
����������
�������

Citation: Chen, Y.; Luktarhan, N.; Lv,

D. LogLS: Research on System Log

Anomaly Detection Method Based on

Dual LSTM. Symmetry 2022, 14, 454.

https://doi.org/10.3390/

sym14030454

Academic Editor: Juan Alberto

Rodríguez Velázquez

Received: 25 January 2022

Accepted: 16 February 2022

Published: 24 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

LogLS: Research on System Log Anomaly Detection Method
Based on Dual LSTM
Yiyong Chen, Nurbol Luktarhan * and Dan Lv

College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China;
chenyiyong578@stu.xju.edu.cn (Y.C.); lvdan@stu.xju.edu.cn (D.L.)
* Correspondence: nurbol@xju.edu.cn

Abstract: System logs record the status and important events of the system at different time periods.
They are important resources for administrators to understand and manage the system. Detecting
anomalies in logs is critical to identifying system faults in time. However, with the increasing size
and complexity of today’s software systems, the number of logs has exploded. In many cases, the
traditional manual log-checking method becomes impractical and time-consuming. On the other
hand, existing automatic log anomaly detection methods are error-prone and often use indices or
log templates. In this work, we propose LogLS, a system log anomaly detection method based on
dual long short-term memory (LSTM) with symmetric structure, which regarded the system log
as a natural-language sequence and modeled the log according to the preorder relationship and
postorder relationship. LogLS is optimized based on the DeepLog method to solve the problem of
poor prediction performance of LSTM on long sequences. By providing a feedback mechanism, it
implements the prediction of logs that do not appear. To evaluate LogLS, we conducted experiments
on two real datasets, and the experimental results demonstrate the effectiveness of our proposed
method in log anomaly detection.

Keywords: system logs; anomaly detection; LSTM; time series forecasting

1. Introduction

Many log files are often produced during the operation of modern systems. They
reflect the running state of the system and record the activity information of specific
events in the system. They are valuable resources to understand the state of the system.
Therefore, system logs are an important data source for performance monitoring and
anomaly detection and have become a research hotspot in the field of anomaly detection [1].

At present, log anomaly detection can be roughly divided into three categories: rule-
based anomaly detection, unsupervised anomaly detection, and supervised anomaly
detection.

Rule-based exception detection [2] generally requires a manual analysis of logs and
rule creation in advance, and the degree of automation is also low. For example, ref. [3]
created rule sets based on analyzing log time series information, which effectively reduced
the false-positive rate of the system but with low automation and high labor cost.

With the unsupervised anomaly detection method [4], the manual consumption is
reduced to a large extent, and there is no need for premarked training data. Anomaly
detection can be performed by judging the difference between the log sequence to be
detected and the normal log sequence. Wei Xu et al. [5] used abstract syntax trees (AST)
and principal component analysis (PCA) to process the parsed log feature set, reduce the
complexity of the feature set to be analyzed, and obtain effective exceptions test results.
Jian-Guang Lou et al. [6,7] proposed an unstructured log analysis technology for anomaly
detection, a new algorithm for automatically discovering program invariants in logs, and
mining program invariants in log message groups, which revealed the inherent linearity of

Symmetry 2022, 14, 454. https://doi.org/10.3390/sym14030454 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14030454
https://doi.org/10.3390/sym14030454
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://doi.org/10.3390/sym14030454
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14030454?type=check_update&version=1

Symmetry 2022, 14, 454 2 of 21

the program workflow. Qingwei Lin et al. [8] proposed a method of log clustering for log
problem identification. In log clustering, each log sequence was represented by a vector, the
similarity value between the two log sequences was calculated, and the clustering hierarchy
was applied. The hierarchical clustering grouped similar log sequences into clusters.

Based on the supervised anomaly detection method [9], it is necessary to use the
premarked data to perform log anomaly detection through a pretrained model. For ex-
ample, ref. [10] used a log event counting vector to train a logistic regression model and
calculated the abnormal probability of a log sequence. In reference [11], the log event
counting vector was input into a support vector machine (SVM) to train the hyperplane,
and the position relationship between the detection log sequence and the hyperplane was
judged to determine the abnormal log sequence.

With the development of deep learning [12], scholars have promoted the association
between neural networks and log detection, and some abnormal log detection methods
based on neural networks have gradually emerged [13], which have achieved good results
in practical applications. Bin Xia et al. [14] proposed a generative adversary network based
on long short-term memory (LSTM) that used a custom log parser to extract structured
information and convert each log into an event. Min Du et al. [15] proposed a deep neural
network model that used LSTM to model system logs as natural-language sequences.
DeepLog obtained the log model from normal execution and performed anomaly detection
on log data through this model. Compared with machine learning methods, DeepLog
overcomes the deficiency of the recurrent neural network (RNN) and has high accuracy.
However, the method for anomaly detection only considers the impact of the log’s pre-
event on the current event while ignoring the postsequence when performing anomaly
detection. The impact of events on current events is prone to deviations over time in a
long sequence of events, which subsequently affects the accuracy of subsequent event
predictions, lowering the confidence in the results. In terms of efficiency under detection,
this method still has room for improvement.

Zhang X et al. [16] used log event semantic information to extract log sequence context
information through a bi-LSTM model to effectively improve the accuracy of log anomaly
detection. To solve the problem of low detection efficiency of long sequence abnormal logs,
Yang Ruipeng et al. [11] introduced a time convolutional neural network into abnormal
log detection and replaced the fully connected layer with adaptive global average pooling,
which effectively solved the overfitting problem and improved detection efficiency.

To solve the problem that unstructured logs [17] are difficult to detect directly, this
paper adds a filtering function based on the Spell [18,19] method to parse unstructured
logs more accurately, which lays a good foundation for anomaly detection of log sequences.
In this paper, a log path anomaly detection method based on a dual LSTM network is
proposed, which fully considers the interaction and latent symmetry information between
the events before and after and makes up for the problem that the log sequence anomaly
detection method based on deep learning ignores the log time correlation. Compared
with similar previous methods, this method has improved accuracy and F1-measure on
HDFS datasets.

The contributions of this paper are as follows:

1. By adding a filter step on Spell, the problem that the current log template is not
accurate enough is solved, which is more conducive to the performance of the later
log detection work.

2. Two LSTM models are constructed according to the preorder and postorder relations
of the log sequence. Combined with the two models, a complete log anomaly detection
model is constructed, which fully considers the interaction of before and after log
events and solves the problem of insufficient feature mining of log sequences.

3. This paper provides an update mechanism. It solves the problem of inaccurate
detection of unseen log sequences.

The rest of this article is organized as follows. In Section 2, we introduce the related
work. In Section 3, we summarize the construction of the model from three aspects:

Symmetry 2022, 14, 454 3 of 21

log parsing, feature extraction, and anomaly detection. Finally, we evaluate the model’s
performance in Section 4 and summarize this article in Section 5.

2. Preliminaries
2.1. Log Parser

The first step of abnormal log detection is to collect the log, obtain the original data
and preprocess it. After log collection, we preprocess the data. According to specific
requirements, invalid information in the log data is further removed, including repeated
information and useless information. Finally, we obtain the log data, as shown in Figure 1.
Then, we parse the data, analyze the log structure and information, and obtain the log
template for each event as the basis for subsequent feature extraction.

