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Abstract: Generating discrete orthogonal polynomials from the recurrence or difference equation is
error-prone, as it is sensitive to error propagation and dependent on highly accurate initial values.
Strategies to handle this, involving control over the deviation of norm and orthogonality, have already
been developed for the discrete Chebyshev and Krawtchouk functions, i.e., the orthonormal basis in `2

derived from the polynomials. Since these functions are limiting cases of the discrete Hahn functions,
it suggests that the strategy could also be successful there. We outline the algorithmic strategies
including the specific method of generating the initial values, and show that the orthonormal basis
can indeed be generated for large supports and polynomial degrees with controlled numerical error.
Special attention is devoted to symmetries, as the symmetric windows are most commonly used
in signal processing, allowing for simplification of the algorithm due to this prior knowledge, and
leading to savings in the required computational power.

Keywords: orthogonal polynomials; discrete Hahn polynomials; discrete Hahn functions; error
propagation; difference equation; three-term recurrence relation

1. Introduction

There is a long history in fundamental research on orthogonal polynomials. In the
current age where information is transmitted and stored in predominantly digital ways,
discrete orthogonal polynomials are finding their way into applications such as signal
processing systems. The classical discrete orthogonal polynomials encompass the well-
known discrete Chebyshev, Krawtchouk and Hahn polynomials [1].

For signal processing applications, unitary transformations derived from the polyno-
mial systems are of interest. The recurrence relation and difference equation associated
with these polynomials carry over to the basis functions defining these unitary transforms.
It has been noted however, that deployment of these properties in iterative computation
schemes (e.g., for generating the basis functions) gives rise to numerical issues. This not
always an issue, as many applications operate with transformations having small support
and/or low polynomial degree, e.g., in image processing, typically small patches of images
or video signals are analyzed or coded. The question remains whether there is a general
and elegant way in line with the theory of normed spaces such that these numerical issues
are mitigated for the general case.

Several strategies have been proposed to deal with these issues [2–5], typically geared
to a specific polynomial system, or targeting specific applications. Recently, an approach
based on truncating the tails of the functions has been proposed for the discrete Chebyshev
and Krawtchouk functions [6,7]. It is in these tails that numerical problems manifest
themselves. The truncation, i.e., the operational definition of tail, is controlled by the norm
of the basis functions and thus fits in well with the basic notions in these systems. It is this
research trail that we will follow.

Since the discrete Chebyshev and Krawtchouk polynomials are limiting cases of
discrete Hahn polynomials, we expect a similar approach to work here as well. The present
paper confirms this, provided that adequate measures are taken to mitigate numerical
issues with the initial samples in these recursive schemes. We will highlight the common
aspects and differences in the developed tail-cutting approaches, with special attention
to polynomials associated with symmetric weight functions, since on the one hand, the
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prior knowledge of symmetry typically allows for alternative solutions and decreased
computational complexity, while on the other hand, they are presumed dominant in many
application domains.

The outline of this paper is as follows. We first introduce the discrete Hahn polynomials
and their notation in line with literature. Then we turn to the discrete Hahn functions,
and review properties underlying our algorithmic strategy and the chosen experimental
settings for validation (Section 3). Next, we consider the strategies, while also relating
them to the limiting cases and with special attention to the symmetric weight functions
(Section 4). In Section 5, we validate the performance. We close with our conclusions.

2. Discrete Hahn Polynomials

We consider a discrete finite interval represented by variable x with x = 0, 1, 2, · · · , N.
For the notation of the orthogonal polynomials, we dominantly follow [8].

2.1. Weight Function

The weight function w(x) underlying the discrete Hahn polynomials is given by

w(x) =
(α + 1)x(β + 1)N−x

x!(N − x)!
(1)

with α, β > 0 or α, β < −N and with the Pochhammer function (γ)x denoting the rising
factorial [8]. The shape of weight function is defined by these two parameters that allow
to steer the location and width of the peak. Examples of the influence of the parameters
on the weight function are shown in Figure 1. If β/α ≥ 1, the maximum of the weight
function occurs for x ≤ N/2; if α = β the window is symmetric. Particularly, the freedom
in the window’s effective width at each N is an asset provided by the Hahn polynomials
compared to the discrete Chebyshev and Krawtchouk cases.

