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Abstract: Differential Evolution (DE) is a method of optimization used in symmetrical optimization
problems and also in problems that are not even continuous, and are noisy and change over time.
DΕ optimizes a problem with a population of candidate solutions and creates new candidate solutions
per generation in combination with existing rules according to discriminatory rules. The present
work proposes two variations for this method. The first significantly improves the termination of
the method by proposing an asymptotic termination rule, which is based on the differentiation of
the average of the function values in the population of DE. The second modification proposes a new
scheme for a critical parameter of the method, which improves the method’s ability to better explore
the search space of the objective function. The proposed variations have been tested on a number of
problems from the current literature, and from the experimental results, it appears that the proposed
modifications render the method quite robust and faster even in large-scale problems.

Keywords: global optimization; evolutionary methods; hybrid methods

1. Introduction

The location of the global minimum of a continuous and differentiable function
f : S→ R, S ⊂ Rn is formulated as:

x∗ = arg min
x∈S

f (x) (1)

where the set S is defined as:

S = [a1, b1]⊗ [a2, b2]⊗ . . . [an, bn]

In the recent literature, there are a plethora of real-world problems that can be formu-
lated as global optimization problems, such as problems from physics [1–4], chemistry [5–7],
economics [8,9], etc. Furthermore, global optimization methods are used in many sym-
metry problems [10–14].There are a variety of proposed methods to handle the global
minimum problem, such as Adaptive Random Search [15], Competitive Evolution [16],
Controlled Random Search [17], Simulated Annealing [18–20], Genetic Algorithms [21,22],
Bee optimization [23,24], Ant Colony Optimization [25], Particle Swarm Optimization [26],
Differential Evolution [27], etc. Recently, many works have appeared that take advantage
of the GPU processing units to implement parallel global optimization methods [28–30].
This work introduces two major modifications for the Differential Evolution (DE) method
that aim to speed up the algorithm and reduce the total number of function evaluations
required by the method. The DE method initially creates a population of candidate solu-
tions and, through a series of iterations, creates new solutions by combining the previous
ones. The method does not require any prior knowledge of the derivative and is, therefore,
quite fast with low memory requirements. Moreover, the method has been used in vari-
ous symmetry problems from the relevant literature, such as community detection [31],
structure prediction of materials [32], motor fault diagnosis [33], automatic clustering
techniques [34], etc.
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After a literature review, it was found that differential evolution is used in several
areas and many modifications of the original algorithm have been introduced in the
recent literature. More specifically, in the research of Zongjun et al. [35], genetic and
differential calculus algorithms were used to optimize the parameters of two models aimed
at estimating evapotranspiration in three regions, and it was found that the performance of
evolution algorithms was better than the genetic algorithm. Other research focused on a
case study of a cellular neural network aimed at generating fractional classes of neurons.
The best solutions from differential calculus and accelerated particle swarm optimization
(APSO) are presented concretely in the work of Tlelo-Cuautle et al. [36]. Another article [37]
proposes a regeneration framework based on space search adaptation (ARSA), which can
be integrated into different variants of different evolutions to address the problems of early
convergence and population stability faced by differential calculus. Another interesting
variation of the method is the Bernstain Search Differential Evolution Algorithm [38] for
optimizing numerical functions.

The differential evolution method was also applied to energy science. Specifically, the
article of Liang et al. [39] evaluates the parameters of solar photovoltaic models through a
self-adjusting differential evolution. Similarly, in the study of Peng et al. [40], differential
evolution is used for the prediction of electricity prices. Furthermore, differential evolution
was also incorporated in a neural architecture search [41]. The DE method has been applied
with success to neural network training [42–44], to the Traveling Salesman Problem [45,46],
training of RBF neural networks [47–49], and optimization of the Lennard Jones poten-
tial [50,51]. The DE method has also been successfully combined with other techniques for
machine learning applications, such as classification [52,53], feature selection [54,55], deep
learning [56,57], etc.

