axioms [12]:

Axiom 1. (Normality Axiom) M{Γ} = 1 for the universal set Γ.
Axiom 2. (Duality Axiom) M{Λ}+M{Λc} = 1 for any event Λ.
Axiom 3. (Subadditivity Axiom) For every countable sequence of events Λ1, Λ2, · · · , we have

M

{
∞⋃

i=1

Λi

}
≤

∞

∑
i=1

M{Λi}. (1)

The triplet (Γ,L,M) is called an uncertainty space. Furthermore, Liu [25] defined a
product of uncertain measure by the fourth axiom:
Axiom 4. (Product Axiom) Let (Γk,Lk,Mk) be an uncertainty space for k = 1, 2, · · · . The
product of uncertain measure M is an uncertain measure satisfying

M

{
∞

∏
k=1

Λk

}
=

∞∧
k=1

Mk{Λk} (2)

where Λk are arbitrarily chosen events from Lk for k = 1, 2, · · · , respectively.
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Roughly speaking, an uncertain variable is a measurable function on an uncertainty
space. A formal definition is given as follows.

Definition 1. [12] An uncertain variable is a measurable function ξ from an uncertainty space
(Γ,L,M) to the set of real numbers, i.e., for any Borel set B of real numbers, the set

{ξ ∈ B} = {γ ∈ Γ | ξ(γ) ∈ B} (3)

is an event.

Definition 2. [12] The uncertainty distribution Φ of an uncertain variable ξ is defined by Φ(x) =
M{ξ ≤ x} for any real number x.

Definition 3. [25] The uncertain variables ξ1, ξ2, · · · , ξn are said to be independent if

M

{
n⋂

i=1

(
ξi ∈ Bi

)}
=

n∧
i=1

M{ξi ∈ Bi} (4)

for any Borel sets B1, B2, . . . , Bn of real numbers.

Theorem 1. [13] Let ξ1, ξ2, · · · , ξn be uncertain variables, and f a real-valued measurable function.
Then, f (ξ1, ξ2, · · · , ξn) is an uncertain variable.

Theorem 2. [13] Let ξ1, ξ2, · · · , ξn be independent uncertain variables with continuous uncer-
tainty distributions Φ1, Φ2, · · · , Φn, respectively. If f is a strictly increasing function, then the
uncertain variable

ξ = f (ξ1, ξ2, · · · , ξn) (5)

has an uncertainty distribution

Ψ(x) = sup
f (x1,x2,··· ,xn)=x

min
1≤i≤n

Φi(xi). (6)

Definition 4. [12] Let ξ be an uncertain variable. Then, the expected value of ξ is defined by

E[ξ] =
∫ ∞

0
M{ξ ≥ x}dx−

∫ 0

−∞
M{ξ ≤ x}dx (7)

provided that at least one of the two integrals is finite.

Theorem 3. [13] Let ξ1, ξ2, · · ·, ξn be independent uncertain variables with regular uncertainty
distributions Φ1, Φ2, · · ·, Φn, respectively. If the function f (x1, x2, · · ·, xn) is strictly increasing
with respect to x1, x2, · · · , xm and strictly decreasing with respect to xm+1, xm+2, · · · , xn, then
ξ = f (ξ1, ξ2, · · · , ξn) is an uncertain variable with inverse uncertainty distribution

Ψ−1(α) = f
(

Φ−1
1 (α), · · · , Φ−1

m (α), Φ−1
m+1(1− α), · · · , Φ−1

n (1− α)
)

. (8)

Definition 5. [26] When the distribution function of the uncertain variable ξ has the following
linear uncertainty distribution,

Φ(x) =


0, x ≤ a

x−a
b−a , a ≤ x ≤ b
1, x ≥ b,

(9)
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then ξ is called a linear uncertain variable, denoted as ξ ∼ L(a, b), where a and b are all real
numbers and a < b.

Definition 6. [26] When the distribution function of the uncertain variable ξ has the following
zigzag uncertainty distribution,

Φ(x) =


0, x ≤ a

(x−a)
2(b−a) , a ≤ x ≤ b
x+c−2b
2(c−b) , b ≤ x ≤ c

1, x ≥ c,

(10)

then ξ is a zigzag uncertain variable, denoted as ξ ∼ Z(a, b, c), where a, b and c are all real numbers
and a < b < c.

Definition 7. [26] When the distribution function of the uncertain variable ξ has the following
normal uncertainty distribution,

Ψ(x) =
(

1 + exp
(

π(e− x)√
3σ

))−1
, x ∈ R (11)

then ξ is called a normal uncertain variable, denoted as ξ ∼ N(e, σ).

It is clear that a regular uncertainty distribution Φ(x) has an inverse function on the
range of x, with 0 < Φ(x) < 1, and the inverse function Φ−1(x) exists on the open interval
(0, 1).

Definition 8. [13] Let ξ be an uncertain variable with regular uncertainty distribution Φ. Then,
the inverse function Φ−1 is called the inverse uncertainty distribution of ξ.

Theorem 4. [13] Let ξ be an uncertain variable with regular uncertainty distribution Φ. If the
expected value exists, then

E[ξ] =
∫ 1

0
Φ−1(α)dα. (12)

Theorem 5. [27] Let ξ1, ξ2, · · ·, ξn be independent uncertain variables with regular uncertainty
distributions Φ1, Φ2, · · ·, Φn, respectively. If the function f (x1, x2, · · ·, xn) is strictly increasing
with respect to x1, x2, · · · , xm and strictly decreasing with respect to xm+1, xm+2, · · · , xn, then the
uncertain variable ξ = f (ξ1, ξ2, · · · , ξn) has an expected value

E[ξ] =
∫ 1

0
f
(

Φ−1
1 (α), · · · , Φ−1

m (α), Φ−1
m+1(1− α), · · · , Φ−1

n (1− α)
)

dα. (13)

Theorem 6. [13] Let ξ and η be independent uncertain variables with finite expected values. Then,
for any real numbers a and b, we have

E[aξ + bη] = aE[ξ] + bE[η]. (14)

Theorem 7. [22] Let f and g be comonotonic functions. Then, for any uncertain variable ξ, we have

E[ f (ξ) + g(ξ)] = E[ f (ξ)] + E[g(ξ)]. (15)
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Theorem 8. [14] Let ξ be an uncertain variable with regular uncertainty distribution Φ and finite
expected value e. Then,

V[ξ] =
∫ 1

0
(Φ−1(α)− e)2dα. (16)

Theorem 9. [26] If ξ is an uncertain variable with finite expected value, a and b are real num-
bers; then,

V[aξ + b] = a2V[ξ]. (17)

3. Uncertain Multiobjective Programming Model

Based on uncertainty theory, this section focuses on multiobjective programming
with uncertain vectors, which is called the uncertain multiobjective programming (UMP)
problem. Since the uncertainties in the objective functions are treated in the same way
as those under constraint conditions, without loss of generality, we assume that only
the objective functions in the UMP model involve the uncertain vector. Let fi(x, ξ i),
i = 1, 2, · · · , s, be the objective function with uncertain variables, and S be the deterministic
feasible set; then, the UMP model can be established as follows:

(UMP)

{
min
x∈R

(
f1(x, ξ1), f2(x, ξ2), · · · , fs(x, ξs)

)
s.t. x ∈ S

(18)

where x = (x1, x2, · · · , xn) ∈ Rn is a decision-making variable; ξ i, i = 1, 2, · · · , s are
uncertain variables.

In the UMP problem (18), assume that fi(x, ξ i), i = 1, 2, · · · , s, is a Borel measure
function with respect to x. According to the definition of uncertain vector, we know that
fi(x, ξ i) is also an uncertain variable.

For convenience, denote

F(x, ξ) =
(

f1(x, ξ1), f2(x, ξ2), · · · , fs(x, ξs)
)

, (19)

Then, the UMP problem (18) can be rewritten as the following vector minimum problem

(UMP) min
x∈S

F(x, ξ) =
(

f1(x, ξ1), f2(x, ξ2), · · · , fs(x, ξs)
)

(20)

The key to solving the UMP problem (20) is dealing with the related uncertain variables.
Next, we will give two types of solution methods, i.e., the deterministic method and
uncertain method.