For later use, we note that the ratio between two consecutive weight samples is a ratio
of two second-degree polynomials:

w(x + 1)
w(x)

=
α + x + 1
β + N − x

N − x
x + 1

. (2)

The limiting cases are characterized by the fact that this fraction reduces to a constant
(discrete Chebyshev) or a ratio of first-order polynomials (Krawtchouk).

Figure 1. Examples of discrete Hahn weight functions. (Left): α = β, (middle): α = 10 and (right):
α = −50. In all cases N = 40, and β as indicated in the legend.

2.2. Discrete Hahn Polynomials

In line with [8], the discrete Hahn polynomials are denoted as Qn(x; α, β, N), or in
shorthand notation, pn(x). The latter is dominantly used in this paper as it is mostly unnec-
essary to explicitly state the dependence on N, α and β. It also allows us, when relevant, to
consider pn(x) as representing the limiting cases: the discrete Chebyshev or Krawtchouk
polynomials, polynomials not belonging to the allowed range of α, β. Expressions of the
polynomials pn in terms of Rodrigues’ Formula and generalized hypergeometric function
can be found in [8]. We note that swapping the roles of α, β corresponds to mirroring the
support and an amplitude correction
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Qn(N − x, α, β, N) = (−1)n (β + 1)n

(α + 1)n
Qn(x, β, α, N). (3)

2.3. Normalization Constant

The normalization constant hn of the discrete Hahn polynomial pn is given by [8]

hn =
(−1)n(n + α + β + 1)N+1(β + 1)nn!
(2n + α + β + 1)(α + 1)n(−N)nN!

. (4)

Note: if α, β < −N then (−1)Nw(x) > 0 and (−1)Nhn > 0.
The normalized window ŵ is defined as

ŵ(x) =
w(x)

h0
=

N!
x!(N − x)!

(α + 1)x(β + 1)N−x
(α + β + 2)N

. (5)

2.4. Recurrence Relation

The recurrence relation is written as [8]

− xpn(x) = An pn+1(x)− (An + Cn)pn(x) + Cn pn−1(x), (6)

where for the discrete Hahn polynomials we have

An =
(n + α + β + 1)(n + α + 1)(N − n)
(2n + α + β + 1)(2n + α + β + 2)

, (7)

Cn =
n(n + α + β + N + 1)(n + β)

(2n + α + β)(2n + α + β + 1)
. (8)

2.5. Difference Equation

The discrete Hahn polynomials satisfy a second-order difference equation. This can be
rewritten to a linear relation for pn at three consecutive values of x. It is given by [8]

D(x)pn(x + 1)− (D(x) + F(x))pn(x) + F(x)pn(x− 1) = n(n + α + β + 1)pn(x), (9)

with

D(x) = (x + α + 1)(x− N), (10)

F(x) = x(x− β− N − 1). (11)

We deviate from the symbols used in [8] to avoid confusion with the coefficients in the
recurrence relation.

3. Discrete Hahn Functions

The discrete Hahn functions are defined as

Hn(x) = pn(x)
√

w(x)/hn. (12)

We refer to these as functions and not as normalized polynomials for obvious reasons. We
therefore also speak about the order of the Hahn functions as opposed to the degree of the
Hahn polynomials. In order to be consistent, we use the same terminology and distinctions
for Krawtchouk and for discrete Chebyshev, even though, due to the fact of a constant
weight function, the discrete Chebyshev functions are in fact polynomials.

Putting all samples of the discrete Hahn functions into an (N + 1)× (N + 1) matrix
yields an orthonormal transformation matrix. An arbitrary sequence of numbers (e.g., a
segment from a discrete-time signal) can thus be mapped onto this polynomial domain.
Depending on the application, certain operations can be applied in this domain such as de-
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trending (attenuating the lower-order components), de-noising (attenuating or removing
higher-order components), or searching for particular patterns (like in watermarking).

The discrete Hahn functions inherit the symmetry property (3) from the polynomials
in the following form

Hn(x, α, β, N) = Hn(N − x, β, α, N), (13)

i.e., swapping the roles of the parameters α, β is equivalent to reversal of the x-axis.

