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Abstract: This paper shows how gauge theoretic structures arise in a noncommutative calculus where
the derivations are generated by commutators. These patterns include Hamilton’s equations, the
structure of the Levi–Civita connection, and generalizations of electromagnetism that are related to
gauge theory and with the early work of Hermann Weyl. The territory here explored is self-contained
mathematically. It is elementary, algebraic, and subject to possible generalizations that are discussed
in the body of the paper.
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1. Introduction to Noncommutative Worlds

This paper is an exploration of calculus in a noncommutative framework and its
relationships with physics. It is well known that quantum mechanics can be formulated in
such a framework. Here, we begin with classical physics and show that it is illuminated
by thinking about a context of noncommutativity. It is of interest to ask the relationship of
such work with the Noncommutative Geometry of Alain Connes [1]. We give a concise
description of the Connes approach in Section 2 of this paper. There is a close conceptual
relationship of this work with Connes since both approaches represent calculus algebraically.
Readers familiar with the work of Connes may find Section 2 helpful in orienting to the
present paper. The contents of this paper are self-contained and elementary. We intend to
make contact with Connes’ Geometry in subsequent work.

When we say that this paper is elementary, we mean it. There is one key idea in the
present paper. We are given an algebraN that is associative and noncommutative. We note
that in such an algebra, if J is a chosen element of the algebra and we define∇J : N −→ N
by the equation ∇J F = FJ − JF = [F, J], then ∇J is a derivation on N in the sense that
∇J(FG) = ∇J(F)(G) + F∇J(G). Thus, ∇J satisfies the Leibniz rule for differentiation.
This means that we can mimic differential calculus in the context of the noncommutative
world of the algebra N . In this paper, we will discuss this algebraic version of calculus in
noncommutative worlds. We shall refer to the usual contexts of differential calculus with
spaces, topologies, and limits as standard worlds.

The relationships between standard worlds and noncommutative worlds are only
partially explored. Quantum mechanics begins such an exploration when it follows the
Dirac dictum and replaces the Poisson brackets of Hamiltonian mechanics by commutators
so that the quantum evolution of a wavefunction ψ is given by the equation

ih̄ψ̇ = [ψ, Ĥ] (1)

where Ĥ is the Hamiltonian operator for the quantum system. In this case, the operator Ĥ
has an Hermitian representation on an appropriate Hilbert space, and the time evolution is
unitary. There is more given structure than in our abstract noncommutative world, and
one does not attempt to do all the calculus by using commutators. Nevertheless, the fact
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that quantization is performed by replacing standard calculus (the Poisson bracket) by
commutators is in back of our motivation to explore the noncommutative world. Another
motivation is in the Feynman–Dyson derivation of electromagnetism from commutator
equations [2]. In that derivation, the authors essentially work in a noncommutative world.
We will have more to say about the Feynman–Dyson derivation in Section 8.

There is no continuum differential calculus in this paper. There are no topological
spaces. There are no bundles, no tangent spaces, no cotangent spaces, no spaces at all. The
contents of this paper are entirely algebraic. It is our intent to put flesh on these bones, but
that work will be done elsewhere. Here, we are exploring the consequences of derivations
defined by commutators in an abstract algebra. What is remarkable is that many patterns
of physics and gauge theory arise in this algebraic context. It is our intent to explore and
exhibit these patterns.

Calculus was originally formulated in a commutative framework by Newton, Leibniz,
and their successors. Quantum mechanics brought formulations of physical theory linked
with noncommutativity. Heisenberg’s quantum theory is based on quantities that do not
commute with one another. These quantities obey specific identities such as the commutator
equation for position Q and momentum P :

QP− PQ = h̄i. (2)

Schrödinger formulated quantum mechanics via partial differential equations and
showed that the operators Q = x and P = −ih̄∂/∂x obey the Heisenberg relations. Dirac
found a key to quantization via the replacement of the Poisson bracket (of Hamiltonian
mechanics) with the commutators of quantum operators. Curvatures in differential geom-
etry and general relativity are seen, through the work of Weyl and others, to correspond
to differences in parallel translation. This corresponds to the commutators of covariant
derivatives. Gauge theory began with Hermann Weyl [3] as a generalization of differential
geometry. In Weyl’s theory, lengths as well as angles are dependent upon the choice of
paths. Weyl saw how to incorporate electromagnetism into general relativity using his
generalizations of differential geometry. Initial difficulties of interpretation arose in the
context of Weyl’s theory for general relativity, but his ideas were adopted for quantum
mechanics and became a basis for understanding nuclear forces.

We begin by formulating calculus in noncommutative domains. Discrete calculus
is a motivation for these constructions. We show how to embed discrete calculus in a
noncommutative context, wherein it can be adjusted so that the derivative of a product
satisfies the Leibniz rule. The relationship with discrete calculus is detailed in Section 7. It
is important background to the content of the paper. Let f (x) denote a function of a real
variable x, and f̃ (x) = f (x + h) for a fixed difference h. Define the discrete derivative D f by
the formula D f = ( f̃ − f )/h. The Leibniz rule is not satisfied. The formula for the discrete
derivative of a product is as shown below:

D( f g) = D( f )g + f̃ D(g). (3)

We can adjust the Leibniz rule by introducing a noncommutative operator J with the
property that

f J = J f̃ . (4)

Define a modified discrete derivative by the formula

∇( f ) = JD( f ). (5)

It follows at once that

∇( f g) = JD( f )g + J f̃ D(g) = JD( f )g + f JD(g) = ∇( f )g + f∇(g). (6)
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Note that
∇( f ) = (J f̃ − J f )/h = ( f J − J f )/h = [ f , J/h]. (7)

The modified discrete derivatives are represented by commutators and satisfy the
Leibniz rule. Discrete calculus can be embedded into a noncommutative calculus based
on commutators. With this understanding of the relationship of discrete calculus and
commutator calculus, it is possible to consider discrete models for the structures described
in this paper, and it is possible to compare the commutators that arise from discrete
observations with the commutators in quantum mechanics.

Let [A, B] = AB− BA denote a commutator in an abstract algebra. Define DA = [A, J]
for a given element J. Then, D is a derivation in the sense that D(AB) = D(A)B + AD(B)
(the Leibniz rule). Once we have derivations, geometric concepts become available. If two
derivations∇J A = [A, J] and∇K A = [A, K] are given, then we can form their commutator

[∇J ,∇K]A = ∇J∇K A−∇K∇J A = [[J, K], A]. (8)

(The verification of this last inequality is given in the next section.) RJK = [J, K] is
defined to be the curvature associated with ∇J and ∇K. The commutator of the derivations
∇J and ∇K is represented by RJK = [J, K]. When J and K commute, then the derivations
themselves commute, and the curvature vanishes. We shall demonstrate that curvature in
this sense is the formal analog of the curvature of a gauge connection.

This paper consists of nine sections, including the introduction. Section 3 outlines
the general properties of calculus in a noncommutative domain N , where derivatives are
represented by commutators. Included is a special element H such that the total time
derivative is given by the formula Ḟ = [F, H] for any F in the noncommutative domain.
We assume an initial “flat" coordinatization where algebra elements X1, · · · , Xn represent
position coordinates and commute with each other, and another set of elements P1, · · · , Pn
that commute with one another represent their partial derivatives. We take [Xi, Pj] = δij
where this means that the commutator is equal to 0 unless i = j when it is equal to 1. Hence,
we can define ∂F/∂Xi = [F, Pi].

A formal analog of Hamilton’s equations arises in a flat coordinate system, and
the Heisenberg version of Schrödinger’s equation arises as well. Section 4 explores the
consequences of defining dynamics in the form

mẊi = mdXi/dt = Gi. (9)

Here, m is a constant, meaning that m is in the center of the algebra so that it commutes
with all elements of the algebra. Since m is the analog of mass, we assume that m is invertible
and non-zero. We take {G1, · · · ,Gd} to be a collection of elements of the noncommutative
domain N . Let Gi = Pi − Ai. This is a definition of Ai with ∂iF = ∂F/∂Xi = [F, Pi]. Gauge
theory formalism appears via the curvature of ∇i with ∇i(F) = [F, Pi − Ai].