4. Deterministic Method for Solving Uncertain Multiobjective Programming

To deal with the uncertain variables in UMP problem (20), the most commonly used
method is to transform it into a deterministic multi-objective programming problem
through numerical characteristics of an uncertain variable, and then it can be solved. This
method is called deterministic method. Therefore, according to the definition of uncertain
variables, the following expected value model of the UMP problem (E-UMP model) can be
obtained by looking at the expectation of all objective functions in the UMP problem (20):

(E-UMP) min
x∈S

E[F(x, ξ)] =
(

E[ f1(x, ξ1)], E[ f2(x, ξ2)], · · · , E[ fs(x, ξs)]
)

(21)

where E[·] represents the expected value operator.
Under certain conditions, the following theorem shows that the E-UMP problem (21)

is a convex programming.

Theorem 10. Let ξi, i = 1, 2, · · · , s, degenerate into the uncertain variable, and F(x, ξ) be
continuous vector function. If the feasible set S is a covext set, F(x, ξ) is a convex vector function
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on x, F(x1, ξi) and F(x2, ξi) are comonotonic on ξi for any given x1, x2 ∈ S, then the E-UMP
problem (21) is a convex programming.

Proof. Since the feasible set S is a convex set, according to the definition of convex pro-
gramming, we need to prove that the objective function E[F(x, ξ)] is a convex function.
Since F(x, ξ) is a convex vector function, we can obtain

F(αx1 + (1− α)x2, ξi) ≤ αF(x1, ξi) + (1− α)F(x2, ξi), (22)

for any α ∈ (0, 1) and x1, x2 ∈ S.
Since the F(x1, ξi) and F(x2, ξi) are comonotonic on ξi, according to Theorem 7, the

expected-value operator of an uncertain variable has the linear property; thus, the following
inequality can be obtained

E[F(αx1 + (1− α)x2, ξi)] ≤ αE[F(x1, ξi)] + (1− α)E[F(x2, ξi)], (23)

which shows that E[F(x, ξ)] is a convex function. The theorem is proved.

The E-UMP problem (21) only considers the minimum average cost of the uncertain
objective functions; however, in practical problems, the minimum fluctuation also should be
taken into account. Therefore, the expected value of and variance in the objective functions
in the UMP problem (20) are taken simultaneously, and the following expected-value
variance model of the UMP (EV-UMP) problem (24) is proposed in this paper

(EV-UMP)



min
x

(
E[F(x, ξ)], V[F(x, ξ)]

)
=
(

E[ f1(x, ξ1)], E[ f2(x, ξ2)], · · · , E[ fs(x, ξs)],

V[ f1(x, ξ1)], V[ f2(x, ξ2)], · · · , V[ fs(x, ξs)]
)

s.t. x ∈ S

(24)

where E[·] and V[·] represent the expected value operator and variance operator,
respectively.

According to the numerical characteristics of uncertain vectors, it is easy to see that
the E-UMP problem (21) and EV-UMP problem (24) are deterministic multiobjective pro-
gramming models derived from the initial UMP problem (20). To illustrate the relationship
between the efficient solutions of these two deterministic models and the efficient solutions
of the initial UMP problem (20), some definitions are defined, as follows.

Definition 9. (E-Efficiency) We say that the feasible solution x∗ ∈ S is an expected-value efficient
solution to the UMP problem (20) if it is a Pareto efficient solution to the E-UMP problem (21), that
is, there is no x ∈ S, such that

E[F(x, ξ)] ≤ E[F(x∗, ξ)], (25)

namely,
E[ fi(x, ξ i)] ≤ E[ fi(x∗, ξ i)], i = 1, 2, · · · , s, (26)

and
E[ fi0(x, ξ i0)] < E[ fi0(x∗, ξ i0)] (27)

for at least one i0, 1 ≤ i0 ≤ s.

Denote the E-efficiency set to UMP problem (21) as SE.
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Definition 10. (Weak E-Efficiency) We say that the feasible solution x∗ ∈ S is an expected-value
weak efficient solution to the UMP problem (20) if it is a Pareto weak efficient solution to the E-UMP
problem (21), that is, there is no x ∈ S, such that

E[F(x, ξ)] < E[F(x∗, ξ)]. (28)

Denote the weak E-efficiency set to UMP problem (2) as SWE.

Definition 11. (EV-Efficiency) We say that the feasible solution x∗ ∈ S is an expected-value
variance efficient solution to the UMP problem (20) if it is a Pareto efficient solution to the EV-UMP
problem (24), that is, there is no x ∈ S, such that

E[F(x, ξ)] ≤ E[F(x∗, ξ)], V[F(x, ξ)] ≤ V[F(x∗, ξ)], (29)

namely,

E[ fi(x, ξ i)] ≤ E[ fi(x∗, ξ i)], V[ fi(x, ξ i)] ≤ V[ fi(x∗, ξ i)], i = 1, 2, · · · , s, (30)

and
E[ fi0(x, ξ i0)] < E[ fi0(x∗, ξ i0)], V[ fi0(x, ξ i0)] < V[ fi0(x∗, ξ i0)] (31)

for at least one i0, 1 ≤ i0 ≤ s.

Denote the EV-efficiency set to UMP problem (20) as SEV .

Definition 12. (Weak EV-Efficiency) We say the feasible solution x∗ ∈ S is an expected-value
variance efficient solution to the UMP problem (20) if it is a Pareto efficient solution to the EV-UMP
problem (24), that is, there is no x ∈ S, such that

E[F(x, ξ)] < E[F(x∗, ξ)], V[F(x, ξ)] < V[F(x∗, ξ)]. (32)

Denote the weak EV-efficiency set to the UMP problem (20) as SWEV .
It is easy to obtain the following relations between the efficiency sets defined above.

Theorem 11. If V[F(x, ξ)] > 0, then
(1) SE ⊂ SWE;
(2) SEV ⊂ SWEV .

Proof. According to the corresponding definitions, the two conclusions can easily be
obtained. This theorem is proved.

The first step of the deterministic method is to deal with the uncertainty factors in the
UMP problem through the numerical characteristics of the uncertain variables; then, the
deterministic multi-objective programming problem is obtained, i.e., E-UMP or EV-UMP
models. The second step is to transform the E-UMP or EV-UMP model into a deterministic
single-objective programming. The weighting method and ideal-point method, which are
common conversion methods, are given as follows.
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4.1. Weighting Method

By assigning corresponding weights to the objective functions in the E-UMP prob-
lem (21) or EV-UMP problem (24), the following deterministic single-objective program-
ming (DSP) models

(
DSP(wm)

E

)


min
x

f (wm)
E (x) =

s
∑

i=1
ωiE[ fi(x, ξ i)]

s.t.
s
∑

i=1
ωi = 1, ωi > 0, i = 1, · · · , s

x ∈ S

(33)

and

(
DSP(wm)

EV

)


min
x

f (wm)
EV (x) =

s
∑

i=1
ω
(e)
i E[ fi(x, ξ i)] +

s
∑

i=1
ω
(v)
i V[ fi(x, ξ i)]

s.t.
s
∑

i=1
ω
(e)
i + ω

(v)
i = 1, ω

(e)
i > 0, ω

(v)
i > 0, i = 1, · · · , s

x ∈ S

(34)

are obtained, respectively, where ωi, ω
(e)
i and ω

(v)
i represent their corresponding weights.

The sets of optimal solutions for model (33) and model (34) are denoted as S(wm)
se and

S(wm)
sev , respectively.

Next, we prove that the optimal solution of the DSP(wm)
E problem (33) is the expected-

value efficient solution to the initial UMP model (20), and that of the DSP(wm)
EV problem (34)

is the expected-value variance efficient solution to the initial UMP model (20).