The rest of this article is organized as follows: In Section 2, the base DE algorithm, as
well as the proposed modifications, are presented. In Section 3, the test functions used in
the experiments are presented along with the experimental results. Finally, in Section 4,
some conclusions are presented.

2. Modifications

This section starts with a detailed description of the DE method and continues with
the modifications suggested in this article. The first modification is a new stopping rule,
which measures the difference of the mean of the function values between the iterations of
the algorithm. The second modification suggests a new scheme for a critical parameter of
the DE algorithm called Differential Weight.

2.1. The Base Algorithm

The DE algorithm has been studied by various researchers in the recent literature,
such as the Compact Differential Evolution [58], a self adaptive DE [59] where the critical
parameters of the method are adapted from previous generations, a fuzzy adaptive DE
method [60] where fuzzy login is employed to adapt the parameters of the method, parallel
Differential Evolution [61] with a self adaptation mechanism for the critical parameters
of the DE method, etc. A survey of the recent advances in differential evolutions can be
found in the work of Das et al. [62]. The base DE algorithm has the steps described in
Algorithm 1.
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Algorithm 1: DE algorithm.

1. Set the population size NP ≥ 4, usually NP = 10n, where n is the dimension of
the input problem.

2. Set the crossover probability CR ∈ [0, 1]. A typical value for this parameter is 0.9.
3. Set the differential weight F ∈ [0, 2]. A typical value for this parameter is 0.8.
4. Initialize all members of the population in the search space. The members of

the population are called agents.
5. Until some stopping criterion is met, repeat:

(a) For i = 1 . . . NP do.

i. Set x as the agent i.
ii. Pick randomly three agents a, b, c.
iii. Pick a random index R ∈ {1, . . . , n}.
iv. Compute the trial vector y = [y1,y2, . . . , yn] as follows.
v. For j = 1, . . . , n do:

A. Set ri ∈ [0, 1] a random number.
B. If rj < CR or j = R then yj = aj + F×

(
bj − cj

)
else yj = xj.

vi. If f (y) ≤ f (x) then x = y.
vii. EndFor.

(b) EndFor.

6. Return the agent xbest in the population with the lower function value f
(

xbest
)
.

2.2. The New Termination Rule

Typically, the DE method is terminated when a predefined number of iterations is
reached. This can be extremely inefficient in some problems and, in others, it can lead to
premature termination, i.e., termination before the total minimum is found. In the work of
Ali et al. [63], a different termination rule is proposed i.e., terminate when:

fmax − fmin ≤ ε (2)

where fmax is the function value of the worst agent in the population, fmin is the function
value of the best agent, and ε is a small positive number.

In the proposed termination rule, the average function value of the population is
calculated in each iteration. If this value does not change significantly for a repetitive
number of iterations, then it is very likely that the method may not discover a new global
minimum and should therefore be terminated. Hence, in every generation t, we measure
the quantity:

δ(t) =

∣∣∣∣∣NP
∑
i=1

∣∣∣ f (t)i

∣∣∣−NP
∑
i=1

∣∣∣ f (t−1)
i

∣∣∣∣∣∣∣∣ (3)

and the termination rule is defined as: terminate if δ(t) ≤ ε for a predefined number of
M generations.

2.3. The New Differential Weight

The differential weight initially proposed in the DE algorithm was a static value,
which means that some tuning is required in order to discover the global minimum in every
optimization function. Ali et al. [63] proposed an adaptation mechanism for this parameter
in that the algorithm should search in larger spaces in the the first generations, and become
more focused in later generations. The mechanism proposed is expressed as:
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F =


max

(
lmin, 1−

∣∣∣∣ fmax
fmin

∣∣∣∣), if
∣∣∣∣ fmax

fmin

∣∣∣∣ ≤ 1

max
(

lmin, 1−
∣∣∣∣ fmin

fmax

∣∣∣∣), otherwise
(4)

The current work proposes a stochastic mechanism similar to the crossover operation
of the Genetic algorithms. The proposed scheme is expressed as:

F = −1
2
+ 2× R (5)

where R ∈ [0, 1] is a random number. The proposed scheme, as with the randomness
introduced by the method DE will be able to better explore the search space of the objective
function and find with greater accuracy and speed the global minimum. In addition, this
scheme has been used successfully in Genetic Algorithms.