Figure 1. HDFS log information sample.

The purpose of the log parser is to normalize the structured log data. By parsing the log
file to extract the log key, the log sequence is constructed, and the log data of different struc-
tures are converted into log key sequences with the same format (sometimes called a log
event sequence) [20]. For example, the log “081109 205931 13 INFO dfs.DataBlockScanner:
Verification succeeded for blk_-4980916519894289629” in Figure 1 indicates that the content
fragment is “Verification succeeded for blk_-4980916519894289629”, the constant part is
“Verification succeeded for “, and the variable is “blk_-4980916519894289629”; variable
parameters can be abstracted as *. The common constant in all similar log entries is called
the log key, which can be used to indicate the log type. By replacing it with a log key k1
(e.g., Verification succeeded for (*)), we obtain a sequence {k1, k2, k3,. . . , ki}. The parameter
value is a very valuable type of information in the log and reflects the operating status and
performance of the system. Some parameter values can also be used as the identification of
the execution sequence, such as block_id in the HDFS log, as a unique identifier, which can
extract the log sequence of a specific module.

At present, there are many automatic log analysis methods in the industry. CFG [21]
mainly uses code analysis with AST and CFG algorithms. This method adopts the offline
mode; with general accuracy, the construction time complexity is O(n3), and the search
efficiency is high. LKE [22] first converts the free-format text of the log into log keys, and
then clusters the obtained keys. By mapping each log message to a series of log keys, the
log message can be converted into a log key sequence. The algorithm used in this method
is clustering, which adopts offline mode and has average accuracy. The construction time
complexity is O(n2), and the search efficiency is very low. Logarm [23] is an effective
automatic log parsing method using an n-gram dictionary in natural-language processing.
The method adopts the online mode, the construction time complexity is O(n), and the
accuracy and efficiency are relatively high.

Drain [24] uses a fixed-depth tree structure to represent log messages and effectively
extract common templates. The method adopts the online mode, the construction time
complexity is O(n), and the accuracy and search efficiency are relatively high. Spell is a
more advanced log parsing tool. It uses the longest common subalgorithm (LCS) to parse
logs in a stream. It is implemented by MIT’s logPAI team [25,26] as an open-source system
and can analyze logs online. This article uses Spell to parse the log template from the log
data, and manually filters, deduplicates, and merges the obtained templates to obtain the
final log template that is used as the basis for log anomaly detection.

Symmetry 2022, 14, 454 4 of 21

2.2. Architecture and Overview

The architecture of log anomaly detection is shown in Figure 2. It includes three main
modules: log analysis, log key anomaly detection, and a workflow model for anomaly
detection.

Figure 2. LogLS architecture.

In the log parsing stage, the parsing results obtained by simply using the Spell method
are not completely correct. Some log templates are duplicated or redundant, which leads
to poor anomaly detection effects. In response to this situation, in this article, to improve
the Spell method we add manual filtering to obtain the final log template list. Then, the
unstructured log data are parsed into log events according to the log template list, and
finally, the log event sequence file is obtained for model training.

In the training phase, the training set is the log entries from the normal system
execution path, i.e., the log events obtained after log parsing. For different system logs,
there are different ways to construct a log event sequence. If the log has a unique identifier,
such as an HDFS log, the log event sequence is constructed according to the unique
identifier. If there is no unique identifier, such as the BGL log, we use a sliding window
to construct the log event sequence. Using the log event sequence parsed in the log file
for model training, we obtain prelog and postlog event sequence LSTM models . These
two LSTM models are combined to form a complete anomaly detection model. Of course,
how to combine these two models requires the use of another feature (length) of the log
event sequence. During model training, we count the distribution of the length of the log
event sequence for preliminary filtering of the log event sequence. Finally, according to
the log verification dataset and many tuning experiments, we obtain the most suitable
model parameters.

In the detection phase, we use the log test dataset to perform model detection. First,
we generate a log event sequence from the original log through the parsed log template and
then determine the use method of the preorder and postorder detection models according
to the sequence length characteristics. According to the selection of the model, a certain log
event in the incoming log event sequence is detected, and whether the log event deviates
from the prediction result of the normal log sequence is determined. If there is too much
deviation, it is judged as anomaly. If the result of the judgment is normal, the next log
event detection work is performed on the sequence until the entire log event sequence
detection is completed or an anomaly log event that deviates from the normal log sequence
is found. If a certain log event in the log sequence is predicted to be abnormal, the entire
log sequence is marked as abnormal. This method provides a feedback mechanism, and
logs marked as anomalies will be provided to the user for further operation. If the user
finds that the detected abnormal marking result is falsely reported, the falsely reported log
event sequence can be added to the training set. When there are many false positives, users
can retrain the model according to the new training set to gradually update the model.

Symmetry 2022, 14, 454 5 of 21

3. Methodology

This paper proposes a system log anomaly detection method based on dual LSTM.
Through the cooperation of two LSTM models, the gradient problem of a single LSTM
model in long sequence prediction [27] is solved, and the performance of anomaly detection
is improved. Figure 2 shows the three main modules of this method: log parsing, log key
anomaly detection model, and anomaly detection workflow model. In the rest of this
section, we will cover the various parts of this method in detail.

3.1. Log Parser (Spell)

In the log parsing module, we convert the original log into a structured log through
the log parser. Log parsing is considered a common preprocessing of unstructured logs
and is an important part of most log analysis tasks. There are many parsing methods at
present, among which Spell is currently the better one. It is a log parsing method based on
the longest common subsequence (LCS). The time complexity of this method for processing
each log entry e is close to linear (linearly related to the size of e) and unstructured log
messages are parsed into structured log templates. Although Spell is a better log analysis
method at present, the log template parsed by this method is not completely correct. If
it is used directly to generate log events and compose a log event sequence for anomaly
detection, it is difficult to achieve optimal results.

The main dataset of this article is HDFS logs, which can well reflect the effectiveness
of the LogLS method. Table 1 shows the HDFS log template parsed by the Spell method.
There are 37 types of HDFS log templates obtained. We can see that some log templates
are duplicated. For example, the three log event templates in {E7, E8, E9} are similar, and
E8 can contain the other two. If we directly use these templates to generate log sequences,
it will seriously affect the effect of log anomaly detection, so this method has room for
improvement. This article adds manual deduplication steps to further optimize the effect
of log parsing and achieve a higher level of detection.

Table 1. The event template obtained from parsing the HDFS log by the spell method.

EventId EventTemplate

E1 Adding an already existing block (*)
E2 Verification succeeded for (*)
.
E7 writeBlock (*) received exception java.io.IOException Connection reset by peer
E8 writeBlock (*) received exception (*)
E9 writeBlock (*) received exception java.io.IOException Could not read from stream
.
E14 PacketResponder (*)(*) Exception java.io.IOException Broken pipe
E15 PacketResponder (*) 2 Exception (*)
E16 PacketResponder (*) 1 Exception (*)
.
E36 Deleting block (*) file (*)
E37 BLOCK* NameSystem.allocateBlock (*) (*)

To improve accuracy, we need to eliminate duplicate data in the log event template
obtained by Spell. We do so by selecting a few representative log entries that conform to
each event template and check whether they are repeated. If they are repeated, according
to the frequency of the log event template, they are unified into the event template with the
most frequent occurrences. The log events in Table 1 are reprocessed, and the results are
shown in Table 2.