Theorem 12. If V[F(x, ξ)] > 0,, then:
(1) S(wm)

se ⊂ SE;
(2) S(wm)

sev ⊂ SEV .

Proof. It is easy to see that the proof of conclusion (18) is similar to that of conclusion
(20). Without any losses of generality, only conclusion (20) needs to be proved. We prove
conclusion (20) by contradiction. Suppose that x∗ ∈ S(wm)

sev , but x∗ /∈ SEV . According to
Definition 11, there must be at least one x ∈ S, such that

E[F(x, ξ)] ≤ E[F(x∗, ξ)], V[F(x, ξ)] ≤ V[F(x∗, ξ)], (35)

namely,

E[ fi(x, ξ i)] ≤ E[ fi(x∗, ξ i)], V[ fi(x, ξ i)] ≤ V[ fi(x∗, ξ i)], i = 1, 2, · · · , s, (36)

and
E[ fi0(x, ξ i0)] < E[ fi0(x∗, ξ i0)], V[ fi0(x, ξ i0)] < V[ fi0(x∗, ξ i0)] (37)

for at least one i0, 1 ≤ i0 ≤ s.
Since inequality (37) holds for at least one i0, and ω

(e)
i > 0, ω

(v)
i > 0, i = 1, 2, · · · , s,

the following conclusion can be obtained by multiplying inequality (36) according to their
corresponding weights and then adding

s

∑
i=1

ω
(e)
i E[ fi(x, ξ i)] +

s

∑
i=1

ω
(v)
i V[ fi(x, ξ i)]

<
s

∑
i=1

ω
(e)
i E[ fi(x∗, ξ i)] +

s

∑
i=1

ω
(v)
i V[ fi(x∗, ξ i)]

(38)
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namely,
f (wm)
EV (x) < f (wm)

EV (x∗) (39)

which is contradictory to x∗ ∈ S(wm)
sev , thus, x∗ ∈ SEV ; that is, Ssev ⊂ SEV . The theorem is

complete.

4.2. Ideal Point Method

In practical decision-making problems, it is assumed that the objective functions in
E-UMP problem (21) or EV-UMP problem (24) have ideal values; then, the best decision-
making scheme is to make all the objective functions meet the corresponding ideal values.
However, since the objective functions in the E-UMP problem (21) or EV-UMP problem (24)
are usually conflicting and contradictory, a best decision-making scheme often does not
exist. Hence, the next best thing is to find the sub-optimal decision-making scheme that
makes the objective functions match their ideal objective values as closely as possible. This
is the so-called ideal point method.

Assume that the corresponding ideal values of E[ fi(x, ξ i)] and V[ fi(x, ξ i)] are f (e0)
i

and f (v0)
i , i = 1, 2, · · · , s, respectively. Strictly speaking, the ideal objective value f (e0)

i

and f (v0)
i can be obtained by solving the single-objective programming min

x
E[ fi(x, ξ i)] or

min
x

V[ fi(x, ξ i)]. Therefore, the ideal objective values f (e0)
i and f (v0)

i should generally satisfy

the following inequalities as far as possible.

f (e0)
i ≤ min

x
E[ fi(x, ξ i)], f (v0)

i ≤ min
x

V[ fi(x, ξ i)], i = 1, 2, · · · , s. (40)

According to the idea of the ideal-point method proposed above, the E-UMP prob-
lem (21) and EV-UMP problem (24) can be transformed into the following deterministic
single-objective programming:

(
DSP(ipm)

E

) min
x

f (ipm)
E (x) =

( s
∑

i=1

(
E[ fi(x, ξ)]− f (e0)

i
)2
) 1

2

s.t. x ∈ S.
(41)

and

(
DSP(ipm)

EV

)
min

x
f (ipm)

EV (x)

=
( s

∑
i=1

(
E[ fi(x, ξ)]− f (e0)

i
)2

+
s
∑

i=1

(
V[ fi(x, ξ)]− f (v0)

i
)2
) 1

2

s.t. x ∈ S,

(42)

respectively.
Denote the sets of optimal solutions of the model (41) and model (42) as S(ipm)

se and

S(ipm)
sev , respectively.

Further, by adding the weight coefficient to the problem (42), the extended model can
be obtained as follows:

min
x

f (ipm)
EV (x)

=
( s

∑
i=1

ω
(e)
i
(
E[ fi(x, ξ)]− f (e0)

i
)p

+
s
∑

i=1
ω
(v)
i
(
V[ fi(x, ξ)]− f (v0)

i
)p
) 1

p

s.t. x ∈ S.

(43)

Next, we prove that the optimal solution of DSP(ipm)
E problem (41) is the expected-

value efficient solution to the initial UMP model (20), and that of DSP(ipm)
EV problem (42) is

the expected-value variance efficient solution to the initial UMP model (20).
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Theorem 13. If V[F(x, ξ)] > 0, then:
(1) S(ipm)

se ⊂ SE;
(2) S(ipm)

sev ⊂ SEV .

Proof. It is easy to see that the proof of conclusion (18) is similar to that of conclusion (20).
Without any losses of generality, only the conclusion (20) needs to be proved. We prove
conclusion (20) by contradiction. Suppose that x∗ ∈ S(ipm)

sev , but x∗ /∈ SEV . According to
Definition 11, there must be least one x ∈ S, such that

E[F(x, ξ)] ≤ E[F(x∗, ξ)], V[F(x, ξ)] ≤ V[F(x∗, ξ)], (44)

namely,

E[ fi(x, ξ i)] ≤ E[ fi(x∗, ξ i)], V[ fi(x, ξ i)] ≤ V[ fi(x∗, ξ i)], i = 1, 2, · · · , s, (45)

and
E[ fi0(x, ξ i0)] < E[ fi0(x∗, ξ i0)], V[ fi0(x, ξ i0)] < V[ fi0(x∗, ξ i0)] (46)

for at least one i0, 1 ≤ i0 ≤ s.
Since

f (e0)
i ≤ min

x
E[ fi(x, ξ i)], f (v0)

i ≤ min
x

V[ fi(x, ξ i)], i = 1, 2, · · · , s (47)

we have

E[ fi(x, ξ i)]− f (e0)
i ≤ E[ fi(x∗, ξ i)]− f (e0)

i ,
V[ fi(x, ξ i)]− f (v0)

i ≤ V[ fi(x∗, ξ i)]− f (v0)
i

(48)

and
E[ fi0(x, ξ i0)]− f (e0)

i0
< E[ fi0(x∗, ξ i0)]− f (e0)

i0
,

V[ fi0(x, ξ i0)]− f (v0)
i0

< V[ fi0(x∗, ξ i)]− f (v0)
i0

(49)

for at least one i0, 1 ≤ i0 ≤ s.
Since inequality (48) holds for at least one i0, the following conclusion can be obtained

by adding the squares of both sides of the inequality (46) and then taking the mean square,

(
s
∑

i=1

(
E[ fi(x, ξ i)]− f (e0)

i )2 +
s
∑

i=1

(
V[ fi(x, ξ i)]− f (v0)

i )2
)1

2

<

(
s
∑

i=1

(
E[ fi(x∗, ξ i)]− f (e0)

i )2 +
s
∑

i=1

(
V[ fi(x∗, ξ i)]− f (v0)

i )2
)1

2
(50)

which is contradictory to x∗ ∈ S(ipm)
sev , thus, x∗ ∈ SEV , that is, Ssev ⊂ SEV . The theorem is

completed.

4.3. Ant Colony Algorithm

Due to the relatively large scale and calculation complexity of the expected value of
the uncertain variable, the E-UMP problem (21) and the EV-UMP problem (24) are difficult
to solve. Therefore, the ant colony (AC) algorithm was used to solve the model in this paper.
AC algorithm is an intelligent optimization algorithm to simulate the foraging behavior
of ants. It was first proposed by Italian scholar Dorigo in 1991 [28]. The AC algorithm
solves some difficult optimization problems based on the ability of ants to search for food
sources. The basic idea of the algorithm is to imitate the mechanism of ants’ dependence on
pheromones and guide each ant’s actions through positive feedback regarding the intensity
of pheromones among ants. The AC algorithm flow is as follows:
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Step 1: Initialization
Set the maximum number of cycles to G, initialize the path pheromone and set it as
constant c.