3.1. Recurrence Relation

The recurrence relation for the discrete Hahn functions becomes

− xHn(x) = ÃnHn+1(x) + B̃n Hn(x) + C̃n Hn−1(x) (14)

with

Ãn = An
√

hn+1/hn, (15)

B̃n = −(An + Cn), (16)

C̃n = Cn
√

hn−1/hn. (17)

3.2. Difference Equation

For the discrete Hahn functions, a second-order difference equation exists. Like for
the polynomials, we express this as a linear relation in Hn at three consecutive values of x:

D̃(x)Hn(x + 1) + Ẽ(x)Hn(x) + F̃(x)Hn(x− 1)− ηn Hn(x) = 0, (18)

where from (9) and (2) follows

D̃(x) = D(x)

√
w(x)

w(x + 1)
=
√
(β + N − x)(α + x + 1)

√
(x + 1)(N − x),

Ẽ(x) = −(D(x) + F(x)) = −(x + α + 1)(x− N)− x(x− β− N − 1),

F̃(x) = F(x)

√
w(x)

w(x− 1)
=
√
(β + N + 1− x)(α + x)

√
(x)(N − x + 1),

ηn = n(n + α + β + 1).

3.3. Energy: Center and Spread

It is well-known that using the recurrence and difference equation to create the as-
sociated transformation matrix creates numerical issues, e.g., [2–5]. These issues occur at
positions in the x, n plane where consecutive values of Hn are small and thus the precision
of the numerical representation has a relatively large effect. To obtain insight into where
these spots occur, we consider the center and spread of the discrete Hahn functions.

For the center and spread (or width) of the energy of a discrete function f (x), we use
the standard definitions:

The center µ f of a function f on a discrete domain is defined as

µ f =
∑x x f 2(x)
∑x f 2(x)

.

The effective width σf of a function f on a discrete domain is defined as

σ2
f =

∑x(x− µ f )
2 f 2(x)

∑x f 2(x)
.

We are interested in the center and spread of the discrete Hahn function Hn and denote its
center and spread as µn and σn, respectively.
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By virtue of the recurrence relations and explicit knowledge of its coefficients, explicit
expressions for the center and effective width of each Hahn function are available [9]. For
the center we have

µn = −B̃n = An + Cn. (19)

It is easy to show that µn = N/2 if α = β. In other cases, the center µn is a monotonically
increasing or decreasing function of n, but unlike the Krawtchouk case, is not linearly
dependent on n. For the effective width we have

σ2
n = Ã2

n + C̃2
n. (20)

These features of the Hahn functions can be displayed in the x, n plane, as shown in
Figure 2, where for each function order n the central lobe is visualized by the boundaries
µn ± σn. This gives a contour in the x, n plane within which the energy of the functions are
concentrated. We observe that depending on whether α > 0 or <N, the spread is higher or
lower for higher orders.

Figure 2. Examples of energy concentration of the Hahn functions for N = 40, where the colored
lines indicate energy center ± the standard deviation for each order n. (Left): α = β as indicated in
legend, and (right): various combinations of α, β as indicated.

We consider the center and width of the zeroth-order function in more detail. The
center µ0 is given by

µ0/N =
(α + 1)N
α + β + 2

. (21)

Values of x close to this will presumably be good starting points for recursion. This is
considered in more detail at the end of the next section.

To illustrate the spread variation, we consider symmetric weight functions: α = β. For
convenience, we introduce

ζ =

{
α, if α > 0,
−(α + N), if α < −N,

and show the effect of α on the normalized spread σ0/N in Figure 3. For each N, it consist
of two sigmoidal components, associated with positive and negative values of α. For
positive α, the normalized spread is between

√
1/12, corresponding to flat window (discrete

Chebyshev), and the width of a Krawtchouk zeroth-order function: σ0/N = 1/(2
√

N).
Using negative α, the width can be further reduced by a factor

√
2 to σ0/N = 1/(2

√
2N).

These graphs will be used to guide the selection of settings for the validation trials.
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Figure 3. Examples of normalized energy spread σ0/N for symmetric H0 as function of ζ.

In contrast to the Krawtchouk case where energy concentration could be easily deter-
mined in the polynomial domain [7] due to the specific form of ηn, this is not case for the
discrete Hahn functions.