3. Experiments

In order to determine the effectiveness of the proposed modifications, a series of
experiments were performed on known functions from the relevant literature [64,65]. The
choice of these functions was made as they are widely used in the literature by many
researchers [66–69], they have quite a complex structure, and in many cases, they have a
large number of dimensions that make them ideal for studying and testing.

The experiments were divided into two major categories. In the first category, all the
schemes for the Differential Weight were tested using the termination rule of Equation (2),
and in the second category, the same schemes were tested using the proposed termination
criterion. Furthermore, after every successful termination, the local optimization method
BFGS [70] was applied in order to get even closer to the global minimum.

3.1. Test Functions

The descriptions of the test functions used in the experiments are as follows:

• Bf1 (Bohachevsky 1) function defined as:

f (x) = x2
1 + 2x2

2 −
3

10
cos(3πx1)−

4
10

cos(4πx2) +
7

10

with x ∈ [−100, 100]2. The value of global minimum is 0.0.
• Bf2 (Bohachevsky 2) function defined as:

f (x) = x2
1 + 2x2

2 −
3

10
cos(3πx1) cos(4πx2) +

3
10

with x ∈ [−50, 50]2. The value of the global minimum is 0.0.

• Branin function. The function is defined by f (x) =
(

x2 − 5.1
4π2 x2

1 +
5
π x1 − 6

)2
+

10
(

1− 1
8π

)
cos(x1) + 10 with −5 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 15. The value of global

minimum is 0.397887.with x ∈ [−10, 10]2. The value of global minimum is −0.352386.
• CM function. The Cosine Mixture function is given by the equation:

f (x) =
n

∑
i=1

x2
i −

1
10

n

∑
i=1

cos(5πxi)

where x ∈ [−1, 1]n. For our experiments we used n = 4.
• Camel function. The function is given by:

f (x) = 4x2
1 − 2.1x4

1 +
1
3

x6
1 + x1x2 − 4x2

2 + 4x4
2, x ∈ [−5, 5]2
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• Easom function. The function is given by the equation:

f (x) = − cos(x1) cos(x2) exp
(
(x2 − π)2 − (x1 − π)2

)
with x ∈ [−100, 100]2.

• Exponential function, defined as:

f (x) = − exp

(
−0.5

n

∑
i=1

x2
i

)
, −1 ≤ xi ≤ 1

The global minimum is located at x∗ = (0, 0, ..., 0) with value −1. In our experiments
we used this function with n = 2, 4, 8, 16, 32.

• Goldstein and Price function
The function is given by the equation:

f (x) =
[
1 + (x1 + x2 + 1)2(
19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2

)
]×

[30 + (2x1 − 3x2)
2(

18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2

)
]

with x ∈ [−2, 2]2. The global minimum is located at x∗ = (0,−1) with value 3.0.
• Griewank2 function. The function is given by:

f (x) = 1 +
1

200

2

∑
i=1

x2
i −

2

∏
i=1

cos(xi)√
(i)

, x ∈ [−100, 100]2

The global minimum is located at the x∗ = (0, 0, ..., 0) with value 0.
• Gkls function. f (x) = Gkls(x, n, w), is a function with w local minima, described

in [71] with x ∈ [−1, 1]n and n a positive integer between 2 and 100. The value of the
global minimum is −1 and in our experiments we have used n = 2, 3 and w = 50, 100.

• Hansen function. f (x) = ∑5
i=1 i cos[(i− 1)x1 + i]∑5

j=1 j cos[(j + 1)x2 + j], x ∈
[−10, 10]2.

