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Abstract: Companies are constantly changing in their organization and the way they treat information.
In this sense, relevant data analysis processes arise for decision makers. Similarly, to perform decision-
making analyses, multi-criteria and metaheuristic methods represent a key tool for such analyses.
These analysis methods solve symmetric and asymmetric problems with multiple criteria. In such a
way, the symmetry transforms the decision space and reduces the search time. Therefore, the objective
of this research is to provide a classification of the applications of multi-criteria and metaheuristic
methods. Furthermore, due to the large number of existing methods, the article focuses on the
particle swarm algorithm (PSO) and its different extensions. This work is novel since the review of the
literature incorporates scientific articles, patents, and copyright registrations with applications of the
PSO method. To mention some examples of the most relevant applications of the PSO method; route
planning for autonomous vehicles, the optimal application of insulin for a type 1 diabetic patient,
robotic harvesting of agricultural products, hybridization with multi-criteria methods, among others.
Finally, the contribution of this article is to propose that the PSO method involves the following steps:
(a) initialization, (b) update of the local optimal position, and (c) obtaining the best global optimal
position. Therefore, this work contributes to researchers not only becoming familiar with the steps,
but also being able to implement it quickly. These improvements open new horizons for future lines
of research.

Keywords: optimization methods; multi-criteria methods for decision making (MCDM); analysis
and decision making; metaheuristics; particle swarm lgorithm (PSO)

1. Introduction

For all companies, decision making implies a risk that for some is minor and for others
is so high that it can lead to large economic losses. Decision making implies a process of
generating, searching, analyzing, and interpreting information to choose a solution among
several possibilities [1,2]. In this way, it establishes priorities according to the information
available, to make the best decision [3,4].

In addition, the rapid changes in technology applied to the industry must be consid-
ered, where companies must quickly learn and adapt strategies to make decisions, and thus
be prepared for market demands [1,2]. This has led to the creation of a range of strategies,
methodologies, and techniques for analysis and decision making. These methods are used
in the fields of Social Sciences and Psychology, as well as in Natural Sciences and Artificial
Intelligence, to study decision making through optimization methods [2].

Without a doubt, this variety of optimization methods has proven its efficiency in
analyzing and simplifying problems. Even so, the number of methods to improve the
efficiency and robustness of the results continue to increase [5,6]. Taking into account that
the improvements of optimization methods are related to the symmetric and asymmetric
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problems with multiple criteria that the decision maker faces [7], where symmetry not
only transforms the decision space, but also reduces search time by visiting symmetric
solutions. In addition to unstructured, messy environments, with uncertainty and dynamic
data, as well as the interpretation of the information [7,8], these conditions are changing
the behavior of the industry, driving it towards better competitiveness and economic
growth [9,10].

The interest in studying this topic arises from the need to analyze the information
and provide the best results for the people who make decisions. Therefore, the application
of optimization and multi-criteria methods is a reference for data analysis and treatment.
There is a wide range within these methods, but we will focus on the particle swarm
algorithm (PSO).

The organization of this article includes four main sections, beginning with the in-
troduction. Section 2 describes the methodology used for the literature review, which
includes (1) the research of scientific articles on decision making, optimization methods,
metaheuristics, multi-criteria, and the particle swarm optimization (PSO) algorithm us-
ing the ScienceDirect, IEEExplore, ProQuest, JSTOR, and SAGE databases and Google
Scholar; (2) patent location, on the USPTO platform, that use PSO; (3) search for registra-
tions with the US Copyright Office where they implement PSO. Section 3 presents the
results, providing the importance of analysis and decision making. Continuing with the
multi-criteria strategies, we can prioritize the criteria and, thus, choose the best solution
alternative. This is followed by optimization methods and metaheuristics as strategies for
data analysis. To finish, we explore the PSO evolutionary algorithm, contributing its con-
cept, applications, and structure with the mathematical formulation for its implementation.
Finally, Section 4 presents the conclusions and the future work that the authors intend to
carry out.

In relation to the findings found in the literature review of scientific articles, the period
from 2017 to 2021 shows a significant increase in publications of the topics sought. Regard-
ing the location of patents, of the 135 registries that use the PSO method, only 29 applied it
within software. Similarly, from the copyright records, the 25 located works that implement
the PSO method belong to texts on this topic. Now, among the applications shown in
this article, they include improvements in robot welding processes [11], improvements in
the speed and control of robots [12], and in the collection of products with a robot [13].
In addition, the PSO method helps in trajectories [14] with unmanned vehicles [15] and
autonomous cars [16].