4. Strategies

In this section, we consider the strategies to generate the discrete functions for all
values of x and for orders from 0 to some user-defined maximum order Ñ. The setting
for this maximum depends on the application and is related with the amount of detail
that needs to be maintained in the mapping. The discussed strategies relate to the various
functions (discrete Chebyshev, Krawtchouk, discrete Hahn) and the presence of symmetries
useful to deploy in the algorithms. This includes the strategy for accurate initialization.
The essential differences between this procedure and previous approaches [2–5] are

1. Repeated careful initialization at each new order;
2. The use of a norm-based stop criterion.

The processing further distinguishes itself by a balancing principle. Both for the
computation of the initial values and for the order in which samples are calculated, a
control mechanism is in place based on prior knowledge of the end result of the recursive
operations. In the first case, this is such that the normalized weight function is strictly less
than 1 at each x, in the second case it is the location of the center µn of the function Hn.

4.1. Symmetries

The discrete Hahn functions are fundamentally asymmetric; only for α = β a symmetry
or antisymmetry occurs with respect to the center of the interval N/2. Additionally, the
discrete Chebyshev and Krawtchouk with p = 0.5 display this symmetry and the strategies
developed before are included in the discussion. Krawtchouk functions display further
symmetries along the diagonal and antidiagonal for all values of p, meaning there are
fundamental similarities of functions in the original and transform domain. This, however,
has no direct counterpart in the discrete Hahn functions.

4.2. Scheme Based on the Recurrence Relation

For discrete Chebyshev functions Cn, the zeroth-order function is trivial as it is a
constant. Furthermore, the weight function is symmetric, inducing symmetric and anti-
symmetric patterns in the even and odd functions, respectively. Although the discrete
Chebyshev functions are usually defined on an interval [0, N − 1], in the following we
assume they are defined like the Krawtchouk and Hahn polynomials on an interval [0, N].
If N is odd, it means only half of the samples need to be calculated; via mirroring plus sign
reversal for odd n, all other values are available. This means (N + 1)2/2 samples need
to be calculated. For even N, one might think one needs to calculate (N + 2)(N + 1)/2
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samples, but at x = N/2 the antisymmetry for odd n implies that (N − 1)/2 values are 0.
The total is therefore slightly less than that.

For the discrete Chebyshev functions, the recursive relation (RR) is executed starting
at n = 0. While recursing over n, the norm can be tracked over the already calculated
samples at each x, separately, i.e.,:

n

∑
m=0

C2
m(x). (22)

If this norm is sufficiently close to 1, all function values at this x for higher orders are set to
zero. This prevents numerical issues that would otherwise occur for large values of n and
large (and small) values of x. The concept is sketched in Figure 4.

6
RR

- x

6

n

Figure 4. Algorithmic strategy for the calculation of the discrete Chebyshev functions. The process is
initiated by calculation of the zeroth-degree function. The termination of executing the recurrence
relation depends on the attained norm (in the n direction) and differs per x. The striped area indicates
the part that need not be calculated but can be obtained from symmetry.

We presume that this strategy will also work in practice for the discrete Hahn functions
if the weight function is sufficiently flat. However, since it is not a general approach
and since it is not a priori clear exactly what sufficiently flat implies in terms of allowed
parameters, we will not consider this further.

4.3. Strategies Based on Symmetry

A separate strategy is in place for symmetric weight functions. It thus applies to the
discrete Chebyshev, Krawtchouk with p = 0.5 and discrete Hahn functions with α = β.

Let us assume that we can calculate highly accurate values for H0(M) and H0(M + 1)
where M = bN/2c. For these two values of x, the recursive relation can be applied without
problems as they are located in the central lobe of the energy. These two x-values can
subsequently be used as starting points for the deployment of the difference equation
(DE). Like in the discrete Chebyshev case, we can track the energy associated with samples
generated so far, but do this now along the x variable, i.e.,

M−k

∑
x=k

H2
n(x). (23)

The DE calculation is then truncated whenever the norm is sufficiently close to 1.
The strategy is sketched in Figure 5. In the Krawtchouk case, the number of computa-

tions can be reduced even further as a consequence of symmetries over diagonals.
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6
RR

- DE

- x

6

n

6RR

- DE

- x

6

n

Figure 5. Algorithmic strategy for the calculation of the functions in case of symmetric weight
functions. (Left): discrete Hahn and discrete Chebyshev functions; (right): Krawtchouk functions.
The striped area indicates the part that need not be calculated but can be obtained from symmetry.
The recurrence relation runs over the central values of x, and the difference equation is used for the
other values, starting from the center of the interval. Termination of the execution of the difference
equation depends on the attained norm and is evaluated at each n independently.