Rij = ∂i Aj − ∂j Ai + [Ai, Aj] (10)

With mẊi = Gi = Pi − Ai, define gij = [Xi, mẊ j]. This is a natural choice for a
generalized metric. For a quadratic Hamiltonian with these metric coefficients, one can
prove the formula gij = [Xi, mẊ j]. Onc can show that for any F,

Ḟ =
1
2
(Ẋi∂i(F) + ∂i(F)Ẋi). (11)

Note that except for the appearance of two orderings of a product, this is the standard
formula for the total derivative in multi-variable calculus. It can happen that under
constraints, certain basic formulas go directly over to corresponding (ordered) formulas
in the noncommutative world. In this case, we see that a quadratic Hamiltonian has this
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property; see also [4]. A covariant version of the Levi–Civita connection is a consequence.
This connection satisfies the formula

Γkij + Γikj = ∇jgik = ∂jgik + [gik, Aj] (12)

and so corresponds, in the noncommutative world, to the connection of Hermann Weyl in
his original gauge theory [3]. See Sections 4 and 5 of the present paper.

Section 6 is a discussion on the structure of the Einstein tensor and how the Bianchi
identity can be seen from the Jacobi idenity in a noncommutative world. Section 7 is a
discussion about how discrete calculus embeds in noncommutative calculus. This section
can be regarded as an indication of an arena of applications of the methods of the present
paper. In particular, we discuss a model for discrete measurement and show how commu-
tators arise in this model and how a commutator of position and momentum is solved in
the discrete context by a Brownian walk. Section 8 is an exposition on the Weyl one-form,
leading to electromagnetism, its relationship with the Feynman–Dyson derivation of elec-
tromagnetismm, and a reminder of how this formalism is generalized to gauge theories,
loop quantum gravity, and low-dimensional topology. We consider a question about the
Ashtekar variables, loop quantum gravity, and their relationship with noncommutative
worlds. This question will be taken up in a sequel to the present paper. This section ends
with a recaptulation of our derivation [5–7] of a generalization of the Feynman–Dyson [2]
derivation of electromagnetism from commutator calculus. Our generalization can be
compared with Weyl’s orginal derivation using differential forms, and we plan subsequent
work on this aspect.

A significant structural point comes forth in Section 8 where we review our general-
ization of the Feynman–Dyson work. In our approach to this, we base the whole derivation
on writing deriviatives as commutators and demanding a noncommutative world analog
of the formula

Ḟ = ∂tF + ΣiẊi∂i(F). (13)

See Equation (204) for the specifics. The generalized version of electromagnetism
follows entirely from this constraint. See also [4,8]. Constraints between the form of the
calculus in standard worlds and the form of the calculus in noncommutative worlds seem
to be at the heart of physical laws. This needs better understanding.

We have taken the liberty of writing the last four sections of this paper to show
background ideas and structures that are related to the main themes of the paper and
to indicate further lines of inquiry. Section 6 on the Bianchi identity shows how another
aspect of differential geometry appears in the context of commutators. Section 7 on discrete
calculus shows the beginning of how the methods of this paper can be applied to discrete
formulations of physics. Section 8 on the Weyl 1-form gives background for understanding
both our noncommutative calculus and the geometric form of electromagnetism. We
describe how the Weyl one-form gives rise to electromagnetism derived from a vector and
scalar potential. We recall how Weyl’s form was generalized to gauge theory where the
field is given by the gauge curvature and that this is the local holonomy of the generalized
Weyl one-form. Then, we recall our Electromagnetic Theorem [6] where we derive a
generalization of the Feyman–Dyson work that fits a gauge theory. Then, the analogs of
the electric and magnetic fields can be compared with their counterparts from the Weyl
one-form. We find a startling match that leads to new research problems, as the reader will
see on examining the end of Section 8.

Section 9 is a summary of ideas and results, a discussion of further work, and references
to current work that we feel is relevant to this research.

Remark 1. Our papers [4,8] discuss higher-order constraints. Our paper [5] was inspired by
the Feynman–Dyson derivation of electromagnetism from commutator calculus [2,9? ,10]. Other
relevant papers are [4,6? ? ? ? ? ? –8].
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2. Noncommutative Geometry

This section is a very concise introduction to the Noncommutative Geometry of Alain
Connes [1]. Connes’ work is relevant to the ideas in this paper. It will be a separate project
to make the comparisons in detail.

The classical case is that of commutative C∗ algebras A = C(M), the algebra of
continuous complex valued functions on a compact manifold M. In this case, one has for
physics that M = T∗N where N is the cotangent bundle of the space of configurations with
its canonical symplectic structure. Here, M is the phase space of the physical system. The
Gelfand–Naimark Theorem [1] shows that there is an equivalence between the geometric
physics of this phase space and the algebraic persepecitive working only with the space
of functions that constitutes the C∗ algebra A. Connes takes this theorem as the lead for
studying noncommutative spaces and/or C∗ algebras by defining the relevant calculus and
analysis directly in terms of the noncommutative spaces.

Here is a direct quote from Chapter IV—Quantized Calculus in the book by Connes [1]:

“The basic idea of this chapter, and of noncommutative differential geometry is
to quantize the differential calculus using the following operator theoretic notion
for the differential

d f = [F, f ]. (14)

Here f is an element of an involutive algebra A of operators in a Hilbert spaceH,
while F is a selfadjoint operator of square one (F2 = 1) inH. At first one should
think of f as a function on a manifold, i.e. of A as an algebra of functions, but
one virtue of our construction is that it will apply in the noncommutative case
as well.”

“Since the word quantization is often overused we feel the need to justify its use
in our context.”

“First, in the case of manifolds the above formula replaces the differential d f by
an operator theoretic expression involving a commutator, which is similar to the
replacement of the Poisson brackets of classical mechanics by commutators.”

“Second, the integrality aspect of quantization (such as the integrality of the energy
levels of the harmonic oscillators) will have as a counterpart the integrality of the
index of a Fredholm operator, which will play a crucial role in our context.”

Connes works in general with a noncommutative C∗ algebra A of operators on a
Hilbert spaceH. The symbol d f for him must satisfy d2 f = 0. This can be accomplished by
assuming that F is in the center of the algebra A and the differential d f = [F, f ] is a graded
differential. This means that successive applications of d alternate between commutator
brackets [a, b] = ab− ba and mutator brackets {a, b} = ab + ba. Then, we have

d2 f = {F, [F, f ]} = F(F f − f F) + (F f − f F)F (15)

= FF f − F f F + F f F− f FF = [F2, f ]. (16)

Thus, if F2 belongs to the center of the algebra A, then d2 f = 0 for all f .
One can refer to d f as an infinitesimal. An operator T on the Hilbert space H is said

to be infinitesimal if it is compact where the compactness of the operator is a condition on
the eigenvalues of the associated operator (TT∗)1/2. We will refer to Connes [1] for the
details of the definition of compactness. Then, differential calculus in the Connes NCG is
given by a triple (A,H, F) where [F, f ] is a compact operator for every f in A. Such triples
are called Fredholm Modules. With this definition, Connes can define higher differentials,
Grassmann calculus, cohomology in terms of differential forms, and in general lift the
quantum physical structure into the category of the Fredholm modules.



Symmetry 2022, 14, 430 6 of ??

Connes defines a quantized calculus via derivations D : A −→ E where E is an A
bimodule, and a derivation is a map of modules that satisfies the Leibniz Rule:

D(ab) = D(a)b + aD(b). (17)

Commutators with fixed elements are examples of such derivations and are called
in this theory inner derivations. In this context, one can define universal n-forms and the
appropriate differential graded algebra ΩA =

⊕
n∈N ΩnA.