2. Methodology of the Literature Review

This section presents three parts, showing the resources and statistics of the findings
for the literature review. The first part uses the databases: ScienceDirect (database website:
https://www.sciencedirect.com), IEEExplore (database website: https://ieeexplore.ieee.
org), ProQuest (database website: https://www.proquest.com/), JSTOR (database website:
https://www.jstor.org/), SAGE (database website: https://journals.sagepub.com/), and
Google Scholar (search engine website: https://scholar.google.com/) to locate articles
not only on PSO, but also on topics related to it. The topics to look for are: decision
making, multi-criteria, optimization methods, and metaheuristics, having as objectives
the search of concepts, classifications, and methods used, as well as the steps of the
algorithms, applications, results of the cases that are presented and problems raised for
future work. In the following, we focus on the PSO algorithm. In the second part, we
use the USPTO (website for patent search: https://www.uspto.gov/) platform to locate
patents, and in the third part, the US Copyright Office (website for copyright search:
https://www.copyright.gov/) to find the records of works that implement PSO.

https://www.sciencedirect.com
https://ieeexplore.ieee.org
https://ieeexplore.ieee.org
https://www.proquest.com/
https://www.jstor.org/
https://journals.sagepub.com/
https://scholar.google.com/
https://www.uspto.gov/
https://www.copyright.gov/
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2.1. Scientific Articles

This section begins with the search for scientific articles in the aforementioned databases
with the words “decision-making” and “multi-criteria”. Later, we continue the search with
“optimization methods” and “metaheuristics”, and finish with “particle swarm optimiza-
tion”. The authors consider this search order, to go from the general to the particular, as
shown in Figure 1.

Figure 1. Subjects considered for the search.

To begin the search for articles, the topics to be investigated were identified, beginning
with the words: decision making and multi-criteria, in the aforementioned databases. In
Figure 2, it can be seen that JSTOR was an important promoter of these topics, but in the
last decade, ScienceDirect and Google Scholar better support the location of this type of
article. Similarly, Figure 3 shows an increase in the period 1997–2001 in scientific research
with multi-criteria methods for decision making.

Figure 2. Decision making and multi-criteria articles.

In Table 1, the periods 2007–2011 and 2017–2021 show an increase in publications.
JSTOR was constant in its publications, but they decreased from 2017–2021. Meanwhile,
ScienceDirect increased its content on the topics of decision making and multi-criteria.
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Figure 3. Decision making and multi-criteria articles by periods.

Table 1. Decision making and multi-criteria publications.

Period IEEExplore ProQuest SAGE JSTOR ScienceDirect Google Scholar

1997–2001 1 88 2240 9446 3427 1455
2002–2006 2 235 3324 11,499 6962 3575
2007–2011 57 665 4645 13,831 13,077 9720
2012–2016 43 2066 5955 14,946 24,062 19,700
2017–2021 53 3366 7935 6126 37,977 30,360

Subsequently, the topics of optimization methods and metaheuristics are sought,
considering articles published in journals and book chapters between 1997 and 2021, in
which it is once again verified that they are becoming increasingly important in the scientific
community, due to the increase in publications (see Figure 4).

Figure 4. Articles published on optimization methods and metaheuristics.

Within Table 2, we see again that ScienceDirect maintains a higher number of pub-
lications with optimization methods and metaheuristics. In the same way, JSTOR takes
importance to these topics for its publications.



Symmetry 2022, 14, 455 5 of 23

Table 2. Optimization methods and metaheuristics publications.

Period ScienceDirect IEEExplore ProQuest JSTOR SAGE Google Scholar

2001–1997 177 14 0 244 55 7
2006–2002 533 64 0 891 165 15
2011–2007 1689 333 0 2283 269 78
2016–2012 4548 614 6 4768 251 181
2021–2017 9212 889 0 6361 46 322

The next topic to look for is the particle swarm optimization (PSO) algorithm. Table 3
shows the use of PSO, where in the first six years there was little scientific literature found;
this increased by 19.4% in the period 2002 to 2011, and an increase of 80.3% from 2012 to
2021. Therefore, it can be concluded that the PSO algorithm is a solution for the scientific
community, solving real problems.

Table 3. Scientific literature of the PSO algorithm.

Database/Period 1995–2001 2002–2011 2012–2021

ScienceDirect 130 3617 33,520
IEEE 64 9296 18,232
SAGE 1 510 3701
ProQuest 0 12 117
JSTOR 0 3 5

TOTALS 195 13,438 55,578

2.2. Patents Employing the PSO Algorithm

After reviewing the scientific articles, the search continues on the USPTO platform.
The next section focuses on the topic of “particle swarm optimization”, with the purpose of
locating the patents that apply PSO to solve a problem in the best way.

First, 135 patents that use PSO were located. The first patent using PSO was registered
13 years after it was proposed by Russell Eberhart and James Kennedy in 1995 [14]. While
the most recent patent, registered at the end of October 2021, belongs to the Shandong
University of the People’s Republic of China (PRC) [17].

In Figure 5, there are 135 patents in the United States of America (USA) at the top of
the list with the highest number of registered patents, followed by the PRC. Likewise, of
the 135 patents, only 29 implemented the algorithm in an SW, see Figure 6.

Figure 5. Patents using PSO, registered in USPTO from 2008 to 2021.
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Figure 6. Patents using the PSO algorithm, registered with USPTO.