• Hartman 3 function. The function is given by:

f (x) = −
4

∑
i=1

ci exp

(
−

3

∑
j=1

aij
(
xj − pij

)2
)

with x ∈ [0, 1]3 and a =


3 10 30

0.1 10 35
3 10 30

0.1 10 35

, c =


1

1.2
3

3.2

 and

p =


0.3689 0.117 0.2673
0.4699 0.4387 0.747
0.1091 0.8732 0.5547

0.03815 0.5743 0.8828


• Hartman 6 function.

f (x) = −
4

∑
i=1

ci exp

(
−

6

∑
j=1

aij
(
xj − pij

)2
)



Symmetry 2022, 14, 447 6 of 15

with x ∈ [0, 1]6 and a =


10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

, c =


1

1.2
3

3.2

 and

p =


0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
0.4047 0.8828 0.8732 0.5743 0.1091 0.0381


• Potential function. The molecular conformation corresponding to the global minimum

of the energy of N atoms interacting via the Lennard-Jones potential [72] is used as a
test case here. The function to be minimized is given by:

VLJ(r) = 4ε

[(σ

r

)12
−
(σ

r

)6
]

(6)

In the current experiments three different cases were studied: N = 3, 4, 5.
• Rastrigin function. The function is given by:

f (x) = x2
1 + x2

2 − cos(18x1)− cos(18x2), x ∈ [−1, 1]2

The global minimum is located at x∗ = (0, 0) with value −2.0.
• Rosenbrock function.

This function is given by:

f (x) =
n−1

∑
i=1

(
100
(

xi+1 − x2
i

)2
+ (xi − 1)2

)
, −30 ≤ xi ≤ 30.

The global minimum is located at the x∗ = (0, 0, ..., 0) with f (x∗) = 0. In our experi-
ments we used this function with n = 4, 8, 16.

• Shekel 7 function.

f (x) = −
7

∑
i=1

1
(x− ai)(x− ai)T + ci

with x ∈ [0, 10]4 and a =



4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7
2 9 2 9
5 3 5 3


, c =



0.1
0.2
0.2
0.4
0.4
0.6
0.3


. The value of global minimum

is −10.342378.

• Shekel 5 function.

f (x) = −
5

∑
i=1

1
(x− ai)(x− ai)T + ci

with x ∈ [0, 10]4 and a =


4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7

, c =


0.1
0.2
0.2
0.4
0.4

. The value of global minimum

is −10.107749.

• Shekel 10 function.
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f (x) = −
10

∑
i=1

1
(x− ai)(x− ai)T + ci

with x ∈ [0, 10]4 and a =



4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7
2 9 2 9
5 5 3 3
8 1 8 1
6 2 6 2
7 3.6 7 3.6


, c =



0.1
0.2
0.2
0.4
0.4
0.6
0.3
0.7
0.5
0.6


. The value of global

minimum is −10.536410.

• Sinusoidal function. The function is given by:

f (x) = −
(

2.5
n

∏
i=1

sin(xi − z) +
n

∏
i=1

sin(5(xi − z))

)
, 0 ≤ xi ≤ π.

The global minimum is located at x∗ = (2.09435, 2.09435, ..., 2.09435) with f (x∗) =
−3.5. In our experiments we used n = 4, 8, 16, 32 and z = π

6 and the corresponding
functions are denoted by the labels SINU4, SINU8, SINU16 and SINU32, respectively.

• Test2N function. This function is given by the equation:

f (x) =
1
2

n

∑
i=1

x4
i − 16x2

i + 5xi, xi ∈ [−5, 5].

The function has 2n in the specified range and in our experiments we used n = 4, 5, 6, 7.
The corresponding values of global minimum is −156.664663 for n = 4, −195.830829
for n = 5, −234.996994 for n = 6 and −274.163160 for n = 7.

• Test30N function. This function is given by:

f (x) =
1

10
sin2(3πx1)

n−1

∑
i=2

(
(xi − 1)2

(
1 + sin2(3πxi+1)

))
+(xn − 1)2

(
1 + sin2(2πxn)

)
with x ∈ [−10, 10], with 30n local minima in the searc space. For our experiments we
used n = 3, 4.