Symmetry 2022, 14, 454 6 of 21

Table 2. HDFS log event template after processing.

EventId EventTemplate

E1 Adding an already existing block (*)
E2 (*)Verification succeeded for (*)
.
E7 writeBlock (*) received exception (*)
E8 PacketResponder (*) for block (*) Interrupted.
E9 Received block (*) of size (*) from (*)
.
E14 Exception in receiveBlock for block (*) (*)
E15 Changing block file offset of block (*) from (*) to (*) meta file offset to (*)
E16 (*):Transmitted block (*) to (*)
.

E28 BLOCK* NameSystem.addStoredBlock: addStoredBlock request received for (*)
on (*) size (*) However, it does not belong to any file.

E29 PendingReplicationMonitor timed out block (*)

In this article, we first use the system log template to divide the unstructured log
into several parts (e.g., date, time, content, etc.), and then further extract meaningful
information (e.g., events) from these parts. Usually, the event consists of three parts (time
stamp, signature and parameters). Figure 3 illustrates the HDFS log parsing process. The
signature attribute is the log template. The specific algorithm is implemented as follows:

1. The initialization program first defines a log object (LCSObject) such as the log key
(LCSseq) and line number list (lineIds), and defines a log object list (LCSMap), which
is used to save each log object.

2. Enter the log file and read it line by line.
3. Read a line of log, and then traverse the LCSMap to see if there is already an LCSObject

in the list that has the same LCSseq (log key). If such an LCSObject exists, add the
lineIds of this log to the lineIds of the LCSObject. If not, then generate a new LCSObject
to LCSMap.

4. Keep reading the log until the end.

Figure 3. Example of log parser.

Symmetry 2022, 14, 454 7 of 21

The template extracted from the log in Figure 3 is “PacketResponder (*) for block (*)
terminating”, where “(*)” represents the variable parameter. If you enter a new log entry
“PacketRespo-nder 2 for block blk_2529569087635823495 termina-ting”, Spell’s idea is not to
extract the log key directly, but to extract it in comparison. After receiving the newly input
log entry, the LCSMap is traversed and an LCSObject whose LCSseq is “PacketResponder
0 for block blk_6137960563260046065 terminating” is found. Then, the LCS is calculated
as “PacketResponder for block terminating”. When the length of the sequence is between
1/2 and 1 times the length of the input entry, it is judged that it belongs to the same log
key, so it is merged, and the lineIds of this log entry is added to the lineIds attribute of
the LCSObject.

Then, the obtained initial log template is manually filtered to obtain the final log event
template. The log entries of the entire dataset are then processed to obtain log events
of all log entries, which are used to form log event sequences and perform subsequent
model training.

3.2. Anomaly Detection

HDFS logs are parsed to obtain the log template, and the event id of each log entry
is obtained based on the log template. The value of some parameters can be used as an
identifier for a specific execution sequence, such as block_id in HDFS logs. These identifiers
can combine log entries together or unwrap log entries generated by concurrent processes
to separate a single thread sequence. As shown in Table 3, the HDFS log event sequence in
this article is generated based on block_id.

Table 3. The demo of HDFS log events sequences.

Sequence ID Log Events Sequences

0 E5 E5 E5 E22 E11 E9 E11 E9 E11 E9 E26 E26 E26 E23 E23 E23 E21 E21 E21
1 E22 E5 E5 E5 E11 E9 E11 E9 E11 E9 E26 E26 E26
2 E22 E5 E5 E5 E26 E26 E26 E11 E9 E11 E9 E11 E9 E23 E23 E23 E23 E21 E21 E21
3 E22 E5 E5 E5 E11 E9 E11 E9 E11 E9 E26 E26 E26

4 E22 E5 E5 E5 E26 E26 E26 E11 E9 E11 E9 E11 E9 E4 E3 E3 E3 E4 E3 E4 E3 E3 E4
E3 E3 E23 E23 E23 E21 E21 E21

5 E5 E22 E5 E5 E11 E9 E11 E9 E11 E9 E26 E26 E26

System log detection will be performed on the log event sequence (shown in Table 3)
obtained by the log parser. Assuming that K = {k1, k2, k3,. . . , kn} is a log event sequence
transformed by a log block, each log key represents a log path command at a certain time,
and the entire log event sequence reflects the sequential execution path of the log. To detect
the entire sequence, it is necessary to check whether each log event is normal. Let ki be one
of the n K sequences, representing the log event to be detected. The model in DeepLog
takes the influence of the forward sequence on ki to determine whether it is abnormal.
For HDFS logs, this article not only considers the impact of the forward sequence on the
next log event but also considers the impact of the backward sequence on the previous log
event and combines them to further determine whether the event is abnormal. Figure 4
summarizes the classification settings. Suppose t is the sequence id of the next log event,
w1 is the set of h most recent log events in the previous sequence, and w2 is the set of h
most recent log events in the subsequent sequence. In other words, w1 = {mt−h,. . . , mt−2,
mt−1}, w2 = {mt+h,. . . , mt+2, mt+1}, where each mt is in K, and is the log event from the
log entry et. The same log event in w1 and w2 may appear multiple times. The output of
the training phase is two conditional probability distribution models Pr1 (mt = ki|w1) and
Pr2 = (mt = ki|w2) for each ki ∈ K(i = 1, . . . , n).

Symmetry 2022, 14, 454 8 of 21

Figure 4. An overview of log events anomaly detection model.

To extract context features and potential symmetry information [28] from sequence
relationships, two long short-term memory networks (LSTMs) [29–31] are used in LogLS to
train the preorder and postorder log event sequences. Each LSTM node has a hidden state
ht−i and a cell state Ct−i, both of which are passed to the next node to initialize its state. The
purpose is to obtain the probability of the current log event ki through the preorder and the
subsequent log event ki through the model and then set a probability limit (parameters g1,
g2) to determine whether the current log event is anomalous.

The formula for forward propagation is:
Input gate:

at
ι =

I

∑
i=1

wiιxt
i +

H

∑
h=1

whιbt−1
h +

C

∑
c=1

wcιst−1
c (1)

bt
ι = f (at

ι) (2)

Forget gate:

at
φ =

I

∑
i=1

wiφxt
i +

H

∑
h=1

whφbt−1
h +

C

∑
c=1

wcφst−1
c (3)

bt
φ = f (at

φ) (4)

Output gate:

at
ω =

I

∑
i=1

wiωxt
i +

H

∑
h=1

whωbt−1
h +

C

∑
c=1

wcωst−1
c (5)

bt
ω = f (at

ω) (6)

In Formulas (1)–(6), xt is the input at the current moment, st−1
c is the state of all cells at

the last moment, bt−1
h is the output of different LSTM memory blocks at the last moment,

st
c is the state of all cells at the current moment, w is the weight of each gate, and f is the

activation function.
The back propagation calculation formula is:
Input gate:

δt
ι = f ′(at

ι)
C

∑
c=1

g(at
c)ε

t
s (7)

Forget gate:

δt
φ = f ′(at

φ)
C

∑
c=1

st−1
c εt

s (8)

Output gate:

δt
ω = f ′(at

ω)
C

∑
c=1

h(st
c)ε

t
c (9)

The process of backpropagation is actually the use of chain derivation to solve the
gradient of each weight in the entire LSTM. In Formulas (7)–(9), δt

ι is the gradient of the
input gate, δt

φ is the gradient of the forget gate, and δt
ω is the gradient of the output gate.