Among the 135 patents that used PSO, 29 implemented the algorithm in an SW (it is
important to point out that for this work the programs, systems, or software will be named
SW, taking into account that the concepts are different, but they will serve to be able to
group all these elements in a single word), see Figure 7.

Figure 7. Patents registered in USPTO, that implement the PSO in a software, classified by year.

In these 29 patents, the US emerged as the topic leader until 2017 (Table 4). However,
in the 2019–2020 period, the PRC has made significant progress, becoming the leader,
although the US still has the highest number of patents. Thus, it can be concluded that, in
recent years, the PRC has made great scientific advances with PSO, with the largest number
of patents, and being the first to patent in 2021 (Figure 8).
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Table 4. Patents registered in USPTO that implement PSO in an SW.

Country 2009–2012 2013–2017 2019–2021

Saudi Arabia 1 0 0
Germany 0 1 0
France 0 3 0
United States of America 4 8 0
Taiwan 0 0 1
Ireland 0 0 1
People’s Republic of China 0 0 10

Figure 8. Patents registered in USPTO that implement the PSO in a software, classified by country.

The importance that researchers are giving to PSO can be seen in the increase in
patents. In 2021 alone, 21 patents with PSO were located, and within this group are the first
patents from the countries of India, Ireland, and Germany (Figure 9).

Figure 9. Patents using PSO, filed with USPTO in 2021.

PSO is also used within research laboratories, such as the US-based Malibu HRL,
which generated ten patents between 2009 and 2014 using classic PSO or combining it with
another method (Table 5). Likewise, multinational companies use the PSO algorithm in
their patents, as is the case of Huawei Technologies [18] and the company Trilithic [19].
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Table 5. USPTO registered patents assigned to HRL lab.

Patent Inventors Year of Assignment Reference

8793200 Chen Yang et al. 2014 [20]
7558762 Owechko Yuri et al. 2009 [21]
7599894 Owechko Yuri, Medasani Swarup 2009 [22]
7636700 Owechko Yuri, Medasani Swarup 2009 [23]
7672911 Owechko Yuri, Medasani Swarup 2010 [24]
8645294 Owechko Yuri et al. 2014 [25]
8213709 Medasani Swarup et al. 2012 [26]
8370114 Saisan Payam 2013 [27]
8589315 Medasani Swarup, Owechko Yuri 2013 [28]
8437558 Medasani Swarup, Owechko Yuri 2013 [29]

2.3. Copyright with the PSO Algorithm

In this third part, the keywords used were: “PSO”, “particle swarm optimization
algorithm”, and “particle swarm optimization”, to locate the records on the platform of the
US Copyright Office.

The first two proposed words did not yield records of the entire PSO theme. The first
returned information that was not related to the algorithm, and the second word removed
some records that had a method and no algorithm.

The information provided by the records contains: name of the author(s), title of the
work, registration number, date of registration, type of registered service, among other
data. Because the records do not contain complete information or a copy of the work, the
information to request it is also given.

The first record from 2002 corresponds to computer text data on multiphase particle
swarm optimization [30]. Meanwhile, the most recent record is from 2019, which corre-
sponds to an electronic file, on the subject of optimization assisted by machine learning
with applications in the diesel engine with PSO [31].

In Figure 10, there are two parameters: texts and strings. These are part of the
registered literary works. The years with the most records were 2009 and 2017, but the
number of copyrighted works was minimal compared to the number of scientific papers or
patents using PSO.

Figure 10. Patents using PSO, filed with USPTO in 2021.
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Twenty-five literary works intended to explain a document containing PSO (Table 6)
were registered. However, no records of websites, blogs, or other web content related to
PSO were located. Nor were SWs located that directly or indirectly applied PSO to solve
a problem.

Table 6. US Copyright Office records employing PSO.

Year Text Serials Computer Files

2002 1 0 0
2004 2 0 0
2009 4 0 0
2010 1 0 0
2011 3 0 0
2012 1 1 0
2013 1 0 0
2014 3 0 0
2015 0 1 0
2016 1 0 0
2017 3 1 0
2018 1 0 0
2019 1 0 0

In conclusion, when using six databases for scientific articles and two platforms for
patents and copyright, it can be seen that 2017 was a benchmark for PSO due to the increases
that were observed.

3. Results of the Literature Review

This section contains the results of the literature review, starting with the optimization
methods for analysis and decision making and continuing with the multi-criteria meth-
ods—those that precede the metaheuristics. The section ends with the particle swarm
optimization algorithm (PSO), addressing its concept, uses, and implementations, and the
structure of the algorithm for its implementation.

3.1. Analysis and Decision-Making

Businesses have been transformed over the years since their first revolution in the
mid-17th century; going through mechanization, electricity, automation, and the use of
information technologies until we reach what we know as industry 4.0—where innovation
is the main promoter for technological development and knowledge management [1].

In this sense, technological development requires data analysis processes. Due to
the amount of data that is being generated, a range of technologies, tools, strategies,
and techniques have been created. These are not only affecting the organization and
conduct of the industry, but also the data collection, digitization, and analysis for decision
making [2,10].