3.2. Experimental Results

The experiments were performed 30 times with different seeds for the random genera-
tor each time for every test function and the avarage function was measured and reported.
The code was implemented in ANSI C++ and the random generator used was the function
drand48() of the C programming languages. The execution environment was an Intel Xeon
E5-2630 multi-core machine. The parameters used in the experiments are shown in Table 1.
The experiments where the stopping rule of Equation (2) was used are outlined in Table 2,
and the experiments with the proposed stopping rule are listed in Table 3. The numbers in
the cells represent average function calls. The fraction in parentheses stands for the fraction
of runs where the global optimum was found. If this number is missing then the global
minimum was discovered in every independent run (100% success). The column STATIC
represents the static value for the differential weight (F = 0.8), the column ALI stands for
the mechanism given in the Equation (4), and lastly, the column PROPOSED stands for the
proposed scheme given in Equation (5).

From the experiments, we observe that the two proposed variations drastically reduce
the required number of function calls. Moreover, the proposed changes did not seem to
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affect the average performance of the method, as it remained high in all cases. The effect of
the proposed scheme for the differential weight is presented graphically in Figure 1, where
we plot the average function calls for the functions ROSENBROCK4, ROSENBROCK8, and
ROSENBROCK16 using the three schemes of differential weights. Furthermore, in the plot
of Figure 2, the average calls for the same functions are shown with both the proposed
scheme for the differential weights and the proposed termination rule. It is evident that the
combination of both modifications reduced, even more, the average number of function
calls required to locate the global minimum of the test functions. To show the effectiveness
of the modifications, Figure 3 presents the total time for 30 executions on an I7 computer
with LINUX DEBIAN and 16 GB of memory. The comparison was made between the
initial method with the ALI termination criterion, the proposed termination criterion (first
modification), and the proposed termination criterion together with the proposed weight
scheme. The proposed modifications significantly reduced the number of calls and also the
required execution time. To compare the proposed scheme for the differential weight with
the other two methods, the Wilcoxon signed-rank test was used. The results obtained with
this statistical test are shown in Figure 4.

Table 1. Experimental parameters.

Parameter Value

NP 10n

F 0.8

CR 0.9

M 20

ε 10−4

Table 2. Experiments with the termination rule of Ali.

Function Static Ali Proposed

BF1 1142 1431 847

BF2 1164 1379 896

BRANIN 984 816 707

CM4 3590 7572 2079

CAMEL 1094 18,849 685

EASOM 1707 2014 1327

EXP2 532 323 449

EXP4 2421 1019 1494

EXP8 15,750 3670 5632

EXP16 160,031 15,150 21,416

EXP32 320,039 152,548 77,936

GKLS250 784 944 614

GKLS2100 772 1531 599 (0.97)

GKLS350 1906 (0.93) 3263 1275 (0.93)

GKLS3100 1883 3539 1373

GOLDSTEIN 988 818 769

GRIEWANK2 1299 (0.97) 1403 883 (0.93)

HANSEN 2398 2968 1400

HARTMAN3 1448 836 1050
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Table 2. Cont.

Function Static Ali Proposed

HARTMAN6 9489(0.97) 4015(0.97) 4667(0.80)

POTENTIAL3 90,027 89,776 21,824

POTENTIAL4 120,387 (0.97) 120,405 (0.33) 45,705 (0.97)

POTENTIAL5 150,073 150,104 83,342

RASTRIGIN 1246 1098 (0.93) 871

ROSENBROCK4 6564 9695 4499

ROSENBROCK8 44,240 72,228 13,959

ROSENBCROK16 160,349 (0.90) 160,538 (0.60) 53,594

SHEKEL5 5524 3810 3057 (0.83)

SHEKEL7 5266 3558 2992 (0.87)