Step 2: Construct solution space
Place m ants on n elements, travel around according to probability and record the
best route.

Step 3: Update pheromone
Obtain new information on each path; update tabu table and information table.

Step 4: Iterative optimization
Determine whether the termination condition is met, that is, the loop is ended after
reaching the maximum number of cycles and the optimization results are output;
otherwise, the tabu table is emptied and the cycle continues.

To demonstrate the algorithm’s content, the following numerical example tests the
effectiveness of the algorithm. The test function expression is set as

f (x, y) =
sinx

x
∗ siny

y
, (51)

in which the maximum value point is located at (0,0), and the maximum value is 1.
The initial parameter information is set as follows:
The maximum number of cycles is 50, the importance factor of pheromone α is set as

1, the importance factor of heuristic function β is set as 5, pheromone intensity Q is 50, and
the volatile factor of pheromone ρ is 0.1.

Figure 1 shows the solution results. As can be seen from Figure 1, after 30 iterations,
this is basically close to the maximum extreme value 1, and the solution effectiveness is
relatively good.

Figure 1. The result of the test function.

4.4. A Numerical Example

The following numerical example is given to illustrate the deterministic method
proposed in this section.
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Example 1. Consider the following UMP problem

min
x1,x2

(
f1(x, ξ, η), f2(x, ϑ, ζ)

)
=
(

x2ξ sin(x2
1 − x2

2)−
√

x2 + ηx1 sin(x2 − tan x1),

ϑ cos(πx1 − x2
2 + 1) + ζ exp

{
cos(2πx1)−

√
x3

1 + 2x2

})
s.t. x2

1 + x2
2 ≤ 60, x1 ≥ 0, x2 ≥ 0,

(52)

where ξ ∼ N(1,
√

3) , η ∼ L(6, 9), ϑ ∼ Z(6, 9, 10), are linear uncertain variable, normal
uncertain variable, and zigzag uncertain variable, respectively, and independent of each other, with
uncertainty distributions as follows:

Φξ(x) =
(

1 + exp
(

π(1− x)
3

))−1
, x ∈ R, (53)

Ψη(x)(x) =


0, if x ≤ 6

x−6
3 , if 6 ≤ x ≤ 9
1, if x ≥ 9,

(54)

and

Υϑ(x) =


0, if x ≤ 6

x−6
6 , if 6 ≤ x ≤ 9

x−8
2 , if 9 ≤ x ≤ 10
1, if x ≥ 10,

(55)

respectively, and ζ = ϑ exp(η).
Discuss the expected-value efficient solution and expected-value variance efficient solution

according to the deterministic methods proposed in this section.

First, we used the weighting method to solve Example 1. Since the calculation of the
DSP(wm)

E model (33) and that of the DSP(wm)
EV model (34) are almost the same, without any

losses of generality, we only considered the calculation of the DSP(wm)
E model (33).

According to the DSP(wm)
E model (33), we can obtain

min
x

f (wm)
E (x) = ω1E[ f1(x, ξ, η)] + ω2E[ f2(x, ϑ, ζ)]

= ω1E
[
x2ξ sin(x2

1 − x2
2)−

√
x2 + ηx1 sin(x2 − tan x1)

]
+ω2E

[
ϑ cos(πx1 − x2

2 + 1) + ζ exp
{

cos(2πx1)−
√

x3
1 + 2x2

}]
s.t. x2

1 + x2
2 ≤ 60, x1 ≥ 0, x2 ≥ 0

ω1 + ω2 = 1, ω1, ω2 > 0.

(56)

According to the relevant basic knowledge of uncertainty theory, we calculated the
expected value for problems (56).

Since ξ ∼ N(1,
√

3), η ∼ L(6, 9), ϑ ∼ Z(6, 9, 10), are linear uncertain variables, normal
uncertain variables, and zigzag uncertain variables, respectively, according to Definition 7,
we can obtain the following inverse uncertainty distributions:

Φ−1
ξ (α) = 1 +

3
π

ln
α

1− α
, 0 < α < 1, (57)

Ψ−1
η (1− α) = 9− 3α, 0 < α < 1, (58)

and

Υ−1
ϑ (α) =

{
6α + 6, 0 < α < 1

2
2α + 8, 1

2 < α < 1,
(59)

respectively.
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Since f1(x, ξ, η) is strictly increasing with respect to ξ and strictly decreasing with
respect to η, and ξ and η are independent of each other. According the Theorems 4 and 5,
we can obtain that

E[ f1(x, ξ, η)] = E
[
x2ξ sin(x2

1 − x2
2)−

√
x2 + ηx1 sin(x2 − tan x1)

]
=
∫ 1

0

(
x2Φ−1

ξ (α) sin(x2
1 − x2

2)−
√

x2 + Ψ−1
η (1− α)x1 sin(x2 − tan x1)

)
dα.

(60)

Since ζ = ϑ exp(η), it is easy to know that ζ and ϑ are not independent, but the
objective function f2(x, ξ, η) is monotonically increasing with respect to ζ and ϑ; therefore,
according to Theorems 5 and 7, we have

E[ f2(x, ϑ, ζ)] = E
[
ϑcos(πx1 − x2

2 + 1) + ζexp
{

cos(2πx1)−
√

x3
1 + 2x2

}]
=
∫ 1

0

(
Υ−1

ϑ (α)cos(πx1−x2
2+1)+Υ−1

ϑ (α) exp{Φ−1
η (α)} exp

{
cos(2πx1)−

√
x3

1+2x2

})
dα.

(61)

From the above analysis, the problems (56) are equivalent to the following problem:

min
x

f (wm)
E (x) = ω1E[ f1(x, ξ, η)] + ω2E[ f2(x, ϑ, ζ)]

= ω1

∫ 1

0

(
x2Φ−1

ξ (α)sin
(

x2
1 − x2

2

)
−
√

x2 + Ψ−1
η (1−α)x1 sin(x2−tan x1)

)
dα

+ω2

∫ 1

0

(
Υ−1

ϑ (α) cos(πx1 − x2
2 + 1)

+Υ−1
ϑ (α) exp{Φ−1

η (α)} exp
{

cos(2πx1)−
√

x3
1 + 2x2

})
dα

s.t. x2
1 + x2

2 ≤ 60, x1 ≥ 0, x2 ≥ 0
ω1 + ω2 = 1, ω1, ω2 > 0.

(62)

By using the AC algorithm and considering the five sets of weights, we obtain the
corresponding optimal solutions to the problem (62), as shown in Table 1. According to
Definition 9 and Theorem 12, these five sets of optimal solutions are also expected-value
efficient solutions to initial UMP problem (52).

Table 1. The results using the weighting method in deterministic method.

Wights Optimal Solutions Objective Values

(ω1, ω2) = (0.95, 0.05) x∗ = (4.7821, 6.0893)T −12.1434
(ω1, ω2) = (0.80, 0.20) x∗ = (4.7821, 6.0936)T −10.9964
(ω1, ω2) = (0.60, 0.40) x∗ = (4.8296, 5.6162)T −10.0055
(ω1, ω2) = (0.40, 0.60) x∗ = (7.0739, 2.7447)T −9.1356
(ω1, ω2) = (0.25, 0.75) x∗ = (7.0731, 2.7426)T −8.8969
(ω1, ω2) = (0.10, 0.90) x∗ = (7.0726, 2.7412)T −8.6585

As can be seen from the results in Table 1, if we think that the first objective func-
tion is more important, the optimal decisions we take are x∗ = (4.7821, 6.0893)T and
x∗ = (4.7821, 6.0936)T ; if we think that the second objective function is more important,
the optimal decisions are x∗ = (7.0731, 2.7426)T and x∗ = (7.0726, 2.7412)T ; otherwise,
decisions x∗ = (4.8296, 5.6162)T and x∗ = (7.0739, 2.7447)T are reasonable.