In this way, it can be pointed out that technologies are making data analysis more
efficient, for which they used strategies and techniques that integrate the collection, pro-
cessing, modeling, and visualization of said data [32], converting information into results
that help identify problems, risks, or competitive advantages, contributing to more efficient
and faster decision making [33,34]. Efficiency in data analysis has led decision makers to
face increasingly complex situations [3], and with dynamic data [35].

However, the decision maker not only faces the aforementioned situations, but also the
need to obtain increasingly precise and reliable results [36,37], in addition to handling data
with uncertainty [4,8]. This is why the strategies created for data analysis help decision
makers obtain the best solution. Among these strategies are the multi-criteria methods and
the optimization methods, which are detailed in the following sections.
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3.2. Multi-Criteria Methods

Decision makers have a great responsibility that comes from analyzing the data to
arrive at the best solution [32]. The decision maker’s success increases when he considers
multiple criteria or outcomes [8]. This leads to advantages and disadvantages of each
alternative that reduce costs and increase benefits [8]. Multi-criteria decision-making
(MCDM) problems are part of the most used strategies for decision making [38,39]. With
these methods, a set of finite alternatives is compared, evaluated, and classified with respect
to a set of attributes that are also finite [8].

In other words, the MCDM are designed to help the decision maker choose the best
option among a group of possibilities [38]. These possibilities are called alternatives, and
form the choice set [40]. To choose from this choice set, the decision maker must consider a
variety of conflicting points of view, called criteria [8,39]. The MCDM is used in problems
that have several solutions and the answer is not determined with a true or false [41].
Otherwise, with a variety of answers that evaluate multiple conditions with algorithms
and mathematical tools to obtain the best solution [42,43].

Therefore, the main objective of the MCDM is to provide, to the decision maker,
solutions to a problem with multiple criteria, which are often contradictory [43,44]. This
makes MCDM efficient strategies to obtain the best solution, using strategies to evaluate
multiple criteria [6,42].

Below are two tables with MCDM methods. Table 7 contains some of the more popular
methods, while Table 8 shows MCDM methods with fuzzy logic. The tables contain the
abbreviation MCDM, the author(s), and the year it was first published. Subsequently, the
strategies contained in these tables are detailed.

Table 7. Some of the best known MCDMs.

MCDM Proposed by: Year References

ELECTRE Bernard Roy 1968 [45]
TOPSIS Hwang Yoon 1981 [46,47]
AHP Saaty 1981 [36,48]
VIKOR Opricovic 1988 [48,49]
PROMETHEE Brans and Mareschar 2005 [50,51]
MOORA Brauers and Zavadskas 2006 [52,53]
CODAS Ghorabee 2016 [54,55]

Table 8. Some of the MCDMs with fuzzy logic.

MCDM-Fuzzy Proposed by: Year References

FS Lotfi A. Zaden and Dieter Klaua 1965 [45,53]
IFS Krassimir Atanassov 1986 [56]
BFS Zhang Wen-Ran 1994 [56,57]
Fuzzy PSO Bo Wang, GuoQiang Liang and ChaLin, Wang 2006 [58]
Fuzzy TOPSIS Chen and Tsao 2008 [59]
PFS Zadeh and Yanger 2013 [41,60]
q-ROF Yager 2017 [51,52]
TSFS Smarandache, Florentin 2019 [61,62]

The first method corresponds to elimination and choice translating reality (ELECTRE),
and comprises a family of classification methods. The similarities of this family of meth-
ods lie in the pairwise comparison of the alternatives, based on the primary notions of
agreement and disagreement sets. In addition, they use ranking charts to point out the best
alternative. Bernard Roy is credited as the creator of ELECTRE [45].

For 1981, two methods appear. The technique for order preference by similarity to an
ideal solution (TOPSIS), compares the distance of all alternatives with the best and worst
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solutions [46,47]. The analytical hierarchy process (AHP) decomposes the elements in all
hierarchies and determines the priority of the elements through quantitative judgment for
integration and evaluation [36,48].

In 1988, the multiple criteria compromise and optimization solution (VIKOR) method
appears, seeking multi-criteria optimization by classifying a set of alternatives against
several conflicts [48,49]. Later, in 2005, the preference ranking organization method for
evaluation enrichment (PROMETHEE) appeared, which calculates the dominant flows of
alternatives [50,51]. Meanwhile, in 2006, the multi-objective optimization method based on
ratio analysis (MOORA) appeared, which evaluates the ranking of each alternative based
on ratio analysis [52,53]. The most recent of this group are the combinatorial distance-based
evaluation (CODAS) models that use the alternative Euclidean distance of the negative
ideal and the Taxicab distance [54,55].