Remark 2. We have included this very skeletal description of the Connes framework of noncommu-
tative geometry to indicate an important context in which it is possible to perform physics based
on underlying noncommutativity. Note that by making the constructions relative to a C∗ algebra
A, the Connes theory has available self-adjoint operators for observables in quantum mechanics,
appropriate measure theory, and the use of algebraic formulations of calculus. The fact that such
constructions are possible can help orient the reader of the present paper, where we concentrate only
on structures related to algebraic calculus. Our aims in this paper are different from the aims of
the full noncommutative geometry. We examine the relationship between the standard worlds of
smooth calculus and the algebraic worlds with (using the terminology above) inner derivations.
We are particularly interested in how simple relationships between the rules of the calculus in the
standard worlds and the corresponding rules for the calculus in the noncommutataive worlds affect
the analogs of physical equations. This investigation begins in the next section of the paper. We
expect that some of our observations will be of use in the context of noncommutative geometry.

3. Calculus in Noncommutative Worlds

Let N be an abstract associative algebra that admits commutators. If A and B are in
N , then [A, B] = AB− BA is also an element of N .

For a fixed N in N , define
∇N : N −→ N (18)

by the formula
∇N F = [F, N] = FN − NF. (19)

∇N is a derivation satisfying the Leibniz rule.

∇N(FG) = ∇N(F)G + F∇N(G). (20)

Such derivations do not, in general commute with one another. The key result for their
noncommutation is as follows.

Theorem 1. With the definitions as above, the commutator of the two derivations is given by
the formula

[∇J ,∇K]F = [[J, K], F]. (21)

Proof.
[∇J ,∇K]F (22)

(∇J∇K −∇K∇J)F (23)

= [[F, K], J]− [[F, J], K] (24)

= (FK− KF)J − J(FK− KJ)− (FJ − JF)K + K(FJ − JF) (25)

= FKJ − KFJ − JFK + JKF− FJK + JFK + KFJ − KJF (26)

= (JK− KJ)F− F(JK− KJ) (27)

= [[J, K], F] (28)

This completes the proof.
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RJK = [J, K] is defined to be the curvature associated with ∇J and ∇K.
Within N , we build a world that imitates the behavior of flat coordinates in Euclidean

space. We need that the derivations for those coordinate directions commute with one
another. Suppose that X and Y are coordinates and that PX and PY represent derivatives in
these directions so that one writes

∂X F = [F, PX ] (29)

and
∂Y F = [F, PY]. (30)

and
∂ZF = [F, PZ]. (31)

In general, the two derivatives will not commute, but we have that

∂X∂Y = ∂Y∂X (32)

when [PX , PY] = 0.
Let X1, X2, · · · , Xd represent coordinates. The Xi satisfy the commutator equations

below with the Pj chosen to represent differentiation with respect to X j.:

[Xi, X j] = 0 (33)

[Pi, Pj] = 0 (34)

[Xi, Pj] = δij. (35)

Derivatives are represented by commutators.

∂iF = ∂F/∂Xi = [F, Pi], (36)

∂̂iF = ∂F/∂Pi = [Xi, F]. (37)

Remark on Poisson Brackets. Consider the case of a single X and a single P. Then, we
have XP− PX = 1 and

∂F/∂X = [F, P] (38)

and
∂F/∂P = [X, F]. (39)

This is in exact analogy with the Poisson bracket in standard variables x and p where
we have

{ f , g} = (∂ f /∂x)(∂g/∂p)− (∂g/∂x)(∂ f /∂p) (40)

and we certainly have that
∂ f /∂x = {x, p} (41)

and
∂ f /∂p = {x, f }. (42)

By choosing flat local coordinates as we have done above, we ensure that there is a
direct correspondence between the noncommutative calculus and the standard calculus at
this point of departure from Poisson brackets. As soon as we introduce other noncommuta-
tive elements into the algebraic world, the two calculi will diverge from one another. In
the discussion below, we will point out that the noncommutative version of a quadratic
Hamiltonian keeps the calculi in close correspondence.
Introducing Time. The time derivative is represented by commutation with H as shown below:

dF/dt = [F, H]. (43)
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H corresponds to the classical Hamiltonian or to the Hamiltonian operator in quantum
physics. In the abstract world N , it is neither of these. We can consider representations
of the algebra N where connections with the physics are more direct. For example, if N
is represented to a C∗ algebra, then the Hamiltonian can be represented as a self-adjoint
operator for the quantum mechanical version where we take ih̄dA/dt = [A, H].

Hamilton’s equations are a consequence of these definitions.
Hamilton’s Equations.

dPi/dt = −∂H/∂Xi (44)

dXi/dt = ∂H/∂Pi. (45)

Proof.
dPi/dt = [Pi, H] = −[H, Pi] = −∂H/∂Xi (46)

dXi/dt = [Xi, H] = ∂H/∂Pi. (47)

This completes the proof.

Remark 3. These are exactly Hamilton’s equations of motion. The pattern of Hamilton’s equations
is built into the system. It is natural to ask how this formal appearance of Hamilton’s equations
is related to their role in physics. Recall the one variable case. In the standard world, we have a
coordinate x, and the momemtum is given by the formula p = mdx/dt, and the energy of the
system is H = (1/2m)p2 + V(x). Newton’s law asserts that mẍ = F = −∂V/∂x = −∂H/∂x.
Now, we have dp/dt = mẍ. Thus

dp/dt = −∂H/∂x (48)

and
dx/dt = p/m = ∂H/∂p. (49)

Thus, we have Hamilton’s equations as an expression of the form of the Hamiltonian in the
presence of Newton’s law. Hamilton went on to observe that if F = F(x, p) is a function of position
and momentum, then

Ḟ = (dx/dt)(∂F/∂x) + (dp/dt)(∂F/∂p) (50)

and hence
Ḟ = (∂F/∂x)(∂H/∂p)− (∂H/∂x)(∂F/∂p) = {F, H} (51)

where the last expression is by definition the Poisson bracket of F with respect to x and p. The
dynamical equation

Ḟ = {F, H}

is the beginning of Hamiltonian Mechanics, and it turns out that the Poisson bracket has the same
formal properties as a commutator. We will not go further into Hamiltonian mechanics, but it should
be clear to the reader that what has happened in our noncommutative world formulation is that we
developed Hamilton’s idea from the other end, starting from a commutator analog of Hamilton’s
dynamical equation, and the Hamilton equations come out as a consequence. It is striking that they
do happen when we begin with the concept of derivatives as commutators.

Remark on Curvature and Covariant Derivative. By defining RJK = [J, K] as a curvature
associated with the derivations ∇J and ∇K, we are establishing terminology for use in the
algebraic context of noncommutative worlds. Since we have now a reference flat world
with derivatives ∂jF = ∂F/∂X j = [F, Pj], we can also create a terminology for (generalized)
covariant derivatives by defining

∇jF = [F, Pj − Γj] = ∂jF− [F, Γj] (52)

where the Γi are some given elements of the algebra N . Then, the Γi are analogous to a
Christoffel symbols and the ∇j represented by Pj − Γj can have their curvatures (in the
sense of their commutators) analyzed for the purposes of a problem at hand.
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The reader may wish to recall that in standard differential geometry (in local coordi-
nates), the curvature tensor R is obtained from the commutator of a covariant derivative∇k,
associated with the a connection (expressed here in the formalism of a Christoffel symbol)
Γi

jk = (Γk)
i
j. One has, for a vector field λ (with local vector coordinates λi), the expression

for the covariant derivative∇j, which is given by a combination of standard differentiation
and the application of the connection as a linear transformation.