Next, the ideal-point method in the deterministic method was used to solve Example 1.
Since the calculation of DSP(ipm)

E model (41) and that of the DSP(ipm)
EV model (42) are almost

the same, without any losses of generality, we only considered the calculation of the
DSP(ipm)

E model (41).
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Under the ideal point preference, the ideal values of objective functions in the DSP(ipm)
E

model (41) should be obtained by solving the following two single-objective programmings:
min

x
E[ f1(x, ξ, η)]

=
∫ 1

0

(
x2Φ−1

ξ (α) sin
(

x2
1 − x2

2

)
−
√

x2 + Ψ−1
η (1− α)x1 sin(x2 − tan x1)

)
dα

s.t. x2
1 + x2

2 ≤ 60, x1 ≥ 0, x2 ≥ 0

(63)

and
min

x
E[ f2(x, ϑ, ζ)]

==
∫ 1

0

(
Υ−1

ϑ (α)cos(πx1−x2
2+1)+Υ−1

ϑ (α) exp{Ψ−1
η (α)} exp

{
cos(2πx1)−

√
x3

1+2x2

})
dα

s.t. x2
1 + x2

2 ≤ 60, x1 ≥ 0, x2 ≥ 0.

(64)

By suing the AC algorithm designed in Section 4.3, we obtain

min
x

E[ f1(x, ξ, η)] = −12.5526, min
x

E[ f2(x, ϑ, ζ)] = −8.4998. (65)

According to the practical meaning of the ideal point values, we take f (e0)
1 as −12.5526

and f (e0)
2 as −8.4998. Hence, we can obtain the DSP(ipm)

E model (41) as follows:

min
x

f (ipm)
E (x) =

((
E[ f1(x, ξ, η)]− f (e0)

1
)2

+
(
E[ f2(x, ϑ, ζ)]− f (e0)

2
)2
) 1

2

=

(( ∫ 1

0

(
x2Φ−1

ξ (α) sin(x2
1 − x2

2)

−
√

x2 + Ψ−1
η (1− α)x1 sin(x2 − tan x1)

)
dα + 12.5526

)2

+

( ∫ 1

0

(
Υ−1

ϑ (α)cos(πx1 − x2
2 + 1)

+Ψ−1
ϑ (α) exp{Φ−1

η (α)} exp
{

cos(2πx1)−
√

x3
1 + 2x2

})
dα + 8.4998

)2
) 1

2

s.t. x2
1 + x2

2 ≤ 60, x1 ≥ 0, x2 ≥ 0.

(66)

By using the AC algorithm, we obtain that the optimal solution x∗ to the problem (66)
is (5.0453, 5.1594)T , and the corresponding objective function value is 1.7002. According
to Definition 9 and Theorem 13, this optimal solution is also the expected-value efficient
solution of the initial UMP problem (52) under ideal point preference.

It can be seen from the comparison that the expected-value efficient solutions under
weighting preference in Table 1 were obviously different from the expected-value efficient
solutions under ideal-point preference. These two types of efficient solutions are not good
or bad, but only represent the different preferences taken by the decision-maker. The choice
between methods should be made according to the practical problems in the real world.

5. Uncertain Method for Solving Uncertain Multiobjective Programming

It can be seen from Section IV that the general idea of the deterministic method is
as follows:

The initial UMP problem (18) is first transformed into a deterministic multiobjective
programming problem (21) (or problem (24)) by the expectation (or variance) of the un-
certain objective function, and then the problem (21) (or problem (24)) is converted into a
deterministic single-objective, programming the problem (33) (or problem (41)) according
to the weighting method (or ideal point method). Finally, the expected-value efficient solu-
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tions (or expected-value variance efficient solutions) are obtained by solving the problem
(33) (or problem (41)). Figure 2 shows the idea of the deterministic method.

Figure 2. The idea of the deterministic method.

However, as shown in Figure 2, the uncertain objective functions in the UMP prob-
lem (18) are transformed into mutually independent deterministic objective functions.
When the uncertainties between uncertain objective functions are closely related, the de-
terministic method cuts off the uncertainty relation between them. Therefore, the final
decisions are obviously not in line with reality. To overcome this disadvantage of the
deterministic method, the uncertain method is proposed in this section. The main idea of
this method is as follows:

Firstly, by constructing a measure function G(·), we transform the UMP problem (18)
into an uncertain single-objective programming (USP) problem, that is,{

min
x

G
(

f1(x, ξ1), f2(x, ξ2), · · · , fs(x, ξs)
)

s.t. x ∈ S.
(67)

Secondly, the USP problem (67) is transformed into a deterministic single-objective
programming (DSP) problem using the proposed evaluation criterion C, and optimal
solutions are obtained by solving the DSP problem. Further, we prove that the optimal
solutions to the DSP problem are C-efficient solutions to the initial UMP problem (18).
Figure 3 shows the idea of the uncertain method.

Figure 3. The idea of uncertain method.

From the comparison between Figures 2 and 3, it can be seen that the deterministic
method ignores the uncertain connection between the objective functions in the initial UMP
problem from the first step, while the uncertain method considers that from the beginning
to the end.

5.1. Order Relationship between Uncertain Variables

The first step of the uncertain method is to transform the initial UMP problem (18) into
the USP problem (67) through a measurable function G. Since uncertain variables cannot
be directly compared, to solve the USP problem (67), the comparison method between
the uncertain variables according to the evaluation value of objective functions in the
real decision-making process should be given first. This is the order relationship between
uncertain variables.
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In this paper, “≺” and “�” are used to represent the order relationship between two
uncertain variables. For example, under a given evaluation criterion, if f (x1, ξ) ≺ f (x2, ξ),
we say that the evaluation value (or loss value, etc.) of the uncertain variable f (x1, ξ) is
strictly superior to that of the uncertain variable f (x2, ξ), and if f (x1, ξ) � f (x2, ξ), we say
that the evaluation value (or loss value, etc.) of the uncertain variable f (x1, ξ) is not worse
than that of uncertain variable f (x2, ξ).

Definition 13. Assume that ξ and η are uncertain variables. We define that

ξ ≺ (�) η (68)

if, and only if,
C(ξ) < (5 ) C(η), (69)

where C is an evaluation criterion used to compare uncertain variables, and C(·) represents the
evaluation value.

Remark 1. According to Definition 13, ξ ≺ η means that the evaluation value C(ξ) is strictly less
than C(η), while ξ � η means that the evaluation value C(ξ) is no greater than C(η). Further,
evaluation criterion C is a general term, which determines the order relationship between uncertain
variables. The evaluation criteria given by different practical problems also differ according to
different practical needs. For example, considering the product design problem under the uncertain
environment, it is necessary to create an optimal design scheme to minimize the cost P(x, ξ) over
a long period of time. In this case, the expected-value criterion (denoted as CE) should be used to
provide the order relationship between uncertain variables. If

P(x1, ξ) ≺ P(x2, ξ), (70)

then we can see that the average cost caused by decision-making x1 is strictly lower than that
cased by decision-making x2; that is, under the CE criterion, uncertain variable P(x1, ξ) is strictly
superior to the uncertain variable P(x2, ξ). Similarly, if we are concerned with the fluctuations in
the cost of the objective function P(x, ξ), then the variance criterion CV should be used to provide
the order relationship between uncertain variables. If

P(x1, ξ) ≺ P(x2, ξ), (71)

then we can see that the fluctuations in the cost caused by decision-making x1 are strictly lower
than that cased by decision-making x2, that is, under the CV criterion, uncertain variable P(x1, ξ)
is strictly superior to uncertain variable P(x2, ξ).

The following definitions are the order relationship between uncertain variables
according to the common evaluation criteria in the practical problem.

Definition 14 (CE Criterion). Assuming that ξ and η are two uncertain variables, we define that

ξ ≺ (�)η (72)

if and only if
E[ξ] < (5)E[η], (73)

where E[·] denotes the expected value of the uncertain variable.