A disadvantage of the MCDM lies in the subjective determination of the weights by
the decision makers, presenting complexity and uncertainty when evaluating the infor-
mation [40,63]. Due to this complexity, in 1965, Lotfi Zadeh introduced fuzzy sets (FS),
allowing the analysis of a wide variety of situations that resemble decision making in
situations of uncertainty or inaccuracy [45,53]. Since that year, there has been an increase in
the development of new methods or improvements, among which is the intuitionist fuzzy
set (IFS), developed in 1986, which considers the function of the degree of membership and
that of non-members [56]. Meanwhile, in 1994, it evolved, becoming the bipolar fuzzy set
(BFS) with positive and negative membership function degree [56,57].

Later, in 2006, the Fuzzy PSO method appeared, solving the convergence conflict of
group particles, in addition to maintaining a faster speed and convergence precision [58].
Meanwhile, in 2008, the Fuzzy TOPSIS method found positive and negative ideal solutions
as a comparison criterion for each choice. Later, it compares the Euclidean distance between
the alternatives and the ideal solution to obtain the proximity of the alternatives and
perform the classification of the pros and cons of the alternatives [59].

After some time, by 2013, the IFS evolved, modeling uncertainty and vagueness
through linguistic terms, called Pythagorean fuzzy sets (PFS) [41,60].

Among the most recent methods of 2017, is the q-rung orthopair (q-ROF) fuzzy set,
which is based on IFS and PFN, which presents, in parallel, the degrees of membership, non-
membership, and indeterminacy of decision makers [51,52]. Meanwhile, the T-spherical
fuzzy set, from 2019, has the flexibility to unite the sum of the q-th power of membership,
abstinence, and non-membership between one and zero [61,62].

Although the use of optimization methods as a decision making strategy has shown
efficiency, many of them require a lot of time to perform the calculations [2,37]. Just as the
application of a single algorithm does not guarantee having the best solution, comparing
several algorithms or a hybrid increases the efficiency and effectiveness of the result [36,64].
An example of this is the combination of interval analytical hierarchy process (IAHP) and
combinative distance-based assessment (CODAS) to prioritize alternative energy storage
technologies [65].

3.3. Metaheuristics

The objective of this section is to make a classification of metaheuristic algorithms. There-
fore, the origin of the metaheuristics within the optimization methods must first be identified.

Optimization methods (OM) are one of the strategies for data analysis. OM involves
a series of mathematical steps to visualize wins, gains, losses, risks, or errors [66,67],
where the location of the decision variables is by maximizing or minimizing their objective
function [68].

Figure 11 shows a classification that the authors visualize between exact and heuristic
methods, where the exact methods give an optimal solution, while the heuristics compute
the fastest result, getting closer to the optimal solution [67,69]. Among the heuristic methods
are the approximation and metaheuristic algorithms, where their main difference lies in the
number of iterations used in their process [49,66].
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Figure 11. Classification of optimization methods.

The metaheuristic algorithms apply rules with a sequential ordering in the processes
in a simpler, more precise, and faster way [38,63]. These algorithms improve the solutions
because they are based on the intelligence of the population [66,67]. The use of these
algorithms has been found to reduce costs, assign tasks, distribute times, and find the best
path or location [37,70]. Currently, metaheuristic algorithms have solved problems in the
field of engineering, economics, science, and computer security [38].

There is a wide variety of algorithms within metaheuristics, including novel algorithms
and hybridization of several algorithms, which makes it difficult to determine which of
them provides the most efficient solution [68,71]. That is why the authors have made
four categories according to behaviors and characteristics, see Figure 12. These categories
correspond to: (1) those based on unique or population solutions, (2) inspired or not by
nature, (3) iterative or greedy, and (4) with or without memory.

Figure 12. Classification of metaheuristic algorithms.

In the first category are population-based algorithms that provide a set of solutions,
improving local search with the ability to explore solutions close to the optimum [6,66].
The vast majority of these algorithms are initialized with random solutions, which improve
with each iteration [72]. These algorithms include the arithmetic optimization algorithm
(AOA) [68] and the evolutionary algorithms (EA) [73,74], among which are the genetic
algorithms (GA) [66], and the swarm optimization of particles (PSO) [73,75]. These methods
are based on one path at a time and this solution may not be within the search neighborhood,
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they are the single solution algorithms, among which are the simulated annealing algorithm
(SA) [67] and Taboo (TS) [40].

Then, there is the category of algorithms inspired by nature that establish rules for the
behavior of a population in a situation that occurs in nature [33,70]. Some authors, such
as Abualigah et al. [68], name these as swarm intelligence algorithms. Tzanetos in 2021,
located 256 algorithms in this category, of which 125 have demonstrated their efficiency
in solving a real-life problem [70]. Within this category, they are classified into swarm
intelligence algorithms and those based on organisms. In the swarm intelligence algo-
rithms are the: PSO [37,40], ant colony algorithm (ACO) [37,76], bat algorithm (BA) [38,70],
and among the most recent, the reptile search algorithm (RSA) [77,78]. While in the algo-
rithms based on organisms, one finds the algorithms of coyotes [79,80], dolphins [81,82],
penguins [83,84], and moths [85,86].