∇jλi = ∂jλi − Γk
ijλk (53)

or
∇jλ = ∂jλ− Γjλ (54)

for a vector field λ with

Rij = [∇i,∇j] = ∂jΓi − ∂iΓj + [Γi, Γj]. (55)

Here, the commutator [Γi, Γj] is the commuator of the linear transformations. The
analogy with the noncommutative world is very strong, but we are not giving a strict
correspondence between curvatures as commutators in the noncommutative world and curvatures
as commutators in standard differential geometry. The point of our work is to explore the
noncommutative world by examining analogous structures that exist within it. Once
one takes a flat world for reference, one has the notion of covariant derivatives, in our
generalized sense, as derivations represented by elements of the form Pj − Γj where Γj is
any element of the algebra N .

4. Dynamics, Gauge Theory, and the Weyl Theory

One can take the general dynamical equation in the form

mẊi = mdXi/dt = Gi (56)

where m is a constant (meaning that m is a non-zero, invertible element of the center of
the algebra N ) and {G1, · · · ,Gd} is a collection of elements of N . Write Gi relative to the
flat coordinates via Gi = Pi − Ai. This defines Ai with ∂iF = ∂F/∂Xi = [F, Pi]. We define
derivations corresponding to the Gi by the formulas

∇i(F) = [F,Gi], (57)

then one has the curvatures (as commutators of derivations)

[∇i,∇j]F = [[Gi,Gj], F] (58)

(by the formula in the introduction to this paper)

= [[Pi − Ai, Pj − Aj], F] (59)

= [[Pi, Pj]− [Pi, Aj]− [Ai, Pj] + [Ai, Aj], F] (60)

= [∂i Aj − ∂j Ai + [Ai, Aj], F]. (61)

Thus, the curvature is given by the formula

Rij = ∂i Aj − ∂j Ai + [Ai, Aj]. (62)

This curvature formula is the noncommutative world analog of the curvature of a
gauge connection when Ai is interpreted as such a connection.

With mẊi = Pi − Ai, the commutator [Xi, mẊ j] takes the form

gij = [Xi, mẊ j] = [Xi, Pj − Aj] = [Xi, Pj]− [Xi, Aj] = δij − [Xi, Aj]. (63)
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Thus, we see that the “gauge field” Aj provides the deviation from the Kronecker

delta in this commutator. We have [mẊi, mẊ j] = Rij, so that these commutators represent
the curvature.

Before proceeding further, it is necessary to explain why gij = [Xi, mẊ j] is a correct
analogue to the metric in the classical physical situation. In the classical picture, we have
ds2 = gijdXidX j representing the metric. Hence,

(m/2)ds2/dt2 = (1/2m)gij(mdXi/dt)(mdX j/dt) = (1/2m)gij pi pj (64)

and so, the Hamiltonian is H = 1
2m gij pi pj. By convention, we sum over repeated indices.

We choose an H in the algebra N to represent the total time derivative so that Ḟ =
[F, H] for any F. Let there be given elements gij such that

[gij, Xk] = 0 (65)

and
gij = gji. (66)

Note that the gij are then formally functions of the space variables Xi and do not involve the
Pj. This is a natural assumption in analogy to a classical metric where it is a function of the
position coordinates.

We choose
H =

1
2m

gijPiPj. (67)

This is the noncommutative analog of the classical H = 1
2m gij pi pj. We now show that

this choice of Hamiltonian implies that

[Xi, mẊ j] = gij. (68)

Quadratic Example. There is an advantage to choosing a quadratic Hamiltonian in the
noncommutative world. The next two lemmas show that with this choice, the noncommu-
tative calculus interacts harmoniously with the patterns of the standard calculus. To show
how this works, here is a minature example of what we are about to do in general. Take a
noncommutative world with two generating elements X and P and assume that

[X, P] = XP− PX = 1. (69)

Let
H = P2/2 (70)

and define
Ḟ = [F, H] = [F, P2/2]. (71)

Then
Ẋ = [X, P2/2] = (1/2)((XP)P− P(PX)) (72)

= (1/2)((1 + PX)P− P(XP− 1)) = P. (73)

Thus
Ḟ = (1/2)[F, P2] = (1/2)(FPP− PPF) (74)

= (1/2)((FP− PF)P + PFP− PPF) (75)

= (1/2)([F, P]P + P[F, P]) (76)
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= (1/2)((∂F/∂X)Ẋ + Ẋ(∂F/∂X)). (77)

Thus, in this small example, we see that the choice of quadratic Hamiltonian leads to
the general validity of a symmetrized version of the usual chain rule for differentiation
with respect to time. We now give a general version of this derivation. By examining the
small example, the reader can see that this harmony between standard calculus and the
noncommutative calculus needs a quadratic Hamiltonian.

Lemma 1. Let gij be given such that [gij, Xk] = 0 and gij = gji. Define

H =
1

2m
gijPiPj (78)

(where we sum over the repeated indices) and

Ḟ = [F, H]. (79)

Then
[Xi, mẊ j] = gij. (80)

Proof. Note that m is a non-zero element in the center of the algebra N , and so it may be
moved freely in and out of the commutators in the calculations performed below. Since

Ẋk = [Xk, H], (81)

we have
2mẊk = [Xk, gijPiPj] = gij[Xk, PiPj] (82)

= gij([Xk, Pi]Pj + Pi[Xk, Pj]) (83)

= gij(δkiPj + Piδkj) = gkjPj + gikPi (84)

= 2gkjPj. (85)

Thus, we have shown that
mẊk = gkjPj. (86)

Then
[Xr, mẊk] = [Xr, gkjPj] = gkj[Xr, Pj] = gkjδrj = gkr = grk. (87)

This completes the proof.

Remark 4. It is worth noting that if we had defined gij by the formula, gij = [Xi, mẊ j] and
assumed that [gij, Xk] = 0, then it follows from differentiating [gij, Xk] with respect to time that
gij = gji.

Remark 5. We can generalize the form of this Hamiltonian to

H =
1

4m
(gijPiPj + PiPjgij) + V (88)

where V commutes with the Xi.

We can further remark on the following.
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Lemma 2. With the same hypotheses as the previous Lemma and with F being any element of the
given noncommutative world N , we have the formula

Ḟ =
1
2
(Ẋi∂i(F) + ∂i(F)Ẋi). (89)

Proof. Note from the previous Lemma that mẊk = gkjPj.

Ḟ = [F, H] = [F,
1

2m
gijPiPj] =

1
2m

gij[F, PiPj] (90)

=
1

2m
gij([F, Pi]Pj + Pi[F, Pj]) (91)

=
1

2m
gijPi[F, Pj] + [F, Pi]

1
2m

gijPj (92)

=
1
2
(Ẋi∂i(F) + ∂i(F)Ẋi) (93)

This completes the proof.

Using the quadratic Hamiltonian, we have shown that the basic time derivative
formula in standard worlds

Ḟ = Ẋi∂i(F) (94)

has its correct (symmetrized) noncommutative counterpart. In [4], we say that, using the
quadratic Hamiltonian, the noncommutative world satisfies the first constraint.

Using the commutator [Xi, mẊ j] = gij, one can show [6,7] that

Ẍr = Gr + FrsẊs + ΓrstẊsẊt, (95)

where Gr is a scalar field, Frs is a gauge field, and Γrst is the Levi–Civita connection
associated with gij in the given noncommutative world.

We now differentiate both sides of the equation

gij = [Xi, mẊ j] (96)

and show how the Levi–Civita connection appears.
Let D = d/dt in the calculations below.
The Levi–Civita connection (with covariant derivatives ∇k)

Γkij = (1/2)(∇igjk +∇jgik −∇kgij) (97)

associated with the gij comes up almost at once from the differentiation process described
below. Note that a covariant derivative applied to a metric tensor is called a non-metricity
tensor in the current literature [? ] and is related to metric affine gravity.

To see how this happens, view the following calculation where

∂̂i ∂̂jF = [Xi, [X j, F]]. (98)

We apply the operator ∂̂i ∂̂j to the second time derivative of Xk.