4.4. Strategies Based on Tracking Point of Gravity

The general procedure is an adaptation of the symmetric case. In the symmetric case,
the DE is executed starting at the center of the interval N/2. For the general situation, we
must realize that this is not a good choice a priori; instead, we expect x values close to
the center µn to provide highly accurate start values for the DE. Therefore, the recurrence
relation is not taken along the center of the interval but along the center of energy, as
sketched in Figure 6.

�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
���

RR

� -DE DE

- x

6

n

�
�
�
�
�
�
��

�
�
�
�
�
��RR

� -
DEDE

- x

6

n

Figure 6. Schematic representation of the algorithm. (Left): discrete Hahn functions, (right):
Krawtchouk functions. The striped area indicates parts that need not be calculated but can be
obtained from symmetry. The recurrence relation is used for samples x closest to the center of energy.

The procedure for generating the discrete Hahn functions is explained in more detail
in the flowchart of Figure 7. Input are the transformation parameters: N, α, β and the
control parameter ε. The control parameter indicates the allowed deviation from unit norm
of each generate discrete Hahn function. Furthermore, a maximum value for the order can
be supplied: Ñ.
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RR coeff.
DE coeff.
set n = 0

start

determine
center µn

initial
x-values

n = 0?
window

calculation
RR

calculation

determine
initial E

determine
current µ̃

µ̃ > µn?
DE at

low end

DE at
high end

update E

E > 1−ε? 0-padding

n → n + 1

n > Ñ?

stop

yes
no

yes
no

no

yes

no

Figure 7. Flowchart for the computation of discrete Hahn functions. The variables µ̃ and E denote the
center of energy and energy of the nth-order discrete Hahn function based on the samples calculated
so far.

Given these input parameters, the algorithm determines and stores the coefficients of
the recurrence relation and difference equation. Once this is done, a loop over the order
n is executed, starting with n = 0 and running until Ñ. Within this loop, first the center
of energy µn is considered; in fact it has already been calculated as it equals one of the
recurrence relation parameters, see (19). This value is translated into two integer values of
x closest to it: Xn = bµnc and Xn + 1. If n > 0, the recurrence relation is used to generate
Hn at these values from the lower-order samples. If n = 0, they are generated by the
initialization procedure discussed in Section 4.5. From these initial values, the associated
norm is determined, thereby starting the norm tracking. Additionally, the actual center of
energy, i.e., that associated with the samples generated so far, is determined. Depending on
whether the actual center µ̃n is lower or higher than the real center µn, the range of x-values
at this particular n is extended in the upper of lower boundary of the existing range by
the difference equation (DE). After having generated this new sample Hn(x), the norm
is updated and compared with the stop criterion. If it is lower, we proceed to generate a
new sample at this order by returning to the block deciding whether to extend at the lower
or higher range. If the criterion is met, all samples Hn(x) outside the already generated
range of x are set to 0 (zero-padding). The order is increased by one, and if less than the
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maximum order, the process starts with the steps to calculate the samples at this updated
order n.

The flowchart is simple and straightforward for the discrete Hahn functions. In
case of the Krawtchouk functions, we can deploy the symmetries over the diagonal and
antidiagonal, as illustrated in Figure 6, to make the scheme more efficient. This requires
some extra checks to see if, when having crossed a diagonal, values can be picked up from
mirroring. This may or may not be the case, as for previous orders an independent decision
has been taken to terminate the calculations. The extra logic is not shown in the flowchart
as it pertains only to the Krawtchouk case, not to the general discrete Hahn functions.

4.5. Initialization at n = 0

It is paramount to have initial values with high accuracy, and to calculate these such
that no numerical problems occur even for extreme parameters. For instance, calculations
deploying standard routines for the Γ function fail rather quickly.