On the other hand, there are algorithms that do not incorporate the elements of nature,
showing two classifications. The first comprises algorithms based on the behavior of
physical or chemical laws, such as the SA [70,87], the multiverse optimizer (MVO) [68,73],
and the differential evolution algorithm (DE) [66]. The second classification bases its
processes on cultural or emotional behavior, including social theory [33,68]. An example is
the imperialist competitive algorithm (ICA) based on human sociopolitical growth [88,89]
and the optimization algorithm based on teaching learning (MTLBO) [90,91].

Another category of metaheuristic algorithms comprises the iterative and the greedy.
Iterative algorithms perform repetitions within their procedure to find the best solution,
for example, the PSO [37,72] and AOA [68]. While greedy algorithms start with an empty
solution and in their search process, the decision variable finds the result, an example of
this type of algorithm is the greedy random adaptive search procedure (GRASP) [70].

Memory algorithms, however, store previous and present information during the
search process, these include AOA [68] and PSO [92,93]. On the other hand, there are
algorithms without memory, which only use the present data of the search, among the
examples of these algorithms this SA [87] and GRASP [70].

In Figure 13, we see the topics addressed so far, showing the vision of the authors and
the connection they have between them.

Figure 13. Vision of the authors and the connection of the topics of the article.
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In the next section, we focus on the PSO algorithm, explaining its concept, advantages
and disadvantages, applications, and the mathematical structure for its implementation.

3.4. Particle Swarm Algorithm (PSO)

Within the family of metaheuristic algorithms is the mathematical model called particle
swarm optimization (PSO) [52]. PSO finds the best spot, based on the group intelligence of
flocks of birds and schools of fish, during predation and foraging [15,94].

The PSO works within a set of solutions (swarm) that contain a working sequence
with a series of solutions (particles), where each particle updates its speed, considering
past and present locations, to compare them with those of the swarm and thus establish the
best global position [52,95].

Figure 14 shows the movement of the particle in the swarm, with the solid line, while
the dotted line indicates the best position (pbest) and the best global position (gbest) [21,95].

Figure 14. Particle motion with the PSO algorithm. Source: [15,72].

Russell Eberhart and James Kennedy, in 1995, first presented the PSO algorithm,
starting with the current position and the change produced by each particle within the
swarm [25]. Three years later, Russell Eberhart, together with Yuhui Shi, announced a
modification of the PSO, in which they introduced the inertial weight and the best state
found at the moment by the particle and the swarm [68].

Among the advantages of PSO is the ease of application to solve problems in different
areas of agricultural, engineering, and materials, health, natural, and social sciences [2,5,13].
It is applied in the engineering sciences, which include industrial processes, transportation,
electrical, and computer engineering [17,96]. In addition to applications in health sciences,
including medical sciences and bioinformatics [29,94]. However, although PSO is effective
in complex optimization problems, its disadvantages include premature stalling [97,98],
fast convergence [94], and stochastic excess problem [97].

3.4.1. PSO Applications

The PSO algorithm in its classical form has proven to be efficient for solving complex
problems [11,99], achieving an approximation of the particles to the optimum of the prob-
lem—that is, a fast convergence [52,100]. Even so, PSO has some drawbacks, as mentioned.
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When combined with other algorithms, it generates hybrid algorithms that increase the
validation of the results [11,75].

In 2008, the first patent using PSO was registered, that is, 13 years after PSO was first
published. In this patent, the position of the access node between multiple paths, between
the main path and the estimation result, is located by means of PSO [14].

In 2009, PSO was applied in recognition of 3D objects seen from multiple points
of view [21]. PSO is also incorporated in the classifiers with attention mechanisms [22].
Additionally, an object recognition SW with PSO and the possibilistic particle swarm
algorithm (PPSO) is developed. In said SW, PSO performs the search and classification
in a multidimensional solution space. While PPSO determines the size and optimizes the
parameters of the classifier, with the simultaneous work of the particles [23]. In another
implementation that year, PSO trained a neural network to monitor the input to a network,
making comparisons of input and known frequency spectra [19].

Around 2010, applications in recognition of structured objects and groups of images
were performed by fuzzy attribute relational graphics (FARG) and PSO, where PSO matches
the graphics [24]. In 2012, PSO performed the searches and classifications of visual images
in a directed area, while cognitive Bayesian reasoning makes the decision with uncertainty
in the data [26].

In 2013, a method and apparatus for the optimal placement of responsible actuators,
shaping elastically deformable structures, was developed. Making the coincidence and
location of the optimal actuator solution with PSO [27] occurred in 2013. In that same year,
PSO was implemented in two software, one for the detection and verification of objects in a
region and the hierarchical representation scheme for the grouping and indexing of images
in the database [29]. Another method for the recognition of behavior between objects in a
video sequence uses the fuzzy attribute relational graph (FARG) for the organization of the
scene in the organization module and classifies objects in video data with PSO [28].