In the training phase, the normally executed log entries are used as the dataset to train
the model. The purpose is to allow the model to fully learn the normal execution mode of

Symmetry 2022, 14, 454 9 of 21

the system log and avoid misjudgment as much as possible. Suppose a log event sequence
is {E22, E5, E5, E5, E11, E9}. Given a window size of 2, the input preorder sequence and
output label used to train the model are: {E22, E5→E5}, {E5, E5→E5}, {E5, E5→E11} and {E5,
E11→ E9}. The input postorder sequence and output label are: {E9, E11→E5}, {E11, E5→E5},
{E5, E5→E5} and {E5, E5→E22}. The LogLS model is used to obtain the probability of the
current log event based on the preorder and postorder sequences. The training phase needs
to find an appropriate weight distribution so that the final output of the model produces
the required labels and outputs them along with the input in the training dataset. In the
training process, each input or output uses gradient descent to incrementally update these
weights through loss minimization. In LogLS, the input includes h log event windows w1
and w2, and the output is the log event value immediately after w1 and the log event value
before w2. We use categorical cross-entropy loss [32] for training. In the training phase, the
length features and latent symmetry information of the log event sequence are counted for
later use in the detection phase. After the model is trained, the verification set is used to
adjust the parameters of the model to further obtain the optimal anomaly detection model
parameter values.

The basic method of the detection phase is the same as the training phase, but a
preliminary filtering process is added. For the newly added log event sequence, first a
preliminary judgment is made based on the length features obtained in the training phase,
and then how to combine the two models for anomaly detection is decided. The length of
the tentative log sequence is represented by K, and the following three situations will occur
in anomaly detection.

• When K < R (R represents the minimum length of the normal log event sequence
counted during model training), the sequence is considered an anomaly sequence.

• When R < K < 2*W (W represents the final model training window size), only the
previous log event sequence model is selected for anomaly detection. This involves a
parameter g1 (g1 represents the first g1 digit of the log event probability predicted by
the previous log event model).

• When K > 2*W, in this case, it is necessary to select the prelog event sequence model
and the postlog event sequence model to predict together. It also needs to be sub-
divided, because the length of the last W of the log sequence cannot be used in the
postsequence log event sequence model. Because there is no subsequent input, only
the previous log event sequence model is selected at this time. Two parameters g2 and
g3 are involved here (g2 represents the first g2 digits of the log event probability pre-
dicted according to the previous log event model, and g3 represents the first g3 digits
of the log event probability predicted according to the subsequent log event model).

The log event sequence is input to the LogLS model, and the conditional probability
of a log event to be detected is obtained. If the probability with the value of the parameters
g1, g2, and g3 does not meet the parameter range, it means that it deviates from the normal
log sequence and can be regarded as anomalous. Otherwise, other log events are continued
to be judged until the entire log event sequence is determined. If no abnormality occurs,
the log event sequence is normal.

For example, when the input log event sequence is {E22, E5, E5, E5, E11, E9, E11,
E23} and the given window size is 3, the sequence length is 8. This situation belongs
to the third situation mentioned above, and the {E5, E11} in the sequence are predicted
using the preorder and postorder models. First, for {E5}, the input w1 = {E22, E5, E5},
w2 = {E11, E9, E11}. Suppose that the log event probability obtained according to w1 is
{E5:0.8, E22:0.2} and that the event probability obtained according to w2 is {E5:0.6, E23:0.2,
E9:0.2}. The parameter g2 is 1, and the parameter g3 is 2, indicating that the log event
predicted by w1 is E5, and the log time predicted by w2 is E5 or E23. Because the actual log
event is E5, it indicates that the current log event is normal. Because the detection result is
normal, the detection work continues backward. If the actual log event is not in the two
predicted results, it will be judged as an abnormal log event sequence. {E9, E11, E23} in
this sequence cannot be predicted using the abnormal log event sequence model obtained

Symmetry 2022, 14, 454 10 of 21

in the subsequent sequence because there is no subsequent log sequence of the window
size, so at this time, only the previous log event model is used to make the prediction.
When the actual log event that needs to be predicted is {E23}, and the input w1 = {E11,
E9, E11}, assuming that the event probability obtained according to this sequence {E5:0.6,
E23:0.4}, the first g2 predicted result is taken as {E5}, which does not match the actual result.
Therefore, it is regarded as an abnormal log event, and the sequence is finally judged as
an abnormal sequence. The abnormal result is fed back to the user, and the user can judge
whether a misjudgment is made. If a misjudgment occurs, the misjudgment sequence data
are recorded, and the model is later adjusted through the update mechanism. If there was
no misjudgment, the sequence was directly marked as abnormal.

3.3. Renewal Mechanism

Obviously, the training data may not cover all possible normal execution models.
How to ensure the timeliness of the detection model and solve the emergence of new log
execution models are problems that must be solved in system anomaly detection. For
example, when the actual log event in the log event sequence is E12 and the predicted result
according to w1 or w2 is E8, the event is regarded as abnormal. However, after manual
inspection by the user, it is found that these two are normal log events. Therefore, LogLS
provides users with a feedback mechanism [33] to relearn this new sequence using false
positives to adjust its weight. When the sequence is entered again, it will be detected that
both E12 and E8 will have the same probability and will be marked as normal.

4. Evaluation

LogLS is implemented using Keras [34] with TensorFlow [35] as the backend. In this
section, we show evaluations of the overall performance of LogLS to show its effectiveness
in finding anomalies from large system log data.

4.1. Dataset

This article uses the authoritative dataset commonly used in system log anomaly
detection: the HDFS log dataset disclosed by Wei Xu et al. [5]. HDFS log datasets are
generated by running Hadoop-based map-reduce jobs on Amazon EC2 nodes. It is marked
by experts in the Hadoop field. The dataset contains 11,197,954 log entries, of which
16,838 log entries are abnormal, including events such as “write exceptions”, accounting
for approximately 2.9% of the total [36]. This dataset was constructed in 2009 and then
widely used in the field of log anomaly detection. The dataset can be obtained in loghub.
The specific information is shown in Table 4.

Table 4. Summary of the HDFS datasets.

System #Time Span #Data Size #Nomalies #Anomalies

HDFS 38.7 h 1.55 G 11,175,629 16,838

The HDFS dataset was eventually parsed into 575,059 log blocks, also known as log
event sequences, of which 16,838 log blocks were marked as anomalies by Hadoop domain
experts. In this paper, the HDFS dataset is divided into three parts, namely the training
dataset, verification dataset and test dataset. The training dataset is used for the data
samples for model fitting. Among them, there are only normal log event sequences, and
1% of the log event sequence dataset is selected, i.e., 4855 normal log event sequences. The
validation dataset is a set of samples set aside separately during the model training process.
It can be used to adjust the hyperparameters of the model and to make a preliminary
assessment of the model’s capabilities. Among them, there are both normal log event
sequences and abnormal log events, and 1/3 of the remaining log event sequences are
selected, i.e., 166,009 normal log time sequences and 5051 abnormal log event sequences.
The test dataset is used to evaluate the final detection ability of the model, but cannot be

Symmetry 2022, 14, 454 11 of 21

used as a basis for algorithm selection such as parameter tuning and feature selection. It
contains both normal log event sequences and abnormal log event sequences, which are
the remaining 2/3 log event sequence [33,37]. The specific division is shown in Table 5.