Lemma 3. Let
Γkij = (1/2)(∇igjk +∇jgik −∇kgij) (99)

where
∇i(F) = [F, mẊi] (100)
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is the covariant derivative generated by mẊi = Pi − Ai. Then

Γkij = (1/2)∂̂i ∂̂jmẌk. (101)

Proof. Note that by the Leibniz rule

D([A, B]) = ˙[A, B] = [Ȧ, B] + [A, Ḃ], (102)

we have

˙gjk = [Ẋ j, mẊk] + [X j, mẌk]. (103)

Therefore
∂̂i ∂̂jm2Ẍk = [mXi, [X j, mẌk]] (104)

= [mXi, ˙gjk − [Ẋ j, mẊk]] (105)

= [Xi, m ˙gjk]− [Xi, [mẊ j, mẊk]] (106)

(Now use the Jacobi identity [A, [B, C]] + [C, [A, B]] + [B, [C, A]] = 0.)

= [mXi, ˙gjk] + [mẊk, [Xi, mẊ j]] + [mẊ j, [Ẋk, mXi]] (107)

= −[mẊi, gjk] + [mẊk, [Xi, mẊ j]] + [mẊ j, [Ẋk, mXi]] (108)

= ∇igjk −∇kgij +∇jgik (109)

= 2Γkij. (110)

This completes the proof.

Remark 6. This derivation confirms our interpretation of

gij = [Xi, mẊ j] = [Xi, Pj]− [Xi, Aj] = δij − ∂Aj/∂Pi (111)

as an abstract form of metric. Note that there may be no given concept of distance in the non-
commutative world. This suggests a differential geometry based on noncommutativity and the
Jacobi identity. At this point, it may be important to compare this formalism with the way the
geometry works in the Connes theory [1]. Certainly, in that theory, there has been a re-evaluation
and reconstruction of differential geometry based on a noncommutative calculus, and it would be of
great interest to trace the role of the Jacobi identity in the Connes quantized calculus.

Note that given
Γkij = (1/2)(∇igjk +∇jgik −∇kgij), (112)

we have
Γikj = (1/2)(∇kgji +∇jgki −∇igkj). (113)

Hence
Γkij + Γikj = ∇jgik = ∂jgik + [gik, Aj]. (114)

The noncommutative world Levi–Civita connection differs from a classical Levi–Civita con-
nection via the use of the covariant derivatives ∇j = ∂j + Aj. This formalism can be matched
with the Levi–Civita connection in Weyl’s theory that combines aspects of general relativity with
electromagnetism. See [3] Chapter 35, page 290 and [? ] p. 85. In Section 8, we discuss Weyl’s
original approach to electromagnetism.
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Recalling the Standard Levi–Civita Connection. Classical Riemannian geometry begins
with the standard Levi–Civita connection. Curvature is defined by parallel displacement.
The infinitesimal parallel translate of a vector A is given by A′ = A + δA where

δAk = −Γk
ij A

idX j. (115)

The Christoffel symbols satisfy the symmetry condition Γk
ij = Γk

ji. An inner product is
given by the formula

< A, B >= gij AiBj. (116)

To require that this inner product be invariant under parallel displacement is to require
that δ(gij Ai Aj) = 0.

δ(gij Ai Aj) = (∂kgij)Ai AjdXk + gijδ(Ai)Aj + gij Aiδ(Aj) (117)

= (∂kgij)Ai AjdXk − gijΓi
rs ArdXs Aj − gij AiΓj

rs ArdXs (118)

= (∂kgij)Ai AjdXk − gijΓi
rs Ar AjdXs − gijΓj

rs Ai ArdXs (119)

= (∂kgij)Ai AjdXk − gsjΓs
ik Ai AjdXk − gisΓs

jk Ai AjdXk (120)

Hence

(∂kgij) = gsjΓs
ik + gisΓs

jk. (121)

From this, it follows that

Γijk = gisΓs
jk = (1/2)(∂kgij − ∂igjk + ∂jgik). (122)

To generalize the above into the noncommutative context becomes a significant pro-
gram for further investigation in the noncommutative world. It would appear that a
standard version of this program was implicit in Weyl’s original work. See his papers and
the book “Space Time Matter” [3]. Our approach suggests a new start on this problem.

5. Recapitulation-Curvature, Jacobi Identity, and the Levi–Civita Connection

We recapitulate and set the stage for a next level of structure. We use a partially
index-free notation. Nested subscripts are avoided by using different variable names and
then using these names in place of subscripts. We write X and Y instead of Xi and X j. We
write gXY instead of gij. The derivation DX has the form DX = [X, J] for some J.

[A, B] is assumed to satisfy the Jacobi identity, bilinearity in each variable, and the
Leibniz rule for all functions of the form δK(A) = [A, K].

δK(AB) = δK(A)B + AδK(B). (123)

We consider derivatives in the form

∇X(A) = [A, ΛX ]. (124)

Examine the following computation:

∇X∇Y F = [[F, ΛY], ΛX ] = −[[ΛX , F], ΛY]− [[ΛY, ΛX ], F] (125)

= [[F, ΛX ], ΛY] + [[ΛX , ΛY], F] (126)

= ∇Y∇X F + [[ΛX , ΛY], F]. (127)

Thus
[∇X ,∇Y]F = RXY F (128)
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where
RXY F = [[ΛX , ΛY], F]. (129)

We can regard RXY as a curvature operator.
We assume position variables (operators) X, Y, · · · and momentum variables (opera-

tors) PX , PY, · · · satisfying the equations below.

[X, Y] = 0 (130)

[PX , PY] = 0 (131)

[X, PY] = δXY (132)

where δXY is equal to one if X equals Y and is zero otherwise. We define

∂X F = [F, PX ] (133)

and
∂PX F = [X, F]. (134)

These derivatives behave correctly in that

∂X(Y) = δXY (135)

and
∂PX (PY) = δXY (136)

∂PX (Y) = 0 = ∂X(PY) (137)

with the last equations valid even if X = Y.
With this reference point of (algebraic) flat space, we define

P̂X = PX − AX (138)

for an arbitrary algebra-valued function of the variable X. With respect to this deformed
momentum, we have the covariant derivative

∇X F = [F, P̂Y] = [F, PY − AY] = ∂Y F− [F, AY]. (139)

The curvature for this covariant derivative is given by the formula

RXY F = [∇X ,∇Y]F = [[λX , λY], F] (140)

where λX = PX − AX . Hence

RXY = [PX − AX , PY − AY] = −[PX , AY]− [AX , PY] + [AX , AY] (141)

= ∂X AY − ∂Y AX + [AX , AY]. (142)

and this has the abstract form of the curvature of a Yang–Mills gauge field.
We compute

[X, P̂Y] = [X, PY − AY] = δXY − [X, AY]. (143)

Let
gXY = δXY − [X, AY] (144)

so that
[X, P̂Y] = gXY. (145)
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It is useful to restrict to the case where [X, AY] = 0 so that gXY = δXY (for the space
coordinates). In order to enter this domain, we set

mẊ = mDX = P̂X = PX − AX . (146)

where m is a constant (a non-zero, invertible element of the center of the algebra). We
examine the structure of the following special axioms for a bracket.

[X, DY] = gXY (147)

[X, Y] = 0 (148)

[Z, gXY] = 0 (149)

[gXY, gZW ] = 0 (150)

Note that
DgYZ = D[Y, DZ] = [DY, DZ] + [Y, D2Z]. (151)

and that [Z, gXY] = 0 implies that

[gXY, DZ] = [Z, DgXY]. (152)

Define two types of derivations as follows

∇X(F) = [F, DX] (153)

and
∇DX(F) = [X, F]. (154)

These are dual with respect to gXY and will act as partials with respect to these variables
in the special case when gXY is a Kronecker delta, δXY. If the form gXY is invertible, then
we can rewrite these derivations by contracting the inverse of g to obtain standard formal
partials.