The next procedure addresses this issue. The algorithm as discussed above requires
H0(x) at x = X0 = bµ0c and X0 + 1. We have H0(x) =

√
ŵ(x) and the normalized

window (5) can be expressed as a product series of N terms by

ŵ(X0) =
X0

∏
k=1

(
N − X0 + k

k
α + k

α + β + 1 + k

) N

∏
k=X0+1

(
β + k− X0

α + β + 1 + k

)
. (24)

There are other ways to express ŵ in a product series, but this one has properties that make
it attractive. We also note that ŵ(X0) < 1 as a consequence of the normalization (5).

Let us assume that X0 < N/2 (implying α < β ), where we note this can always be
attained by swapping roles of α and β, see (3). This implies that we have more terms (i.e.,
N − X0) in the right-hand product series than in the first one. We note that each term in the
product series running from X0 + 1 to N is less than 1. The terms in the left-hand product
series are a decreasing sequence as function of k.

It is important to note that taking the product formation in the order of the index
results in very high values as an intermediate result, potentially resulting in overflows.
Arbitrary ordering has the risk of over- or under-flows. To mitigate that issue, we use a
controlled product execution method based on the fact that the final result (the normalized
window in the center) is always less that 1. We store all N ratios from the expression in a
list ordered according to index k. All ratios larger than one are at the top of the list; below
that, only ratios less than 1 appear. Let us call the intermediate product P. The control
strategy is the following. If P is larger than 1, we update the result by multiplying it with
the first entry from the list and remove that ratio from the list. Otherwise, we multiply
with the highest ratio (last in the list) and remove the last entry. This is done until the list
of ratios is empty. The effect is that the intermediate product will fluctuate around 1 until
all ratios larger than or equal to 1 have been removed from the list. From then on, the
intermediate product P decreases monotonically. Having ŵ(X0), we take the square root to
obtain H0(X0) and use (2) to obtain H0(X0 + 1).

The initial points for the symmetric case (α = β) are the center points. If N is even,
then the maximum of ŵ occurs at N/2, and from (5), is given by

ŵ(N/2) =
(
(α + 1)N/2

(N/2)!

)2

, (25)

i.e., a product series of length N/2 consisting of squared ratios. If N is even, and we define
M = bN/2c, then the maximum of ŵ occurs at M and M + 1 and is given by

ŵ(M) = ŵ(M + 1) =
(
(α + 1)M

M!

)2 α + M + 1
M + 1

. (26)



Symmetry 2022, 14, 437 11 of 15

where in the general case we have N product terms, here we have less. The same procedure
as for the general case can be applied to avoid numerical overflows. It is obvious that for
the symmetric case it is convenient to calculate H0(X0) directly as a product series rather
than ŵ(X0).

We note that the sketched procedure for determining the initial values is by no means
the only possibility. As an example, accurate approximations exist for the ratio of Γ-
functions that may be deployed instead, in case of specific parameters. The merit of the
proposed procedure is that it provides a generic approach and leads to a simple algorithmic
solution.

5. Results
5.1. Parameters in the Experiments

For validation of the proposed procedure, we use two sizes for N: 200 and 2000.
Based on the range of shapes of the symmetric windows as shown in Figure 3, we opted
for three positive and three negative values of α covering the full range, meaning one
α representative for the middle of the sigmoidal function, and two values close to the
saturation levels. For symmetric windows and the proposed interval sizes, this gives the
settings for α = β as displayed in columns 2 and 4 of Table 1.

Table 1. Settings of the parameters N, α, β as used in the numerical experiments. The top row
indicates the two settings for N. The second row indicates how α was chosen: either equal to β (first
and fourth column) or fixed (in the other four columns). The values for β are given in the third and
all following rows. The ordering of the β values corresponds to decreasing spread (columns 1 and 4)
or increasing skewness (columns 2, 3, 5 and 6).