Table 5. Set up of HDFS log datasets (unit: sequence).

Log Dataset
Number of Sessions

n: Number of Log Keys
Training Data Validation Data Test Data

HDFS 4855 normal 166,009 normal; 387,357 normal; 295051 anormal 11,787 anormal

4.2. Evaluation Metrics

To evaluate the effectiveness of the model, in addition to the number of false positives
(FP) and false negatives (FN), we also use standard metrics, such as accuracy, precision, re-
call and F1-measure. Accuracy represents the percentage of logs that are correctly classified
in the total logs. Precision represents the proportion of true anomalies among the detected
anomalies. Recall represents the percentage of detected anomalies in the total anomalies in
the dataset. The F1-measure is the weighted harmonic average of precision and recall and
is a comprehensive evaluation index [38].

Accuracy =
TP + TN

TP + TN + FP + FN
(10)

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

F1−measure =
2 ∗ Precison ∗ Recall
Precision + Recall

(13)

In Formulas (10)–(13), TP is the number of normal classes predicted for normal samples,
FP is the number of normal classes predicted for abnormal samples, and FN is the number
of abnormal classes predicted for normal samples [39].

4.3. Result Analysis

We compare LogLS with four anomaly detection methods, namely PCA, IM, N-gram
and DeepLog. Through the comparison of each evaluation data, the detection performance
of this model in log anomaly detection is obtained. By default, we use the following
parameter values for LogLS: g1 = 13, g2 = 4, g3 = 2, h = 10, L = 2, S = 64, and E = 300. g1,
g2, and g3 are the same type of parameters g, and g determines whether the predicted
log event is normal (the log event that appears next is considered normal among the g log
events with the highest predicted probability). h is the window size used for training and
detection, and L and S represent the number of layers in LogLS and the number of memory
units in an LSTM block, respectively. E is the number of epochs to be trained, where each
epoch is a single training iteration of all batches in the forward and backward propagation.
If the number of epochs is too small, underfitting may occur, and if the number is too large,
overfitting may occur.

Table 6 shows the number of false positives and false negatives for each method on the
HDFS data (all data except the training set), and the accuracy rate. The false positives and
false negatives of LogLS have a low level, and the accuracy rate of 99.84% is also the highest
among the five methods. Figure 5 shows the experimental results of different methods on
the HDFS dataset. Although the precision of the traditional PCA on the HDFS dataset is
0.98, the recall and F1-measure are relatively low, only 0.67 and 0.79, respectively. Among
the three methods of IM, N-gram and DeepLog, DeepLog performs best. The precision,
recall and F1-measure are 0.95, 0.96 and 0.96, respectively. However, we can also see that

Symmetry 2022, 14, 454 12 of 21

the LogLS method is better than several other methods as a whole. The three evaluation
metrics reached 0.96, 0.98 and 0.97, indicating that this method has advantages.

Table 6. Number of FPs, FNs and Accuracy on HDFS log.

PCA IM N-Gram DeepLog LogLS

False positive(FP) 277 2122 1360 833 657
False negative(FN) 5429 1226 739 615 280

Accuracy 99.00% 99.41% 99.63% 99.75% 99.84%

Figure 5. Evaluation on HDFS log.

4.4. Parameter Analysis

The performance of the model is tested by adjusting each parameter in the LogLS
model. This article uses the controlled variable method to carry out the parameter ad-
justment experiment of LogLS. When one parameter is studied, the other parameters are
controlled and remain unchanged. The adjusted parameters include g1, g2, g3, h, L, S,
and E. In each experiment, only the value of one parameter is changed; the remaining
parameters remain at the default values. Of course, g1, g2, and g3 belong to a class of
parameters, so these three values are changed as variables, and the rest remain unchanged.
After observation, the arithmetic sequence method is used to determine the optimal value
of class G parameters. The value range of g1 is {5,7,9,11,13,15}. The value range of g2 and g3
is {1,3,5,7,9,11,13}. After adjusting these three parameters, a total of 294 groups of data are
generated. The experimental data cannot be fully displayed in the chart, so Figure 6 shows
49 groups. The graph is obtained by assuming g1 = 13 and changing the values of g2 and
g3. Figure 6 shows the changes in the three values of precision, recall and F1-measure when
g2 and g3 change. The abscissa represents g2, and the ordinate represents g3. Figure 6
includes three sets of small graphs. Figure 6a shows the change in the precision value
after changing these two parameters, Figure 6b shows the change in the recall value, and
Figure 6c shows the change in the F1-measure.

Symmetry 2022, 14, 454 13 of 21

(a) (b) (c)

Figure 6. Performance comparison chart of changing parameters g2 and g3. (a) Precision. (b) Recall.
(c) F1-measure.

Figure 6 shows that when the F1-measure of the model is the best, the values of g2 and
g3 are 5 and 3, respectively. The detailed evaluation indicators corresponding to these two
parameters are separately compared. The results for when g3 = 3 and only g2 is changed
are shown in Table 7 and Figure 7.

Table 7. g2 size in LogLS.

g2 Size Precision Recall F1-Measure

1 0.6476 0.9923 0.7837
3 0.8443 0.9673 0.9016
5 0.9677 0.9612 0.9644
7 0.9683 0.9260 0.9467
9 0.9689 0.9198 0.9437
11 0.9716 0.9060 0.9376
13 0.9737 0.8727 0.9204

Figure 7. Performance comparison chart of changing parameter g2.

Symmetry 2022, 14, 454 14 of 21

As seen from Table 7 and Figure 7, precision increases with increasing g2; the maximum
precision value in the table is 0.9737. Recall decreases with increasing g2, and the maximum
value of recall in the table is 0.9923. The value of the F1-measure first increases and then
decreases as the value of g2 increases. When g2 = 5, the value of the F1-measure in the table
reaches a maximum value of 0.9644, and at this time, the values of precision, recall and
F1-measure are relatively balanced and high. Therefore, it is preliminarily confirmed that
the optimal parameter value of g2 is 5.

Now we parameter g2 to 5 and use default values for other parameters. By changing
the parameter value of g3, the changes of the three values of precision, recall and F1-measure
are obtained. The results are shown in Table 8 and Figure 8.

Table 8. g3 size in LogLS.

g3 Size Precision Recall F1-Measure

1 0.9619 0.9636 0.9627
3 0.9677 0.9612 0.9644
5 0.9693 0.9386 0.9537
7 0.9690 0.9147 0.9410
9 0.9699 0.8996 0.9334
11 0.9716 0.8878 0.9278
13 0.9721 0.8822 0.9250

Figure 8. Performance comparison chart of changing parameter g3.