Definition 15 (CV Criterion). Assuming that ξ and η are two uncertain variables, we define that

ξ ≺ (�)η (74)
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if and only if
V[ξ] < (5)V[η], (75)

where V[·] denotes the variance of the uncertain variable.

Definition 16 (Cαsup Criterion). Assuming that ξ and η are two uncertain variables, we define
that

ξ ≺ (or �) η (76)

if and only if
ξsup(α) < (or ≤) ηsup(α) (77)

for a given confidence level α ∈ (0, 1], where ξsup(α) and ηsup(α) denote the α-optimistic value of
uncertain variables ξ and η, respectively.

Definition 17 (Cαinf Criterion). Assuming that ξ and η are two uncertain variables, we define
that

ξ ≺ (or �) η (78)

if and only if
ξinf(α) < (or ≤) ηinf(α) (79)

for a given confidence level α ∈ (0, 1], where ξinf(α) and ηinf(α) denote the α-pessimistic value of
uncertain variables ξ and η, respectively.

Based on the order relationship between uncertain variables, the optimal solution to
the USP problem (67) and efficient solution to the UMP problem (18) can be defined.

Definition 18. Based on the given C criterion, a feasible solution x∗ is called the C-optimal (or
strictly C-optimal) solution to the USP problem (67) if

G
(

f1(x∗, ξ1), f2(x∗, ξ2), · · · , fs(x∗, ξs)
)
≺ (or �)G

(
f1(x, ξ1), f2(x, ξ2), · · · , fs(x, ξs)

)
(80)

for any feasible solution x ∈ S.

Definition 19. Based on the given C criterion, a feasible solution x∗ is called the C-efficient solution
to the UMP problem (18) if there is no feasible solution x ∈ S such that

fi(x∗, ξ i) � fi(x, ξ i), 1 ≤ i ≤ s, (81)

and
fi0(x, ξ i0) ≺ fi0(x∗, ξ i0). (82)

for at least one i0, 1 ≤ i0 ≤ s.

Since the average-based evaluation criterion is very common in practical problems,
this paper mainly considers the expected-value criterion CE. Therefore, all C evaluation
criteria in the latter part of this paper represent the expected-value criterion CE without it
being explicitly stated; that is, “≺ or �” represents the order relationship between uncertain
variables based on the CE criterion.

The second step in the uncertain method is constructing the measurable function
G. Next, two types of commonly used construction methods, that is, the linear weighted
construction method (LWCM) and ideal point construction method (IPCM), will be given.
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5.2. Linear Weighted Construction Method

We constructed the measure function G by providing each objective function with
their corresponding weight, and the following uncertain single-objective programming
(USP(lwcm)) could be obtained:

(
USP(lwcm)

)


min
x

G(lwcm)
(

f1(x, ξ1), f2(x, ξ2), · · · , fs(x, ξs)
)

=
s
∑

i=1
αi fi(x, ξ i)

s.t.
s
∑

i=1
αk = 1, αi > 0, i = 1, 2, · · · , s

x ∈ S.

(83)

Based on the CE criterion, the USP(lwcm) problem (83) is equivalent to the following
deterministic single-objective programming

(
USP(lwcm)

)


min
x

E
[

G(lwcm)
(

f1(x, ξ1), f2(x, ξ2), · · · , fs(x, ξs)
)]

= E
[

s
∑

i=1
αi fi(x, ξ i)

]
s.t.

s
∑

i=1
αk = 1, αi > 0, i = 1, 2, · · · , s

x ∈ S.

(84)

Based on the CE evaluation criterion, to provide the relations between the CE-optimal
solution of the USP problem (84) and CE-efficient solution of UMP problem (18), the
following lemmas are first proposed first:

Lemma 1. Assume that f is a measurable function, and ξ is an uncertain variable. If f (x∗, ξ) ≺
(or �) f (x, ξ), then we have

α f (x∗, ξ) ≺ (or �) α f (x, ξ) (85)

for any real number αi > 0 and any feasible decision-making x∗, x ∈ S.

Proof. Since f (x∗, ξ) ≺ (or �) f (x, ξ), according to the definition of the CE criterion, we
have

E[ f (x∗, ξ)] < (or ≤) E[ f (x, ξ)]. (86)

For any real number αi > 0, by Theorem 2.6, we have

E[α f (x∗, ξ)] < (≤)E[α f (x, ξ)], (87)

which implies that
α f (x∗, ξ) ≺ (or �) α f (x, ξ). (88)

This lemma is complete.

Lemma 2. Assume that f is a measurable function, f (x1, ξ) and f (x2, ξ) are uncertain variables
with regular uncertainty distributions Φ1 and Φ2, f (x1, η) and f (x2, η) are uncertain variables
with regular uncertainty distributions Ψ1 and Ψ2. Further, suppose that f (x, ξ) strictly increases
with respect to ξ, and f (x, η) is a strictly decreasing function with respect to η. If

f (x1, ξ) ≺ (or �) f (x2, ξ), f (x1, η) ≺ (or �) f (x2, η), (89)

then we have
f (x1, ξ) + f (x1, η) ≺ (or �) f (x2, ξ) + f (x2, η). (90)

Proof. Since
f (x1, ξ) ≺ (or �) f (x2, ξ), f (x1, η) ≺ (or �) f (x2, η), (91)
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according to the CE criterion, we have

E[ f (x1, ξ)] < (or ≤) E[ f (x2, ξ)], E[ f (x1, η)] < (or ≤) E[ f (x2, η)]. (92)

It follows from Theorems 4 and 5 that∫ 1

0
Φ−1

1 (α)dα < (or ≤)
∫ 1

0
Φ−1

2 (α)dα, (93)

and ∫ 1

0
Ψ−1

1 (1− α)dα < (or ≤)
∫ 1

0
Ψ−1

2 (1− α)dα. (94)

Evidently, ∫ 1

0

(
Φ−1

1 (α) + Ψ−1
1 (1− α)

)
dα

< (or ≤)
∫ 1

0

(
Φ−1

2 (α) + Ψ−1
2 (1− α)

)
dα.

(95)

Using Theorem 6, we can obtain

E[ f (x1, ξ) + f (x1, η)] < (or ≤) E[ f (x2, ξ) + f (x2, η)], (96)

which implies, according the definition of CE criterion, that

f (x1, ξ) + f (x1, η) ≺ (or �) f (x2, ξ) + f (x2, η). (97)

The lemma is proved.

Theorem 14. The CE-optimal solution x∗ to the USP(lwcm) problem (84) must be the CE-efficient
solution to the initial UMP problem (18).

Proof. Assume that x∗ is CE-optimal solution to the USP(lwcm) problem (84) but not the
CE-efficient solution to the initial problem (18). According to Definition 19, there must be a
feasible solution x ∈ S, such that

fi(x, ξi) � fi(x∗, ξi), 1 ≤ i ≤ s, (98)

and
fi0(x, ξi0) ≺ fi0(x∗, ξi0). (99)

for at least one i0, 1 ≤ i0 ≤ s.
Since αi > 0, k = 1, 2, · · · , s, according to Lemmas 1 and 2, we can obtain that

s

∑
i=1

αi fi(x, ξi) ≺ α1

s

∑
i=1

αi fi(x∗, ξi). (100)

Hence,

G(lwcm)
(

f1(x, ξ1), f2(x, ξ2), · · · , fs(x, ξs)
)

≺ G(lwcm)
(

f1(x∗, ξ1), f2(x∗, ξ2), · · · , fs(x∗, ξs)
) (101)

which contradicts the idea that x∗ is CE-optimal solution to the USP(lwcm) problem (84);
hence, the CE-optimal solution x∗ to the USP(lwcm) problem (84) is the CE-efficient solution
to the initial problem (18). The theorem is proved.