N = 200 N = 2000
α = β α = 30 α = −500 α = β α = 100 α = −3000

1 37 −611 1 122 −3667
30 56 −929 100 186 −5571

1000 90 −1500 10,000 300 −9000
−1200 170 −2833 −12,000 567 −17,000
−500 570 −9500 −3000 1900 −57,000
−300 −2100

For asymmetric weight functions, we controlled the position of µ0 to cover the full
range. We choose five settings of β where the center increases approximately by 1/(10N),
starting at 1/(20N); for α we used a setting already used for the symmetric weight functions
and corresponding to the center of the sigmoidal functions, as shown in Figure 3.

We choose a large range of allowed deviations ε, where each parameter setting has its
specific value for visualization purposes.

5.2. Symmetric Weight Functions

In Figure 8, the results of the validation are shown for discrete Hahn functions asso-
ciated with symmetric weight functions. For those orders where truncation occurs, the
maximum deviation from norm is always smaller than the specified deviation. For those
orders where no zero-padding occurs, the deviation of unit norm is induced by the machine
accuracy and can result in larger deviations than specified. This is visible for N = 2000
and α = 1, where for ε = 10−12 the measured deviation is above the black line. The
orthogonality, although not explicitly controlled, is below

√
ε. The amount of zero-padding

is only slightly affected by the specified accuracy: at N = 2000, 20% of the samples were
set to 0.
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Figure 8. Results for symmetric weight functions. From top to bottom: maximum deviation from
norm, maximum deviation from orthogonality and fraction of samples created by zero-padded. Left
column: N = 200, right column: N = 2000. The legend gives α = β.

5.3. General Weight Functions

In Figures 9 and 10, the results of the validation are shown for asymmetric weight
functions. Again, for those orders where truncation occurs, the maximum deviation from
norm is always smaller than the specified deviation. The orthogonality is below

√
ε. The

amount of zero-padding is only slightly affected by the specified accuracy. The amount of
skewness, however, has a large influence: with µ0 at 5 % of the full interval, more than half
of the data are set to 0 in case of negative values of α.
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Figure 9. Results for asymmetric weight functions with positive α: From top to bottom: maximum
deviation from norm, maximum deviation from orthogonality and fraction samples created by zero-
padded samples. Left column: N = 200 and α = 30, right column: N = 2000 and α = 100. The
legend gives β.
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Figure 10. Results for asymmetric weight functions with negative α: From top to bottom: maximum
deviation from norm, maximum deviation from orthogonality and fraction samples created by zero-
padded samples. Left column: N = 200 and α = −500, right column: N = 2000 and α = −3000. The
legend gives β.

6. Discussion

The validation results show that the proposed algorithm mitigates the issues of error
propagation effectively with a user-controlled deviation from norm and also a bound on
the achieved deviation from orthogonality. Still, to make the algorithm student-proof, it
may be good to add some control over the input parameters, where a check is made for if
the parameter combination N, α, β is still meaningful. This can be achieved by calculating
µ0 and σ0 and providing warnings at high eccentricities and inappropriate σ0, i.e., those
close to limit of the range.

The case of discrete Hahn functions based on symmetric windows are presumably the
most widely used ones in practice, e.g., in image processing, the orientation left or right
would not logically warrant different behavior. In applications, the basis functions can
be calculated and stored upfront. The calculation of the basis functions associated with
symmetric weight functions is computationally less demanding, but more importantly, so
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is the transformation itself. The input signal can be split upfront into a symmetric and
antisymmetric function. Then, the transformation breaks down into two separate processes
where only half of the computations are needed. The additional overhead is the (low-cost)
decomposition into symmetric and antisymmetric input signal, and the reshuffling of
coefficients at the end.

7. Conclusions

An algorithm for generating discrete Hahn functions based on recurrence relations
and difference equations has been described. The algorithm mitigates the issue of error
propagation by a combination of controlling where to use the recurrence relation, how
to choose the direction in which the difference equation is applied, and where to apply
zero-padding. The control mechanism is based on tracking the norm and on explicit prior
knowledge of the center of energy. We have shown that the strategy is effective.

Special attention has been paid to the relations with the limiting cases of discrete
Chebyshev and Krawtchouk functions, and to simplifications occurring for the discrete
Hahn systems associated with a symmetric weight function.

The sketched method is general by nature; the flowchart shows that the premises are
that the parameters in the recurrence relation and difference equation can be computed,
and that highly accurate initial values at the first pattern (n = 0) can be created.
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