It can be seen from Table 8 and Figure 8 that precision increases with the increase of
g3, recall decreases with the increase of g3, and that the F1-measure first increases and
then decreases with the increase of g3. The F1-measure obtains the maximum value when
g3 = 3, and the three values of precision, recall and F1-measure are relatively balanced and
high. Therefore, the tuning parameter temporarily confirms that the optimal parameter
value of g3 is 3. It can be concluded that the parameter values of g2 and g3 are temporarily
5 and 3, respectively. Then, the parameters of g1 are adjusted according to g2 and g3. As
the value of g1 changes, the three values of precision, recall, and F1-measure are obtained.
The results are shown in Table 9 and Figure 9.

Symmetry 2022, 14, 454 15 of 21

Table 9. g1 size in LogLS.

g1 Size Precision Recall F1-Measure

5 0.8919 0.9966 0.9414
7 0.9287 0.9830 0.9551
9 0.9464 0.9673 0.9567
11 0.9623 0.9654 0.9638
13 0.9677 0.9612 0.9644
15 0.9690 0.9339 0.9511

Figure 9. Performance comparison chart of changing parameter g1.

It is determined from Table 9 and Figure 9 that the parameter g1 can be temporarily
set to 13. Combining the parameter results obtained above, it can be concluded that when
g1 = 13, g2 = 5 and g3 = 3, the overall model prediction results are ideal. However, this
parameter is adjusted by an arithmetic sequence, which is not complete. Moreover, it is
found that the changes in precision, recall and F1-measure are correlated with g1, g2 and g3.
Therefore, the adjacent parameter values are compared. The value range of g1 is {12,13,14},
while g2 is {4,5,6} and g3 is {2,3,4}. As shown in Table 10, the final values of parameters g1,
g2 and g3 are 13, 4 and 2, respectively. At this time, precision, recall and F1-measure all
perform well, being 0.9586, 0.9856 and 0.9719, respectively.

We then studied the impact of various other parameters on the detection performance
during LogLS training, including h, L, S, and E. The results obtained are shown in Figure 10.
In each experiment, we change the value of one parameter while using the default values
of other parameters. Graph (a) in Figure 10 shows the performance change of the model
by changing the parameter h. Because the LSTM network needs long dependence, within
a certain range, when the selected window is larger, its performance is more obvious,
but when it breaks this range, the performance drops sharply. Figure 10b shows the
performance change of the model when the parameter E is varied. Within a certain range
of training iterations, as the number of training iterations increases, the performance of the
model becomes stronger, but the number of iterations is too large, and the performance of
the model becomes weaker. Figure 10c shows the performance change of the model as the
parameter L is changed. The change in the number of layers in LogLS has a relatively stable
effect on model performance. Figure 10d shows the performance change of the model

Symmetry 2022, 14, 454 16 of 21

with changing parameters. When the number of memory units in an LSTM block is 64,
the model performance is the best. In summary, of all the experimental results, it is found
that the LogLS model is relatively stable when various parameters are adjusted reasonably,
and a single change in parameters or a combination of adjustments has little effect on the
performance of the model.

Table 10. Adjacent parameter.

g1 g2 g3 Precision Recall F1-Measure

12 4 2 0.9558 0.9856 0.9705
12 4 3 0.9596 0.9634 0.9615
12 4 4 0.9649 0.9586 0.9618
12 5 2 0.9609 0.9634 0.9621
12 5 3 0.9648 0.9616 0.9632
12 5 4 0.9664 0.9561 0.9612
12 6 2 0.9646 0.9442 0.9543
12 6 3 0.9653 0.9372 0.9511
12 6 4 0.9664 0.9333 0.9495
13 4 2 0.9586 0.9856 0.9719
13 4 3 0.9624 0.9630 0.9627
13 4 4 0.9678 0.9582 0.9630
13 5 2 0.9637 0.9630 0.9634
13 5 3 0.9677 0.9612 0.9644
13 5 4 0.9693 0.9555 0.9623
13 6 2 0.9675 0.9438 0.9555
13 6 3 0.9683 0.9368 0.9523
13 6 4 0.9693 0.9325 0.9506
14 4 2 0.9602 0.9778 0.9689
14 4 3 0.9640 0.9553 0.9596
14 4 4 0.9694 0.9473 0.9583
14 5 2 0.9654 0.9553 0.9603
14 5 3 0.9694 0.9531 0.9612
14 5 4 0.9709 0.9446 0.9576
14 6 2 0.9693 0.9361 0.9524
14 6 3 0.9699 0.9258 0.9473
14 6 4 0.9710 0.9212 0.9454

(a) (b)

Figure 10. Cont.

Symmetry 2022, 14, 454 17 of 21

(c) (d)

Figure 10. LogLS performance with different parameters. (a) Window size: h. (b) Number of epochs:
E. (c) Number of layers: L. (d) Number of memory units: S.

5. Online Update and Training of LogLS

Although the method in this paper has achieved good performance in the HDFS log
anomaly detection experiment, problems may occur when dealing with more irregular logs
(such as system logs). Many log keys only appear in a certain period, so the training set
may not contain all the normal log keys, which will cause false predictions. The model
update module can effectively solve this problem, which adjusts the weight parameters
of the model in real time based on the online false-positive results. This section sets up a
comparative experiment of model updates to verify its effectiveness.

The model update method adopts incremental update, and only uses false positives to
update the model. Suppose h = 3, the input historical sequence is {k1, k2, k3}, and LogLS
predicts that the next log key is k2 with probability 1, and the log key in the actual sequence
is k3, then the model marks it as an anomaly. However, after manual detection, it is known
that this is a false positive. LogLS can use {k1, k2, k3 → k3} to update the weights of its model,
therefore learning this new log pattern. The next time enter {k1, k2, k3}, LogLS can output
both k2 and k3 with updated probabilities. This method does not need to re-update LogLS
from scratch. Updating the model with new experimental data. The weights of model are
adjusted by minimizing the error between experimental output and actual observations
from false-positive cases.

The log dataset selected in this experiment is the system log of the 708 M Blue Gene/L
supercomputer [40], also known as the BGL log. This log is different from the HDFS log and
is chosen because many logs in this dataset only appear in specific events, so the training
set may not contain all the normal execution paths and log keys.

The log dataset contains 4,747,963 logs, of which 348,460 are marked as anomalies,
including alarm and nonalarm messages identified by alarm category tags. In the first
column of the log, “-” means nonalarm messages, while others are alarm messages. The
label information facilitates alarm detection and prediction research. It has been used in
many studies, such as log parsing, anomaly detection and failure prediction.

When using BGL to generate a log sequence, it is different from the HDFS method.
For this type of log without a unique identifier, we use a sliding window to obtain the log
sequence. In this experiment, we set the sliding window size to 40 and obtained 214,475
normal BGL log sequences and 20,657 abnormal BGL log sequences. We take 1% of normal
BGL log entries as the training set, the remaining 1/3 as the validation set (if needed), and
2/3 as the test set. The model update uses the trained model to detect anomalies. Whenever
the detected result is found to be a false positive, the input and output sequence of the
result is used to update the model. Due to the characteristics of the BGL log, the settings on

Symmetry 2022, 14, 454 18 of 21

some parameters continue to use the values in the DeepLog method. In this experiment,
g1 = 10, g2 = 4, g3 = 2, h = 3, L = 1, S = 64 and E = 300.