∇DX∇DYD2Z = [X, [Y, D2Z]] (155)

= [X, DgYZ − [DY, DZ]] = [X, DgYZ]− [X, [DY, DZ]] (156)

= [gYZ, DX]− [X, [DY, DZ]] (157)

= ∇X(gYZ)− [X, [DY, DZ]]. (158)

Now, use the Jacobi identity on the second term and obtain

∇DX∇DYD2Z = ∇X(gYZ) + [DZ, [X, DY]] + [DY, [DZ, X]] (159)

= ∇X(gYZ)−∇Z(gXY) +∇Y(gXZ). (160)

This is the formal Levi–Civita connection.

6. Einstein’s Equations and the Bianchi Identity

The Bianchi identity (see below for its definition) appears in the context of noncommu-
tative worlds as a form of the Jacobi identity. We will explain this and discuss the classical
background [? ].

The basic tensor in Einstein’s theory of general relativity is

Gab = Rab − 1
2

Rgab. (161)

Rab is the Ricci tensor, and R is the scalar curvature. These are both obtained by
contraction from the Riemann curvature tensor Ra

bcd with Rab = Rc
abc, Rab = gaigbjRij, and
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R = gijRij. Since the Einstein tensor Gab has vanishing divergence, it can be proportional to
the energy momentum tensor Tµν. Einstein’s field equations are

Rµν − 1
2

Rgµν = κTµν. (162)

The Riemann tensor is obtained from the commutator of a covariant derivative ∇k,
which is associated with the Levi–Civita connection Γi

jk = (Γk)
i
j (using the space-time

metric gij).

We can write the formalism in the gauge form by hiding some indices.

λa:b = ∇bλa = ∂bλa − Γd
abλd (163)

or
λ:b = ∇bλ = ∂bλ− Γbλ (164)

for a vector field λ. With

Rij = [∇i,∇j] = ∂jΓi − ∂iΓj + [Γi, Γj], (165)

one has
Ra

bcd = (Rcd)
a
b. (166)

(Here Rcd is not the Ricci tensor. It is the Riemann tensor with two internal indices
hidden from sight.)

One has explicitly that [? ]

Rµνρσ =
1
2
(gµσ,νρ − gνσ,µρ − gµρ,νσ + gνρ,µσ) + ΓβµσΓβ

νρ + ΓβµρΓβ
νρ. (167)

Symmetries of the Riemann tensor follow from the above formula. When derivatives
are replaced by covariant derivatives, symmetries may not survive. That is a project for
future work.

The Bianchi identity states

Ra
bcd:e + Ra

bde:c + Ra
bec:d = 0 (168)

where each index after a colon indicates a covariant derivative. This can be written in the
form

(Rcd:e)
a
b + (Rde:c)

a
b + (Rec:d)

a
b = 0. (169)

Bianchi identity follows from local properties of the Levi–Civita connection and
symmetries of the Riemann tensor.A relevant symmetry of Riemann tensor is the equation
Ra

bcd = −Ra
bdc.

Contraction of the Bianchi identity leads to the Einstein tensor.

Ra
bca:e + Ra

bae:c + Ra
bec:a = 0 (170)

This is the same as
Rbc:e − Rbe:c + Ra

bec:a = 0. (171)

Contract once more to obtain

Rbc:b − Rbb:c + Ra
bbc:a = 0, (172)
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and raise indices
Rb

c:b − R:c + Rab
bc:a = 0. (173)

Further symmetry gives

Rab
bc:a = Rba

cb:a = Ra
c:a = Rb

c:b. (174)

Hence, we have
2Rb

c:b − R:c = 0, (175)

which is equivalent to the equation

(Rb
c −

1
2

Rδb
c ):b = Gb

c:b = 0. (176)

From this, we conclude that Gbc
:b = 0.

Bianchi Identity and Jacobi Identity. Now, we work in noncommutative worlds. We have
convariant derivatives of the form

F:a = ∇aF = [F, Na] (177)

for elements Na in the noncommutative world. Choose a covariant derivative. Then, we
have the curvature

Rij = [Ni, Nj]. (178)

Note that Rij is not a Ricci tensor. Then, we have the Jacobi identity

[[Na, Nb], Nc] + [[Nc, Na], Nb] + [[Nb, Nc], Na] = 0. (179)

Writing Jacobi identity using curvature and covariant differention, we have

Rab:c + Rca:b + Rbc:a. (180)

In a noncommutative world, every covariant derivative satisfies its own Bianchi
identity.

7. Discrete Calculus Reformulated with Commutators

Let f (x) denote a function of a real variable x. Let f̃ (x) = f (x + h) for some fixed
difference h. Define the discrete derivative D f by the formula D f = ( f̃ − f )/h. One has the
basic formula for the discrete derivative of a product:

D( f g) = D( f )g + f̃ D(g). (181)

In discrete calculus, the Leibniz rule is not satisfied. Introduce a new invertible
operator J with defining property that

f J = J f̃ . (182)

Define an adjusted discrete derivative by the formula

∇( f ) = JD( f ). (183)

Then

∇( f g) = JD( f )g + J f̃ D(g) = JD( f )g + f JD(g) = ∇( f )g + f∇(g). (184)

Note that
∇( f ) = (J f̃ − J f )/h = ( f J − J f )/h = [ f , J/h]. (185)
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In the adjusted algebra, discrete derivatives are represented by commutators and
satisfy the Leibniz rule. One can see discrete calculus as a subset of a noncommutative
calculus based on commutators. For other relationships with discrete calculus, see [? ].
Discrete Measurement. In the noncommutative world, consider a time series {X, X′, X′′, · · · }
with commuting scalar values. Let

Ẋ = ∇X = JDX = J(X′ − X)/τ (186)

where τ is an elementary time step. The operator J is defined by the equation XJ = JX′ or
Xt J = JXt+τ . Moving J across a variable from left to right is an algebraic model for one
tick of the clock.

Consider observing X at a given time and observing (or computing) DX at a given
time. Since X and X′ are parts of computing (X′ − X)/τ, the value associated with DX,
the clock must tick once to find DX. Thus, in measurement, X and DX do not commute.

1. Let ẊX denote the sequence: observe X, then obtain Ẋ.
2. Let XẊ denote the sequence: obtain Ẋ, then observe X.

The commutator [X, Ẋ] expresses the difference between two orders of discrete mea-
surement. When the elements of the time series are commuting scalars, one has

[X, Ẋ] = XẊ− ẊX = J(X′ − X)2/τ. (187)

Thus, one can interpret
[X, Ẋ] = Jk (188)

(k a constant ) as
(X′ − X)2/τ = k. (189)

The process is a walk with spatial step

∆ = ±
√

kτ (190)

where k is a constant.
k = ∆2/τ. (191)

Hence, k is a diffusion constant for a Brownian walk. The walk with spatial step
∆ and time step τ satisfies the commutator equation above exactly when ∆2/τ remains
constant. The diffusion constant of a Brownian process occurs independent of issues about
probability and continuum limits.