From the analysis, we can see that the USP(lwcm) problem (83) first takes the weighted
sum, and then its expectation, while the DSP(wm)

E problem (33) is the opposite. According
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to the properties of the expectation of an uncertain variable, which can be referred to using
Theorems 5 and 6, except for the cases where uncertain variable fi(x, ξi), 1 ≤ i ≤ s is
independent or comonotonic with respect to ξi, we have

E

[
s

∑
i=1

αi fi(x, ξi)

]
6=

s

∑
i=1

αiE[ fi(x, ξi)], (102)

which differs from the expectation properties in stochastic systems. Therefore, even if
we adopt the CE criterion, the USP(lwcm) problem (83) is completely different from the
DSP(wm)

E problem (33).
From the above analysis, it can be seen that the results obtained in this paper are

different from those in the literature [24]. In the literature [24], based on the expected
value criterion of random variables, the efficient solutions to the stochastic multiobjective
programming obtained by these two types of solution methods are exactly the same under
the preference of the weight method. As stated in the introduction, unlike random variables,
the expected value of uncertain variables does not have linear properties; even with the
expected value criterion and the weight method used, the efficient solutions obtained by
the two types of solution method are different.

5.3. Ideal Point Construction Method

In the practical decision-making problem, it is assumed that the objective functions in
the ideal point method are an important preference method, differing from the weighted
method, which is also very important in practical decision-making problems. It is easy
to see that, using the ideal point construction method, the efficient solutions obtained by
these two types of solution method are obviously different. This has not been studied in
the previous research work, such as reference [23,24].

Assuming that objective functions in the E-UMP problem (21) or EV-UMP problem (24)
have their ideal values, then the best decision-making scheme is to make all the objective
functions meet the corresponding ideal values. However, since the objective functions in
the E-UMP problem (21) or EV-UMP problem (24) are usually conflicting and contradictory,
this best decision-making scheme often does not exist. Hence, the next best thing is to find
a sub-optimal decision-making scheme that makes the objective functions match their ideal
objective values as closely as possible.

Assuming that the uncertain objective function fi(x, ξ i) has the ideal value f (0)i , the

best decision-making satisfies the f (0)i = fi(x, ξ i), as far as possible; that is, we need to
solve the following uncertain single-objective programming (USPipcm) problem:

(
USP(ipcm)

)
min

x
G(ipcm)

(
f1(x, ξ1), f2(x, ξ2), · · · , fs(x, ξs)

)
=
( s

∑
i=1

(
fi(x, ξ)− f (0)i

)2
) 1

2

s.t. x ∈ S.

(103)

where
f (0)i ≤ min

x
fi(x, ξ), 1 ≤ i ≤ s.

Based on the CE criterion, the USP(ipcm) problem (103) is equivalent to the following
deterministic single-objective programming problem:

(
USP(ipcm)

)


min
x

E
[

G(ipcm)
(

f1(x, ξ1), f2(x, ξ2), · · · , fs(x, ξs)
)]

= E

[( s
∑

i=1

(
fi(x, ξ)− f (0)i

)2
) 1

2

]
s.t. x ∈ S.

(104)
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Based on the CE criterion, to provide the relations between the CE-optimal solution of
USPipcm problem (104) and the CE-efficient solution of UMP problem (18). The following
lemmas are proved first.

Lemma 3. Assuming that f is a measurable function, f (x, ξ) and f (x, η) are uncertain variables
with regular uncertainty distributions Φ and Ψ, respectively. Further, suppose that f (x, ξ) is
strictly increasing with respect to ξ, and f (x, η) is a strictly decreasing function with respect to η.
If f (x, ξ) ≺ (or �) f (x, η), and the lower bounds of f (x, ξ) and f (x, η) exist. Then, for any real
number f 0 ≤ min{inf f (x, ξ), inf f (x, η)}, we have(

f (x, ξ)− f 0)2 ≺ (or �)
(

f (x, η)− f 0)2. (105)

Proof. Since f (x, ξ) ≺ (or �) f (x, η), by the definition of CE criterion, we have

E[ f (x, ξ)] < (or 5) E[ f (x, η)]. (106)

It follows from Theorems 3 and 4 that∫ 1

0
Φ−1(α)dα <

∫ 1

0
Ψ−1(1− α)dα. (107)

Since f 0 ≤ min{inf f (x, ξ), inf f (x, η)}, according to the definition of inverse uncer-
tainty distribution, we know that f 0 ≤ min{inf Φ−1(α), inf Ψ−1(1− α)}. Hence,∫ 1

0

(
Φ−1(α)− f 0)2dα< (or ≤)

∫ 1

0

(
Ψ−1(1−α)− f 0)2dα (108)

Hence, according to Theorem 4, we have∫ 1

0
(Φ−1(α)− f 0)2dα = E[( f (x, ξ)− f 0)2] (109)

and ∫ 1

0
(Ψ−1(α)− f 0)2dα = E[( f (x, η)− f 0)2]. (110)

It is easily obtained that

E[( f (x, ξ)− f 0)2] < (or ≤)E[( f (x, ξ)− f 0)2] (111)

that is, (
f (x, ξ)− f 0)2 ≺ (or �)

(
f (x, η)− f 0)2. (112)

The theorem is complete.

Lemma 4. Assuming that f is a measurable function, f (x, ξ) and f (x, η) both are nonnegative
uncertain variables with regular uncertainty distributions Φ and Ψ. Further, suppose that f (x, ξ)
is strictly increasing with respect to ξ, and f (x, η) is strictly decreasing with respect to η. If
f (x, ξ) ≺ (or �) f (x, η), then we have√

f (x, ξ) ≺ (or �)
√

f (x, η). (113)

Proof. Since f (x, ξ) ≺ (or �) f (x, η), according to the definition of CE criterion, we have

E[ f (x, ξ)] ≤ (or <)E[ f (x, η)]. (114)
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It follows from Theorems 3 and 4 that∫ 1

0
Φ−1(α)dα < (or ≤)

∫ 1

0
Ψ−1(1− α)dα. (115)

Since f (x, ξ) and f (x, η) are both nonnegative, and
√

Φ−1(α) and
√

Ψ−1(1− α) exist,
we have ∫ 1

0

√
Φ−1(α)dα < (or ≤)

∫ 1

0

√
Ψ−1(1− α)dα. (116)

Since
√

x is a strictly increasing function, f (x, ξ) is strictly increasing with respect to ξ,
and f (x, η) is strictly decreasing with respect to η, it follows from Theorems 3 and 5 that∫ 1

0

√
Φ−1(α)dα = E[

√
f (x, ξ)],

∫ 1

0

√
Ψ−1(1− α)dα = E[

√
f (x, η)]. (117)

Evidently,

E[
√

f (x, ξ)] < (or ≤)E[
√

f (x, η)], (118)

which implies, according t the definition of CE criterion, that√
f (x, ξ) ≺ (or �)

√
f (x, η). (119)

The lemma is proved.

Theorem 15. The CE-optimal solution x∗ to the USP(ipcm) problem (104) must be the CE-efficient
solution to the initial UMP problem (18).

Proof. Assume that x∗ is CE-optimal solution to the USP(ipcm) problem (84) but not the
CE-efficient solution to the initial problem (1). According to Definition 19, there must be a
feasible solution x ∈ S such that

fi(x, ξi) � fi(x∗, ξi), 1 ≤ i ≤ s, (120)

and
fi0(x, ξi0) ≺ fi0(x∗, ξi0). (121)

for at least one i0, 1 ≤ i0 ≤ s.
Since

f (0)i ≤ inf
i

fi(x, ξ), 1 ≤ i ≤ s, (122)

we can obtain, according to Lemmas 3 and 4, that√
s

∑
i=1

(
fi(x, ξ)− f (0)i

)2
≺
√

s

∑
i=1

(
fi(x∗, ξ)− f (0)i

)2
. (123)

According to USP(ipcm) (104), we have

G(ipcm)
(

f1(x, ξ1), f2(x, ξ2), · · · , fs(x, ξs)
)

≺ G(ipcm)
(

f1(x∗, ξ1), f2(x∗, ξ2), · · · , fs(x∗, ξs)
) (124)

which contradicts the idea that x∗ is a CE-optimal solution to the USP(ipcm) problem (104);
hence, the CE-optimal solution x∗ to the USP(ipcm) problem (104) is the CE-efficient solution
to the initial problem (18). The theorem is proved.