According to Table 11 and Figure 11, we have proved the effectiveness of the model
update algorithm through experiments. After the model update, the detection accuracy of
the model is improved. The model updating mechanism improves the detected F1 measure
value from 29.89% to 80.94%, and the accuracy is also improved by 50.57%. This shows that
updating the model can solve the situation where the training set cannot cover all normal
execution paths.

Table 11. Evaluation on Blue Gene/L Log.

No Update Model Update Model

FP 64,440 6416
FN 31 47

Precision 17.58% 68.15%
Recall 99.78% 99.66%

F1-measure 29.89% 80.94%

Figure 11. Evaluation on Blue Gene/L Log.

6. Conclusions

This paper proposes a system log anomaly detection method based on dual LSTM,
which makes full use of the context of log events in log sequences. Referring to the Spell
log parsing method, a filtering operation is added to obtain the log event template list more
accurately, effectively solving the problem of inconsistent log structure in the traditional
anomaly detection method. According to the log event context and latent symmetry
information, we build two LSTM models from these two perspectives and make them
cooperate with each other to detect log anomalies. To solve the problem that the LSTM
model cannot handle unknown logs, we also added an updated model mechanism to
improve the performance of the model in detecting new log rules. For logs with unique
identifiers, such as HDFS logs, we can form log sequences based on unique identifiers. For
logs without unique identifiers, such as BGL logs, we can select fixed windows to form
log sequences. The experimental results show that the proposed method performs well on
HDFS large log datasets, and the accuracy, recall rate and F1-measure are better than the
current cutting-edge log anomaly detection methods. In addition, this paper fully analyzes
the influence of parameter changes on the model performance, and verifies the effectiveness
of the model update strategy, which has significant performance in system log anomaly

Symmetry 2022, 14, 454 19 of 21

detection, and is of great significance to system anomaly detection and optimization of
model parameters.

In future work, the model will be improved to make it suitable not only for anomaly
detection in the execution mode of the system log, but also for detection for each parameter
in the log. We find a better way to solve the problem that the LSTM model cannot predict
the log execution path that does not appear.

Author Contributions: Conceptualization, Y.C. and N.L.; methodology, Y.C., N.L. and D.L.; writing—
original draft preparation, Y.C.; writing—review and editing, Y.C. and D.L.; project administration,
N.L.; funding acquisition, N.L. All authors read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the Innovation Environment Construction Special
Project of Xinjiang Uygur Autonomous Region under Grant PT1811, and in part by the Key Grant
Project of the National Social Science Fund of China(NSFC) under Grant 20&ZD293.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are openly available at ref. [15].

Acknowledgments: We thank the Innovation Environment Construction Special Project of Xinjiang
Uygur Autonomous Region and NSFC for funding this research. We thank the anonymous reviewers
for their contribution to this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

LSTM Long Short-Term Memory Network
bi-LSTM Bi-directional Long Short-Term Memory
RNN Recurrent neural network
PCA Principal component analysis
AST Abstract syntax code
LCS Longest common subalgorithm
BGL Blue Gene/L
IM Invariant Mining
MIT Massachusetts Institute of Technology
HDFS HDFS distributed file system

References
1. Fotiadou, K.; Velivassaki, T.H.; Voulkidis, A.; Skias, D.; De Santis, C.; Zahariadis, T. Proactive Critical Energy Infrastructure

Protection via Deep Feature Learning. Energies 2020, 13, 2622. [CrossRef]
2. Wang, B.; Ying, S.; Cheng, G.; Li, Y. A log-based anomaly detection method with the NW ensemble rules. In Proceedings of the

2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS), Macau, China, 11–14 December
2020; pp. 72–82.

3. Rouillard, J.P. Real-time Log File Analysis Using the Simple Event Correlator (SEC). In Proceedings of the Conference on Systems
Administration, Atlanta, GA, USA, 14–19 November 2004; pp. 133–150.

4. Kim, C.; Jang, M.; Seo, S.; Park, K.; Kang, P. Intrusion Detection Based on Sequential Information Preserving Log Embedding
Methods and Anomaly Detection Algorithms. IEEE Access 2021, 9, 58088–58101. [CrossRef]

5. Xu, W.; Huang, L.; Fox, A.; Patterson, D.; Jordan, M. Detecting Large-Scale System Problems by Mining Console Logs.
In Proceedings of the 26 th International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010; pp. 37–46.

6. Lou, J.G.; Fu, Q.; Yang, S.; Xu, Y.; Li, J. Mining invariants from console logs for system problem detection. In Proceedings of the
2010 USENIX Annual Technical Conference, Boston, MA, USA, 23–25 June 2010; pp. 1–14.

7. Lou, J.G.; Fu, Q.; Yang, S.; Li, J.; Wu, B. Mining program workflow from interleaved traces. In Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 25–28 July 2010; pp. 613–622.

8. Lin, Q.; Zhang, H.; Lou, J.G.; Zhang, Y.; Chen, X. Log clustering based problem identification for online service systems.
In Proceedings of the 2016 IEEE/ACM 38th International Conference on Software Engineering Companion (ICSE-C), Austin, TX,
USA, 14–22 May 2016; pp. 102–111.

http://doi.org/10.3390/en13102622
http://dx.doi.org/10.1109/ACCESS.2021.3071763

Symmetry 2022, 14, 454 20 of 21

9. Yang, L.; Chen, J.; Wang, Z.; Wang, W.; Jiang, J.; Dong, X.; Zhang, W. Semi-Supervised Log-Based Anomaly Detection via
Probabilistic Label Estimation. In Proceedings of the 2021 IEEE/ACM 43rd International Conference on Software Engineering
(ICSE), Madrid, Spain, 22–30 May 2021; pp. 1448–1460.

10. Bodik, P.; Goldszmidt, M.; Fox, A.; Woodard, D.B.; Andersen, H. Fingerprinting the datacenter: Automated classification of
performance crises. In Proceedings of the ACM EuroSys Conference on Computer Systems, EuroSys’ 10, New York, NY, USA,
13 April 2010; pp. 111–124.

11. Yang, R.; Qu D.; Zhu S.; Qian Y.; Tang Y. Anomaly detection for log sequence based on improved temporal convolutional network.
Comput. Eng. 2020, 46, 50–57.

12. Phyo, P.P.; Byun, Y.C. Hybrid Ensemble Deep Learning-Based Approach for Time Series Energy Prediction. Symmetry 2021,
13, 1942. [CrossRef]

13. Wang, M.; Xu, L.; Guo, L. Anomaly Detection of System Logs Based on Natural Language Processing and Deep Learning.
In Proceedings of the 2018 4th International Conference on Frontiers of Signal Processing (ICFSP), Poitiers, France, 24–27
November 2018; pp. 140–144.

14. Xia, B.; Bai, Y.; Yin, J.; Li, Y.; Xu, J. LogGAN: A Log-level Generative Adversarial Network for Anomaly Detection using
Permutation Event Modeling. Inf. Syst. Front. 2021, 23, 285–298. [CrossRef]

15. Du, M.; Li, F; Zhang, G.; SriKumar, V. DeepLog: Anomaly Detection and Diagnosis from System Logs through Deep Learning.
In Proceedings of the Acm Sigsac Conference on Computer & Communications Security, Dallas, TX, USA, 30 October–3 November
2017; pp. 1285–1298.