8. On Weyl’s One-Form for Electromagnetism and the Feynman–Dyson Derivation of
Electromagnetism from Commutators

In this appendix, we review the essentials of Weyl’s approach to electromagnetism.
This is lucidly explained in [3? ? ]. Consider a line element for spacetime of the form

λ = Fdx + Gdy + Hdz− φdt. (192)

Regard λ as a differential one-form. Then (with wedge products of differentials so that
dx ∧ dy = −dy ∧ dx and so on), we have

dλ = (Gx − Fy)dx ∧ dy + (Hx − Fz)dx ∧ dz + (Hy − Gz)dy ∧ dz (193)

− (Ft + φx)dx ∧ dt− (Gt + φy)dy ∧ dt− (Ht + φz)dz ∧ dt. (194)

Hence, if we set

dλ = B1dy ∧ dz− B2dx ∧ dz + B3dx ∧ dy + E1dx ∧ dt + E2dy ∧ dt + E3dz ∧ dt (195)
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and ∇ = (∂/∂x, ∂/∂y, ∂/∂z), A = (A1, A2, A3) = (F, G, H) then

E = −∇φ− ∂A/∂t, (196)

B = ∇×A. (197)

We refer to Weyl’s differential 1-form λ as his line element because for him, it repre-
sented a new element in the differential geometry of spacetime. The one-form has since
found a more coherent place in quantum mechanical contexts. The differential of the
one-form λ produces electric and magnetic fields with the space parts acting as the vector
potential and the time part acting as the scalar potential. Furthermore, one finds that
d2λ = 0 (consequence of the properties of differential forms) and with dλ in terms of E and
B the equation d2λ = 0 becomes

∇ • B = 0, (198)

∇× E + ∂B/∂t = 0. (199)

Thus, indeed, the line element does represent the potentials for electromagnetism, and
the equation d2λ = 0 produces Maxwell’s equations. The other two Maxwell equations

∇ • E = ρ, (200)

∇B − ∂E/∂t = J (201)

can be regarded as the definitions of the charge density ρ and the current J.
This means that we can regard a spacetime line element λ as the holder of the structure

that gives rise to the electromagnetic field. If dλ = 0, then the line element will have no
holonomy, no change along different paths from one point to another. However, if the
E and B fields defined by dλ are non-zero, then distances will vary depending upon the
path taken between two points. Thus, the curvature of this gauge field was identified
by Weyl as the electromagnetic field, and he worked on a formalism to unify it with
general relativity. The intuitive idea was that in moving from one point of spacetime to
another, there was spacetime curvature as in general relativity and also curvature that
connoted the electromagnetic field via the variation of the line element. Eventually, all
these considerations were integrated into physics in a different way by regarding that line
element as representing the phase of the quantum wave function. Unifications of gauge
theory and general relativity have proceeded in different directions. Here, we have begun
a different way to formulate the Weyl idea in terms of noncommutative worlds, and the
full consequences of our approach remain to be seen.

We remark that the standard generalization of the differential one-form λ is to write
A = ∑i Aidxi as a gauge connection where the Ai do not commute with one another and
take the form Ai(x) = ∑a Aa

i (x)Ta where the Ta run over a basis for a matrix representation
of the Lie algebra of the gauge group, and the Aa

i (x) are smooth functions on the spacetime
manifold. Then, the curvature of the gauge connection is F = dA + A ∧ A, where ∧
denotes the wedge product of differential forms. This generalizes the way we have just
described the electromagnetic field in terms of the Weyl differential one-form and gives rise
to the Yang–Mills fields. At the level of noncommutative worlds, we can consider abstract
differential forms A = ∑i Aidxi without assuming that the Ai are represented in terms
of a specific classical gauge group. By the same token, we can examine the structure of
covariant derivatives of the form ∇i = ∂i + Ai, and indeed, one finds directly that

[∇i,∇j] = ∂i Aj − ∂j Ai + [Ai, Aj]. (202)

In this way, the formalism of the differential forms and the formalism of the commuta-
tors of covariant derivatives come together.

We end this section with a recollection of our previous derivation of a generalization
of gauge theory in electromagnetic form via noncommutative worlds. It is of interest to
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compare the form of this work with the structure of electormagnetism that comes from
Weyl’s one-form.
Generalizing Feynman–Dyson

1. We do not assume that [Xi, mẊ j] = δij, nor do we assume [Xi, X j] = 0. We do assume
three coordinate variables {X1, X2, X3} in a given noncommutative world.

2. We define
∂i(F) = [F, Ẋi], (203)

and the reader should note that these spatial derivations are no longer flat in the sense
of our earlier sections (nor were they in the original Feynman–Dyson derivation).

3. Define ∂t = ∂/∂t as below

Ḟ = ∂tF + ΣiẊi∂i(F) = ∂tF + ΣiẊi[F, Ẋi]. (204)

4. In defining
∂tF = Ḟ− ΣiẊi[F, Ẋi], (205)

we use the definition itself to create a distinction between space and time in the
noncommutative world.

5. The reader can verify the following formula:

∂t(FG) = ∂t(F)G + F∂t(G) + Σi∂i(F)∂i(G). (206)

∂t does not satisfy the Leibniz rule in our noncommutative context. Thus, ∂t is an
operator that does not have a representation as a commutator.

6. Divergence and curl are defined by the equations

∇ • B = Σ3
i=1∂i(Bi) (207)

and
(∇× E)k = εijk∂i(Ej) (208)

where εijk is the well-known “epsilon tensor" that is equal to +1 for an even permuta-
tion of 123, −1 for an odd permutation of 123, and 0 if any two indices are repeated.
Note that the epsilon tensor obeys the identity

∑
i

εabiεdci = −δa
c δb

d + δa
dδb

c . (209)

The epsilon identity can be used to rewrite Equation (208) as

Ḟ = ∂tF + Ẋ× (F× Ẋ) + (Ẋ • F)Ẋ− (Ẋ • Ẋ)F. (210)

The last equation follows directly from the work in [6]. By substituting Ẋ for F, we
find the equation

Ẍ = ∂tẊ + Ẋ× (Ẋ× Ẋ). (211)

This is our motivation for defining E = ∂tẊ and B = Ẋ× Ẋ. With these definitions in
place, we have Ẍ = E + Ẋ ×B, giving an analog of the Lorentz force law for this theory.
Further calculations yield the following theorem.
Electromagnetic Theorem [6] With the above definitions of the operators, and taking

∇2 = ∂2
1 + ∂2

2 + ∂2
3, B = Ẋ× Ẋ and E = ∂tẊ we have (212)

1. Ẍ = E + Ẋ×B
2. ∇ • B = 0
3. ∂tB +∇× E = B × B
4. ∂tE −∇×B = (∂2

t −∇2)Ẋ.
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A Deeper Comparison. Now, we can go further and compare this theorem with the Weyl
approach via differential forms. Note that Ẋ = P− A in our formalism, where P is the
vector P = (P1, P2, P3) of representatives for ∂/∂Xi in a flat noncommutative world. In the
Electromagnetic Theorem, we have

B = Ẋ× Ẋ = (P− A)× (P− A) = P× P− (P× A + A× P) + A× A. (213)

Letting

∇̃F = ([F, P1], [F, P2], [F, P3]) = (∂F/∂X1, ∂F/∂X2, ∂F/∂X3), (214)

the reader can check that P× P = 0 and that

P× A + A× P = ∇̃ × A. (215)

So, we have
B = −∇̃ × A + A× A. (216)

In particular, if the coefficients of A are commutative (as in standard electtomagnetism),
then

E = ∂tẊ = ∂tP− ∂t A (217)

and
B = −∇× A. (218)

This is to be compared with the results from differentiating the Weyl form, the expres-
sion of the field in terms of scalar and vector potential:

E = −∇φ− ∂A/∂t, (219)

B = ∇×A. (220)

We see that up to shifiting a sign, the significant point is that ∂tP corresponds to ∇φ,
which is the gradient of the scalar potential. In our theory, there is no scalar potential, but
this correspondence can be explored. We see that the Electromagnetic Theroem is probing
the same territory as the Weyl form. We also see that since A× A corresponds to the wedge
A∧A, this correspondence goes over to the full gauge theory. It will give a new way to
understand the extra appearance of the A∧A in the gauge theory. We usually think of the
curvature F = dA+A∧A as motivated by the calculation of local holonomy of the gauge
field. Here, it appears inevitably from the structure of noncommutativity. That is in accord
with the theme of this paper.