Meanwhile, in 2014, systems implementing PSO were developed. The first for image
registration with a new PSO approach makes a comparison of test image features with
references unnecessary. This new approach improves the convergence rate and reduces
the cost of calculations in the comparison [25], and the second one achieves a true optimal
solution and avoids premature convergence, allowing a random walk process for PSO [20].

Among the applications reported in 2018, PSO, together with ABC (artificial bee colony
algorithm), optimizes the calculations of the mechanical performance of wireless sensors of
a bicycle disc rotor [93]. In another implementation, PSO is used in a rational function model
(RFM) to extract geometric information from images [101]. Likewise, it is implemented to
improve a robot welder, reduce costs, and increase productivity, implementing PSO with
discrete particles together with the genetic algorithm GA, which they called DPSO [11].

By 2019, MCPSO, a modified centralized algorithm based on PSO, was generated in
which the MCPSO assigns tasks to supply medicine and food for the victims in specific
places using unmanned aerial vehicles [15]. Another application of that year is the artificial
neural network (ANN) training to find the weights of the network, implementing PSO and
quasi-Newton (QN) on the CPU-GPU platform with OpenCL [102].

On the other hand, in 2020, PSO performed better than GA by using an integral
squared error as an objective function, employing a nano-network that uses three resources:
the photovoltaic array, the wind turbine, and the fuel cell [103]. In this same year, the GLP-
SOK algorithm provided better results than the classical or latest generation of clustering
algorithms. GLPSOK implements the Gaussian distribution method and Lévy flight to help
search for PSO [104].

In 2021, an improved fractional-order Darwinian particle swarm optimization tech-
nique called FODPSO was developed, which improves the fractional-order calculation to
identify the electrical parameters of photovoltaic solar cells and modules. FOSPSO allows
an additional degree of freedom in the speed change of the position [75]. Furthermore,
three systems that implement PSO were generated. One system prints the route plan-
ning method for autonomous vehicles, determining the PSO parameters by the complete
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simplex sequence [16], and another controls the movement of biomimetric robotic fish,
improving the speed and stability of swimming forward and backward with PSO [12], and
a third party makes online decisions for generator start-up, optimizing the maximum total
generation capacity in a power system situation through PSO [17].

Among the most recent applications of PSO in 2022 is the optimization of parameters
in the calibration of camera image quality [96], as well as the application to determine
the minimum insulin for a type 1 diabetic patient, using the analytical convergence of the
fractional calculation particle swarm optimization algorithm (FOPSO), which improves
PSO stagnation [94]. In addition to the harvesting of agricultural products by means of a
robot, using PSO to segment green images [13].

3.4.2. Structure of the Classic PSO Algorithm

The authors present a vision of three main steps for the process of the classical PSO
algorithm: initialization, update of the local optimum-position, and obtaining the best
global optimum-position [105,106]. These most important steps can be seen in the flowchart
in Figure 15.

Figure 15. Flowchart of the classical PSO algorithm.

The following paragraphs details the classic PSO mathematical model, using the
corresponding formulas for its implementation.

Next, some notations that are used both in Figure 15 and in the formulas that will be
shown after the table are explained in Table 9.

Steps 1. Initialization

1. Set the control parameters: N, ω, c1, c2, r1, r2, and T (definition in Table 9), the number
current number of iterations with a value of 1 (t = 1) because it is the first iteration, and the
fitness function to initialize the swarm.
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Table 9. Notations and definitions used in control parameters. Source based on [92,107].

Notation Definition

i Independent unit, called a particle.
N Number of particles in the swarm, also called search space dimension or population N = {i1, i2, · · · , iN}.
ω Coefficient of the weight of inertia, increases or decreases the speed, keeping the current speed and moment of the particle.

t, T Current number of iterations (t) and the total number of iterations expected to be performed (T).
c1, c2 Non-negative acceleration factors, known as learning factors. Driving each particle towards the pbest and gbest positions.
r1, r2 Numbers between [0, 1], for the circulation of each particle. That is, they simulate the influence of nature on the particle.

The variable ω makes convergence happen in fewer iterations and maintains the balance
between local and global searches. A smaller value of ω leads to a local search and a larger
value than a global search. If ω has a large value, the algorithm starts the search globally and
ends with a local search [108,109].

2. Determine the first local position of the particles randomly, considering i = {1, 2, · · · , N}:

CPi
N(t) = (CPi

1(t), CPi
2(t), . . . , CPi

N(t)) (1)

3. Randomly set the first local velocity of the particles (from 1 to N):

Vi
N(t) = (Vi

1(t), Vi
2(t), . . . , Vi

N(t)) (2)

4. Evaluate the fitness function with the first position (Equation (1)), to obtain the best current
optimum:

CFi
N(t) = f (x) = f (CPi

N(t)) (3)

5. To establish the best local position (LBP), we use the first local position (Equation (1)). While,
for the first best local optimum (LBF), we use the current best optimum (Equation (3)):

LBPi
N(t) = CPi

N(t) (4)

LBFi
N(t) = CFi

N(t) (5)

6. To obtain the best global optimum with the maximum value of the best local optimum (Equa-
tion (5)); that is, the maximum value of the dataset of the best local optimum (LBF):

GBF(t) = max(LBFi
N(t)) (6)

7. To obtain the best global position, we extract the particle position in i from the best global
optimum (Equation (6)). Position (z) provides the value of the best local position and becomes
the best global position:

z = particle position in i of GBF(t)

GBP(t) = LBF(z) (7)

To continue with step 2, we increment the current number of iterations (t = t + 1).