16. Zhang, X.; Xu, Y.; Lin, Q.; Qiao, B.; Zhang, H.; Dang, Y.; Xie, C.; Yang, X.; Cheng, Q.; Li, Z.; et al. Robust Log-Based Anomaly
Detection on Unstable Log Data. In Proceedings of the 27th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE ’19), Tallinn, Estonia, 26–30 August 2019; pp. 807–817.

17. Nedelkoski, S.; Bogatinovski, J.; Acker, A.; Cardoso, J.; Kao, O. Self-Attentive Classification-Based Anomaly Detection in
Unstructured Logs. In Proceedings of the 2020 IEEE International Conference on Data Mining (ICDM), Sorrento, Italy, 17–20
November 2020; pp. 1196–1201.

18. Du, M.; Li, F. Spell: Online Streaming Parsing of Large Unstructured System Logs. IEEE Trans. Knowl. Data Eng. 2018, 31,
2213–2227. [CrossRef]

19. Du, M.; Li, F. Spell: Streaming Parsing of System Event Logs. In Proceedings of the 2016 IEEE 16th International Conference on
Data Mining (ICDM), Barcelona, Spain, 12–15 December 2016; pp. 859–864.

20. Yu, X.; Joshi, P.; Xu, J.; Jin, G.; Zhang, H.; Jiang, G. CloudSeer: Workflow Monitoring of Cloud Infrastructures via Interleaved
Logs. In Proceedings of the Twenty-First International Conference, New York, NY, USA, 25 March 2016; pp. 489–502.

21. Bao, L.; Li, Q.; Lu, P.; Lu, J.; Ruan, T.; Zhang, K. Execution Anomaly Detection in Large-scale Systems through Console Log
Analysis. J. Syst. Softw. 2018, 143, 172–186. [CrossRef]

22. Fu, Q.; Lou, J.G.; Wang, Y.; Li, J. Execution Anomaly Detection in Distributed Systems through Unstructured Log Analysis.
In Proceedings of the 2009 Ninth IEEE International Conference on Data Mining, Miami Beach, FL, USA, 6–9 December 2009;
pp. 149–158.

23. Dai, H.; Li, H.; Chen, C.S.; Shang, W.; Chen, T.H. Logram: Efficient Log Parsing Using n-Gram Dictionaries. IEEE Trans. Softw.
Eng. 2020. [CrossRef]

24. He, P.; Zhu, J.; Zheng, Z.; Lyu, M.R. Drain: An Online Log Parsing Approach with Fixed Depth Tree. In Proceedings of the IEEE
International Conference on Web Services, Honolulu, HI, USA, 25–30 June 2017; pp. 33–40.

25. Zhu, J.; He, S.; Liu, J.; He, P.; Lyu, M.R. Tools and Benchmarks for Automated Log Parsing. In Proceedings of the Tools and
Benchmarks for Automated Log Parsing, Montreal, QC, Canada, 1 May 2019; pp. 121–130.

26. He, P.; Zhu, J.; He, S.; Li, J.; Lyu, M.R. An evaluation study on log parsing and its use in log mining. In Proceedings of the
37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, Toulouse, France, 28 June–1 July 2016;
pp. 654–661.

27. Alanis, A.Y.; Sanchez, O.D.; Alvarez, J.G. Time Series Forecasting for Wind Energy Systems Based on High Order Neural
Networks. Mathematics 2021, 9, 1075. [CrossRef]

28. Nandanwar, A.K.; Choudhary, J. Semantic Features with Contextual Knowledge-Based Web Page Categorization Using the GloVe
Model and Stacked BiLSTM. Symmetry 2021, 13, 1772. [CrossRef]

29. Ian G.; Yoshua B.; Aaron C. Deep Learning, 1st ed.; MIT Press: Cambridge, MA, USA, 2016; pp. 162–481.
30. Hochreiter, S.; Schmidhuber, J. Long Short-term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
31. Understanding LSTM Networks. Available online: http://colah.github.io/posts/2015-08-Understanding-LSTMs/ (accessed on

14 October 2020).
32. Rusiecki A. Trimmed categorical cross-entropy for deep learning with label noise. Electron. Lett. 2019, 55, 319–320. [CrossRef]
33. Oprea, A.; Li, Z.; Yen, T.F.; Chin, S.H.; Alrwais, S. Detection of Early-Stage Enterprise Infection by Mining Large-Scale Log Data.

In Proceedings of the 2015 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, Rio de
Janeiro, Brazil, 22–25 June 2015; pp. 45–56.

34. Keras. Available online: https://github.com/keras-team/keras (accessed on 2 October 2020).

http://dx.doi.org/10.3390/sym13101942
http://dx.doi.org/10.1007/s10796-020-10026-3
http://dx.doi.org/10.1109/TKDE.2018.2875442
http://dx.doi.org/10.1016/j.jss.2018.05.016
http://dx.doi.org/10.1109/TSE.2020.3007554
http://dx.doi.org/10.3390/math9101075
http://dx.doi.org/10.3390/sym13101772
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://dx.doi.org/10.1049/el.2018.7980
https://github.com/keras-team/keras

Symmetry 2022, 14, 454 21 of 21

35. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow:
A system for large-scale machine learning. In Proceedings of the 12th USENIX Conference on Operating Systems Design and
Implementation, Savannah, GA, USA, 2–4 November 2016; pp. 265–283.

36. Xu, W.; Huang, L.; Fox, A.; Patterson, D.; Jordan, M. Online System Problem Detection by Mining Patterns of Console Logs.
In Proceedings of the 2009 Ninth IEEE International Conference on Data Mining, Miami Beach, FL, USA, 6–9 December 2009;
pp. 588–597.

37. Prewett, J.E. Analyzing cluster log files using Logsurfer. In Proceedings of the Annual Conference on Linux Clusters, 2003;
pp. 83–95. Available online: https://www.semanticscholar.org/paper/Analyzing-cluster-log-files-using-Logsurfer-Prewett/d9
a2a773348e6dc1c0bef303cf188145267bd8c1 (accessed on 2 February 2022).

38. Wang, Y.; Liu, P.; Wang, B. Research on system log anomaly detection based on deep learning. Chin. J. Netw. Inf. Secur. 2019, 5,
105–118.

39. Zhang, L.; Lu, R.; Liu, P. System Anomaly Detection Method Based on Bidirectional LSTM. Comput. Appl. Softw. 2020, 12,
303–309+339.

40. Oliner A.; Stearley J. What supercomputers say: A study of five system logs. In Proceedings of the 37th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, Edinburgh, UK, 25–28 June 2007; pp. 575–584.

https://www.semanticscholar.org/paper/Analyzing-cluster-log-files-using-Logsurfer-Prewett/d9a2a773348e6dc1c0bef303cf188145267bd8c1
https://www.semanticscholar.org/paper/Analyzing-cluster-log-files-using-Logsurfer-Prewett/d9a2a773348e6dc1c0bef303cf188145267bd8c1

	Introduction
	Preliminaries
	Log Parser
	Architecture and Overview

	Methodology
	 Log Parser (Spell)
	Anomaly Detection
	Renewal Mechanism

	Evaluation
	Dataset
	Evaluation Metrics
	 Result Analysis
	Parameter Analysis

	Online Update and Training of LogLS
	Conclusions
	References