Weyl’s interpretation of the properties of the line element A = λ was that an integral
along a path from event p to event q,

∫ q
p A, would be path dependent and that this would

represent changes in spacetime distance between points depending on the path (history)
between them. This path dependence would be a manifestation of the electromagnetic
field dA (in Weyl’s form, A ∧ A = 0). Einstein criticized the theory on these grounds, and
a new interpretation eventually appeared. The new interpretation can be summarized
by multiplying the integral by the square root of negative unity, i

∫ q
p A, and interpreting

it via ei
∫ q

p A as a change of phase of a quantum wave function associated with the gauge
connection. More particularly, one puts the electromagnetic potential into the quantum
Hamiltonian. Then, Schrödinger’s equation has the form

ih̄∂ψ/∂t = Ĥψ (221)

where
Ĥ = − p̂2/2m + eφ + V (222)
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is the Hamiltonian operator, p̂ is the canonical momentum operator, and e is the electric
charge. Here, one takes the canonical momentum to be given by the formula

p̂ = −ih̄∇− eA. (223)

Here, we see the reflection of our noncommutative world operator P− A in the stan-
dard quantum theory. In this form, many years later [? ], exactly this effect was discovered
for electromagnetism, and it became known as the Aharanov–Bohm effect. The interpreta-
tion of the gauge connection for phases of quantum wave functions became an established
part of physics, vindicating Weyl’s intuitions, albeit with a shift of interpretation [? ]. It
is only more recently that gravity is seen in relation to gauge fields. The work of Abhay
Ashtekar, Carol Rovelli, and Lee Smolin has led to the emergence of the field of Loop
Quantum Gravity [? ? ? ] where a gauge formulation of quantum gravity has non-trivial
holonomies for macroscopic loops that are central to the theory. It should be mentioned
that in the work of Witten [? ], these kinds of holonomies are closely related to topological
invariants of knots, links, and three-manifolds. See also [? ].

A particularly interesting theory to examine in our noncommutative context is the
loop quantum gravity version of general relativity that uses the Ashtekar variables [? ? ? ].
In that theory, the metric is expressed in terms of a gauge group, and the gauge holonomy
plays a significant role in the physics and its relation to topology. We intend to examine
this structure in a sequel to the present paper.

Remark 7. In comparing our Electromagnetic Theorem with the Weyl one-form, we see that the
simplest, perhaps deepest, mathematical commonality is in the presence of the epsilon tensor in
both structures. The epsilon appears explicitly in ours via the curl and via the definition of the
B-field. The epsilon is the same as the fundamental antisymmetry of the Grassmann multiplication
of differential forms. We treat time in a special way in our derivatives. Weyl’s one-form is adjusted
to handle a temporal component. This comparison is a beginning for future research.

9. Conclusions

In this paper, we have explored calculus based on commutators so that derivations
are represented in the form ∇J(F) = FJ − JF = [F, J] in a given algebra N that is closed
under the operation of commutation. We first noted that [∇J ,∇K]F = [[J, K], F] so that
the deviation of our derivations from commutativity is measured by the commutators of
the operators that represent the derivations. We defined curvature operators RJK = [J, K]
associated to each such pair of derivations and showed how the formalism of the non-
commuttive calculus aligns itself with physics. A flat framework for physics can be
constructed by taking a collection of position coordinates {Xi} that commute with each
other and a collection of operators {Pi} that also commute with one another, and we assume
that [Xi, Pj] = δij where δij is equal to 1 when i = j and equal to 0 otherwise. Then, we
defined ∂iF = ∂F/∂Xi = [F, Pi] and ∂̂iF = ∂F/∂Pi = [Xi, F]. In this formulation, time is
not an explicit variable, but the total time derivative is defined by another commutator
with an element H (the analog of the classical or quantum Hamiltonian) so that Ḟ = [F, H].
Hamilton’s equations are a consequence of these assumptions:

∂H/∂Xi = [H, Pi] = −[Pi, H] = −Ṗi, (224)

∂H/∂Pi = [Xi, H] = Ẋi. (225)

Then, we modeled dynamics by letting

mẊi = Gi = Pi − Ai. (226)

where {G1, · · · ,Gd} is a collection of elements of N . We write Gi relative to the flat coordi-
nates via Gi = Pi − Ai. This is a definition of Ai and ∂iF = ∂F/∂Xi = [F, Pi]. The formalism
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of gauge theory appears naturally. In particular, defining derivations corresponding to the
Gi by the formulas

∇i(F) = [F,Gi], (227)

then one has the curvatures (as commutators of derivations)

[∇i,∇j]F = [[Gi,Gj], F] (228)

= [[Pi − Ai, Pj − Aj], F] (229)

= [∂i Aj − ∂j Ai + [Ai, Aj], F]. (230)

Thus, the curvature is given by the formula

Rij = ∂i Aj − ∂j Ai + [Ai, Aj]. (231)

We see that our curvature formula is the well-known formula for the curvature of a
gauge connection when Ai is interpreted or represented as such a connection. Then, we
saw that aspects of geometry arise in this context, including a version of the Levi–Civita
connection. We show how a covariant version of the Levi–Civita connection arises in this
commutator calculus. This connection satisfies the formula

Γkij + Γikj = ∇jgik = ∂jgik + [gik, Aj] (232)

and so is exactly a generalization of the connection defined by Hermann Weyl in his original
gauge theory [3]. We compare, in Section 9, this development with the development of
gauge theory starting with Hermann Weyl.

A theme of this development is the central role of the Jacobi identity

[[X, Y], Z] + [[Y, Z], X] + [[Z, X], Y] = 0 (233)

in all the consequences that we draw in this noncommutative calculus. We discuss general
relativity in Section 6, showing the relationship of the Bianchi identity with the Jacobi
identity. In Section 7, we show how discrete calculus embeds in commutator calculus and
indicate how this point of view can be used in discrete physics.

In all cases studied in this paper, there is the possibility for more development. By
looking directing at the way calculus and physics can be done in a noncommutative world,
we see that this sheds new light on classical mechanics, electromagnetism, and gauge theory.
It has been natural, since Dirac, to replace Poisson brackets by commutators and express
quantum physics in noncommutative terms. This mode of expressing quantum mechanics
can be directly accomplished using the same language as the present paper. Thus, the
mathematical context that we have expressed here is in position for interrelating classical
and quantum mechanics in conceivably new ways. Some notions suggest themselves
immediately such as formulating Poisson brackets directly in the noncommutative worlds.
Other ideas will surely emerge as the project continues.

While the analogy of the Faraday tensor and the Riemann curvature tensor is clear
via the commutator of the relevant derivatives, there is an asymmetry in the analogy. The
coefficients of the E and M (Yang–Mills) gauge fields are effectively the difference between
the generalized and geometric linear momentum A = P− Ẋ as discussed above, while the
metric is the augmented background metric with momentum derivative of the gauge field
A where we write (just after Lemma 3.1)

gij = [Xi, mẊ j] = [Xi, Pj]− [Xi, Aj] = δij − ∂Aj/∂Pi. (234)

Such A(P) dependence is to be expected [? ]. On other hand, the coefficients of
the Levi–Civita connection, as indicated above, are defined via the differentiation of the
equation of motion. This would bring in contributions from A(P) via F = dA + A ∧ A as



Symmetry 2022, 14, 430 25 of ??

part of the equation of motion. These two contributions need to be compared. Is there any
room for an actual metric-based gravitational field that is not coming from A? See [? ]. We
are in the process of looking more closely at this context.

The present paper potentially contains results that add to discrete approaches to the
quantum gravity. Specifically, by embedding discrete calculus in noncommutative calculus,
one makes contact with generalizations of general relativity, which includes torsion and
nonmetricity in addition to the metric. We need to see how our work could fit with related
literature such as teleparallel gravity, metric affine gravity, and the geometrical formulation
of quantum mechanics [? ? ? ? ]. For example, we will see how the tetrad formalism for
general relativity fits in noncommutative world context.

Finally, it will be important to go from the abstract algebra context in which this
paper is framed to the question of physics on a noncommutative space where that space
is topological. The underlying space can be an uncountable continuum, as is traditional
in classical physics, or it can be more combinatorial, but topology must be there to handle
issues of connectivity and, in the quantum context, to handle issues of entanglement. There
is a rich arena of questions that opens from the present research.

We look forward to better understanding of these issues in the near future and we
thank particularly David Chester and Xerxes Arsiwalla for helpful conversations.
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