Steps 2. Position updating and local optimal

1. Update speed and position of the particle.
From this step, (t− 1) indicates the value of the previous iteration, while (t) is the current iteration.
To update the velocity, we use the inertial weight coefficient (ω), the learning factors (c1 and
c2), and the particle circulation values (r1 and r2), as well as the values of the previous iteration
of the speed, local position, and best local and global positions.
Meanwhile, for the current position, we add the previous current position and the new speed:

Vi
N(t) = ω(Vi

N(t− 1)+ c1r1(LBPi
N(t− 1)−CPi

N(t− 1))+ c2r2(GBP(t− 1)−CPi
N(t− 1)) (8)

CPi
N(t) = CPi

N(t− 1) + Vi
N(t) (9)
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2. To obtain the best current optimum, evaluating the fitness function with the current position
(Equation (9)):

CFi
N(t) = f (x) = f (CPi

N(t)) (10)

3. Update best local position with current position (Equation (9)):

LBPi
N(t) = CP(t) (11)

4. To obtain the best local position, we select the maximum value between the best current
optimum (Equation (10)) and the best local optimum of the previous iteration (Equation (5)):

LBFi
N(t) = max(CF(t), LBF(t− 1)) (12)

5. Obtain the best global optimum with the maximum value of the best local optimum (Equa-
tion (12)). That is, the maximum value of the dataset of the best local optimum (LBF):

GBF(t) = max(LBFi
N(t)) (13)

6. To obtain the best global position, we extract the particle position in i from the best global
optimum (Equation (11)). That position (z) provides the value of the best local position and
becomes the best global position:

z = particle position in i of GBF(t)

GBP(t) = LBP(z) (14)

Steps 3. Obtaining the best global-optimal position

1. If the current iteration is less than the total iterations, it is convergent; therefore, we increment
the iteration and continue from step 2:

t < T → (t = t + 1) (15)

Continue from step 2 (Equation (8))

2. The process ends when the total iteration is equal to or greater than the current iteration. We
obtain the best position and the best optimum from the last values of the best global position
and the best global optimum:

t ≥ T =

{
pbest(T) = GBP(t)
gbest(T) = GBF(t)

(16)

4. Conclusions and Future Work

The study carried out in this article manages to conceptualize and categorize the
MCDM and metaheuristic methods. Of the most relevant MCDM methods, they were clas-
sified as follows: (a) classical form and (b) with fuzzy extensions. At the same time, it opens
the opportunity to more effectively validate the results of the PSO method. Furthermore,
another of the results obtained deals with the classification of optimization methods in the
following way: heuristic, metaheuristic, and exact (see Figure 11). It can be said, then, that
metaheuristic methods categorize by behavior and characteristics into: (1) inspired or not
by nature, (2) based on unique solutions or populations, (3) iterative or greedy, and (4) with
or without memory (see Figure 12). Data analysis is an important point in any decision
making, so researchers have made a great effort to achieve results more efficiently. Due
to the large number of algorithms that exist, it is difficult to have an updated ranking or
to experiment with all the optimization algorithms. The literature research addresses the
PSO method and its extensions with other methods, and the results indicate that there is a
significant opportunity to make improvements to the algorithm. The same is confirmed in
the literature reviewed on this topic (PSO), given that it has potentially increased in the
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last 5 years. On the other hand, the articles found on the PSO method in its classical form
were very few. However, it has proven to be efficient in decision making both in terms of
results and implementation. Likewise, the PSO method shows the ability to solve complex
problems, and its application is not limited to a single area. Furthermore, the number of
patents found using the PSO method was 135 records, where the countries with the main
patent registrations were the United States of America and the People’s Republic of China.
Additionally, the most recent patent filings incorporated the countries of India, Ireland, and
Germany. It is important to point out that the study of this document addresses the review
of patents not only of Universities or research centers, but also of multinational companies.
Similarly, the registration of copyright works, from 2002 to date, was 25 registrations, noting
that it is an unexploited field and its use is limited to subject text records. Additionally,
with this literature, there will be a basis for the implementation of the said algorithm in
an intelligent system for data analysis, and it will serve as the basis for the research of
other authors with this approach. Among the future works that the authors have planned
is to continue the research, focusing on the improvements of the PSO algorithm and not
exclusively with the classic PSO. Therefore, we will start with test cases, comparing PSO
with other algorithms like ACO, BA, and others that have fuzzy logic. Furthermore, it is
planned to use PSO combined with some MCDM, such as TOPSIS, CODAS, and q-ROF, to
increase the effectiveness of the results.
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