It is easy to see from problem (104) and problem (41) that the ideal point construction
method of the uncertain method obviously differs from the ideal-point method of the
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deterministic method. Problem (104) first minimizes the sum of squares of errors and then
uses its expectation, while problem (41) does the opposite. Generally speaking, we have

E

( s

∑
i=1

(
fi(x, ξ)− f (0)i

)2
) 1

2
 6= ( s

∑
i=1

(
E[ fi(x, ξ)]− f (0)i

)2
) 1

2

. (125)

Hence, even if we adopt the CE criterion, the USP(ipcm) problem (103) is completely
different from the DSP(ipm)

E problem (41).

5.4. A Numerical Example

The following numerical example is given to illustrate the uncertain method proposed
in this section.

Example 2. Considering that the UMP problem is same as in Example 1, the CE-efficient solution
is discussed based on the uncertain method.

First, the linear weighted construct method is used. To obtain the CE-efficient solution
under the linear weighted construction method, the following DSP(lwcm) problem should
be solved by the related data in Example 1

min
x

G(lwcm)
(

f1(x, ξ, η), f2(x, ϑ, ζ)
)

= E[α1 f1(x, ξ, η) + α2 f2(x, ϑ, ζ)]

= E
[
α1

(
x2ξ sin(x2

1 − x2
2)−

√
x2 + ηx1 sin(x2 − tan x1)

)
+α2

(
ϑ cos(πx1 − x2

2 + 1) + ζ exp
{

cos(2πx1)−
√

x3
1 + 2x2

})]
s.t.

s
∑

i=1
αk = 1, αi > 0, i = 1, 2, · · · , s

x ∈ S.

(126)

Since ζ = ϑ exp(η), it is easy to see that ζ and η are not independent, and ζ and ϑ are
not independent, but it is easy to verify that ζ and η are comonotonic and ζ and ϑ are also
comonotonic. Since η and ϑ are independent, according to Theorems 6 and 7, we can obtain
that the expectation of the uncertain variables has linear properties; in this case, that is,

E[α1 f1(x, ξ, η) + α2 f2(x, ϑ, ζ)] = α1E[ f1(x, ξ, η)] + α2E[ f2(x, ϑ, ζ)] (127)

which implies that, in this particular case, the CE-efficient solutions to the UMP problem
(52) under the linear weighted construction method in the uncertain method are exactly
the same as the expected-value solutions to the UMP problem (52) under the weighting
method in the deterministic method. However, if ζ = −ϑ exp(η), in this situation, the
comonotonic property is invalid; that is,

E[α1 f1(x, ξ, η) + α2 f2(x, ϑ, ζ)] 6= α1E[ f1(x, ξ, η)] + α2E[ f2(x, ϑ, ζ)], (128)

Hence, the CE-efficient solutions to the UMP problem (52) under the linear weighted
construction method in the uncertain method differ to the expected-value solutions to the
UMP problem (52) under the weighting method in the deterministic method.

Next, we will use the ideal point construction method in the uncertain method to solve
Example 2.
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The ideal values f (0)1 of f1(x, ξ, η) and f (0)2 of f2(x, ϑ, ζ) are still taken as −12.5526 and
−8.4998 in Example 1, respectively. Hence, the USP(ipcm) model (104) can be obtained
as follows

min
x

E
[

G(ipcm)
(

f1(x, ξ1), f2(x, ξ2)
)]

= E
[√(

f1(x, ξ, η)− f (0)1
)2

+
(

f2(x, ϑ, ζ)− f (0)2
)2
]

=
∫ 1

0

(((
x2Φ−1

ξ (α) sin(x2
1 − x2

2)

−
√

x2 + Ψ−1
η (1− α)x1 sin(x2 − tan x1)

)
+ 12.5526

)2

+

((
Υ−1

ϑ (α)cos(πx1 − x2
2 + 1)

+Υ−1
ϑ (α) exp{Φ−1

η (α)} exp
{

cos(2πx1)−
√

x3
1 + 2x2

})
+ 8.499

)2
) 1

2

s.t. x2
1 + x2

2 ≤ 60, x1 ≥ 0, x2 ≥ 0.

(129)

By using the AC algorithm designed in Section IV, we can see that the optimal solution
x∗ to the problem (129) is (7.1760, 2.8751)T , and the corresponding objective function value
is 3.7195. According to Definition 19 and Theorem 15, this optimal solution is the CE-
efficient solution of UMP initial problem (52) under the ideal-point construction method
in the uncertain method. Compared with the optimal solution (5.0453, 5.1594)T and the
optimal value 1.7002 to the DSP(ipm)

E problem (66), they are obviously different, which can
be seen in Table 2.

Table 2. The solution results by ideal point preference

Method Types Preferences Optimal Solutions Objective Values

deterministic method ideal-point method (7.1760, 2.8751)T 3.7195
uncertain method ideal-point construction method (5.0453, 5.1594)T 1.7002

It is obvious that the ideal-point construction method in the uncertain method and
ideal-point method in the deterministic method are completely different from both the
formulation of the USP(ipcm) problem (103) and DSP(ipm)

E problem (41), as well as from
the solution results of the numerical example. The essential reason for this difference is
that the ideal-point construction method in the uncertain method considers the uncertainty
relation between objective functions in UMP problem (18), while the ideal-point method
in the deterministic method does not. The choice of method depends on the uncertainty
relation between the objective functions in the practical problem. If the uncertainty relation
is closely related and must be considered, the first method should be used; otherwise, the
second method should be used. A comparison of these two types of solution method can
be seen in Table 3.

Table 3. A comparison of the two types of solution method.

Method Types Preferences Advantage/Disadvantage

deterministic method ideal point method separation of uncertainty relation
weighting method separation of uncertainty relation

uncertain method linear weighted construction method consideration of uncertainty relation
ideal point construction method consideration of uncertainty relation
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6. Conclusions

In view of the probability theory’s inability to deal with uncertainty with an expert’s
degree of belief in multiobjective programming, uncertainty theory is introduced to investi-
gate the UMP problem. The deterministic method and uncertain method are adopted to
solve the UMP problem. The theoretical results show that the deterministic method trans-
forms the uncertain objective functions in the UMP problem into a mutually independent
deterministic objective functions; this type of solution method cuts off the uncertainty rela-
tion between uncertain objective functions. However, an uncertain method was adopted
to solve the UMP problem by transforming the UMP problem into an uncertain single-
objective programming, which remains the uncertainty relation between uncertain objective
functions. From this comparison, it can be seen that the deterministic method ignores the
uncertainty relation between the objective functions from the first step, while the uncertain
method considers the relation from the beginning to the end. In addition, the data results
of numerical examples show that the two types of methods are obviously different. The
essential difference between the two methods is whether the uncertainty relation between
objective functions should be considered.

In our opinion, given that, in real situations, uncertainty relations frequently exist
between uncertain objective functions, we can assert that when this strong uncertainty
relation exists, the uncertain method is more appropriate for solving the UMP problem.
Otherwise, the deterministic method should be chosen.

From our perspective, there are several unsolved problems in the field of UMP prob-
lems, which should be studied based on uncertainty theory in the future. Some of these
problems are outlined as follows:

(a) This paper mainly uses the numerical characteristics of uncertain variables to trans-
form the UMP problem into the deterministic multi-objective programming problem.
However, in practical decision problems, based on the more commonly used prefer-
ences of risk decision and uncertainty belief degree decision, the comparison of these
two solution methods is worth further study.

(b) This paper mainly presents theoretical research into two solution methods. Due to
the complex battlefield environment, the multi-UAV task assignment problem is a
multiobjective programming problem with complex uncertainties. Therefore, based
on uncertainty theory and theoretical results obtained in this paper, the focus of the
next work is to study the uncertain multi-UAV task assignment problem and analyze
the efficient task assignment schemes obtained using the two types of method.
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