SHEKEL10 5319 3379 3076

TEST2N4 4200 1980 2592

TEST2N5 7357 2957 4055

TEST2N6 12,074 4159 5836

TEST2N7 18,872 5490 7904

SINU4 3270 1855 2216

SINU8 23,108 6995 8135

SINU16 160,092 36,044 30,943

SINU32 213,757 (0.70) 160,536 (0.53) 83,369 (0.80)

TEST30N3 1452 1732 959

TEST30N4 1917 2287 1378

Total 1,564,515 (0.97) 1,062,714 (0.96) 506,404 (0.98)

Table 3. Experiments with the proposed termination rule.

Function Static Ali Proposed

BF1 996 1124 889

BF2 926 1026 816

BRANIN 878 900 730

CM4 1148 (0.70) 1991 1103

CAMEL 1049 904 (0.93) 846

EASOM 447 448 446

EXP2 470 461 467

EXP4 915 903 892

EXP8 1797 3558 1796

EXP16 3578 7082 3521

EXP32 7082 14,125 7022

GKLS250 498 576 493

GKLS2100 533 884 (0.97) 515

GKLS350 823 1130 (0.93) 814 (0.97)

GKLS3100 858 1495 (0.97) 829 (0.93)
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Table 3. Cont.

Function Static Ali Proposed

GOLDSTEIN 945 993 915

GRIEWANK2 947 921 826

HANSEN 2104 1949 1479

HARTMAN3 1017 1005 952

HARTMAN6 4679 (0.90) 3744 (0.97) 3128 (0.87)

POTENTIAL3 21,473 2284 8197

POTENTIAL4 44,191 (0.43) 3098 (0.33) 24,659 (0.97)

POTENTIAL5 75,910 3443 52,664

RASTRIGIN 841 994 777

ROSENBROCK4 4934 7192 3300

ROSENBROCK8 29,583 49,696 10,907

ROSENBCROK16 160,349 160,538 (0.60) 38,315

SHEKEL5 4389 (0.97) 4266 2839 (0.83)

SHEKEL7 3905 3685 2668

SHEKEL10 4049 3548 2629

TEST2N4 2785 2275 2221

TEST2N5 4481 3170 3122

TEST2N6 6852 4286 4296

TEST2N7 11971 5701 6267

SINU4 2322 1987 1755

SINU8 9990 6156 5113

SINU16 6892 3628 (0.97) 16,905

SINU32 7235 (0.80) 7438 (0.83) 7218

TEST30N3 1033 1098 951

TEST30N4 1355 1444 1285

Total 432,610 (0.98) 321,166 (0.96) 224,567 (0.99)

Figure 1. The effect of the usage of the new scheme for the differential weight.
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Figure 2. Plot of function calls using the two modifications.

Figure 3. Time comparisons for a variety of test functions.

Figure 4. Box plot representation and Wilcoxon rank-sum test results of the comparison among the
schemes for the differential weights. The stopping rule used was that proposed by Ali in Equation (2).
A p-value of less than 0.05 (2-tailed) was used for statistical significance and is marked with bold.
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4. Conclusions

In this text, two main additions to the DE method are presented. In the first, an asymp-
totic termination rule was introduced and used successfully, even in multidimensional
problems. This rule is based on the observation that from one point onwards the average of
the functional values of the agents does not change. This means that either the algorithm
has already found the global minimum or its further continuation will have no meaning.

In the second case, a stochastic scheme was used to produce the differential weight.
This scheme helped the algorithm to better explore the search space of the objective function
without the need for more calls to the objective function.

The proposed modifications significantly speed up the original method in terms of
function calls, in most cases. Each of the proposed modifications can be used separately
or together in the DE method. If used together, there is a large reduction in the number of
required function calls that reach up to 80% without problems, and in the reliability of the
method and its ability to successfully find the total minimum.

The DE method can also be used in cases of optimization problems with constraints as
long as there is a change in the original problem so that the constraints are included in the
function with the usage for example Langrage multipliers.
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