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Abstract: This paper considers the problem of adaptive estimation of graph signals under the im-
pulsive noise environment. The existing least mean squares (LMS) approach suffers from severe
performance degradation under an impulsive environment that widely occurs in various practical
applications. We present a novel adaptive estimation over graphs based on Welsch loss (WL-G) to
handle the problems related to impulsive interference. The proposed WL-G algorithm can efficiently
reconstruct graph signals from the observations with impulsive noises by formulating the reconstruc-
tion problem as an optimization based on Welsch loss. An analysis on the performance of the WL-G
is presented to develop effective sampling strategies for graph signals. A novel graph sampling
approach is also proposed and used in conjunction with the WL-G to tackle the time-varying case.
The performance advantages of the proposed WL-G over the existing LMS regarding graph signal
reconstruction under impulsive noise environment are demonstrated.

Keywords: graph signal processing; Welsch loss; impulsive noise; sampling on graphs

1. Introduction
1.1. Background and Motivation

The area of graph signal processing (GSP) has received extensive attention [1–18].
Graph signal processing has been found in social and economic networks, climate analysis,
traffic patterns, marketing preferences, and so on [19–26]. The objective of GSP is to use the
tools in DSP to the irregular domain in which the relationship between the elements are
characterized via the graph. Under this framework, a signal occurring at graph nodes is
handled over the graph topology. As an important GSP tool, the graph Fourier transform
(GFT) has been introduced to decompose an observed graph signal into orthonormal
components over the graph topology [10,12].

The graph sampling theory, one of the most important topics in GSP, aims to re-
construct the graph signals which are band-limited from the partial samples on the
graph [27–29]. If the samples are not appropriately selected, the problem of recovering
graph signals may be ill-conditioned. Therefore, optimizing the sampling set is critically im-
portant to the success of the graph signal recovery problem. The first method for sampling
theory is proposed by Pesenson in [29]. On the other hand, since the adaptive algorithms are
flexible [30–35], online graph signal reconstruction methods based on adaptive strategies
have been proposed [36].

The major drawback of the aforementioned methods is that they undergo severe
performance depression when encountering heavy-tailed impulsive noises, which are
usually confronted in plenty of practical applications [37–54]. The aforementioned algo-
rithms were proposed by employing the mean square error (MSE) method. The MSE-based
algorithms may diverge when impulsive interference occurs [45]. Therefore, this urges
for the development of a new algorithm to reconstruct graph signals under the impul-
sive noise environment. In summary, reconstructing the graph signal from the partial
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observations with impulsive noise is a significant problem. It is because that graph signal
recovery and estimate have been widely studied with many promising applications. Appli-
cations contain power systems estimation [55–58], network time synchronization, and data
registration [59,60].

1.2. Our Contributions

Our objective is to handle the problem of adaptive graph signal estimation under
impulsive noise. The main aim of the paper is to meliorate a novel adaptive algorithm
over graphs based on Welsch loss (WL-G). In contrast with the existing methods, which are
predicated upon the MSE, the proposed WL-G converts the problem of the reconstruction
for the graph signal to an optimization problem for a Welsch-loss-based cost function [61].
Unlike the MSE criterion, which undergoes severe performance depression in impulsive
interference because of the property of the optimization based on l2-norm [62], the Welsch
loss is insensitive to the impulsive noise since the Welsch loss is a bounded nonlinear
function that can eliminate large outliers. Therefore, the WL-G could effectively recover
graph signals from imperfect observations under band-limited condition when impulsive
noise occurring. The mean square performance is analyzed to highlight the importance of
the selection of the sampling set. The results from this analysis are then exploited in the
derivation of effective sampling strategies for the WL-G. We also take into account the case
where the bandwidth and spectral contents are unknown and time-varying. To address
this problem, we present an adaptive graph sampling (AGS) technique, which is used in
conjunction with the WL-G to determine the signal support. The performance effectiveness
of the proposed WL-G algorithm in impulsive noise is numerically demonstrated via
various simulation examples.

The contributions of this paper are summarized as:

1. We proposed a novel cost function on graph to deal with the impulsive noise environment.

2. The detail analysis of the proposed algorithm is provided.

3. The partial sampling strategy is proposed for WL-G algorithm.

4. WL-G estimation with adaptive graph sampling is also considered to deal with the
time-variant graphs.

2. Related Work

First, the papers regarding graph sampling without adaptive strategy are reviewed.
Then, we overview graph sampling with adaptive strategy.

2.1. Graph Sampling without Adaptive Strategy

The graph sampling method based on Paley–Wiener was extended and developed
in [19,63–67]. For instance, the prerequisite of individual restoration in GSP was provided
in [27,66]. The authors also proposed the sampling method based on the Nyquist–Shannon
theory. In [27], several greedy sampling methods on graphs were presented and the
reconstruction (interpolation) performance of those schemes was also evaluated. Other
effective sampling approaches in the graph spectral field were developed in [67].

2.2. Graph Sampling with Adaptive Strategy

Due to the merits of adaptive filter [68–71], the graph sampling with adaptive strategy
has been proposed and developed in [36,72–76]. Specifically, Lorenzo et al. proposed an
adaptive method to reconstruct graph signals by exploiting the use of the least mean squares
(LMS) strategy [72]. The LMS approach is then extended to the distributed scheme in [74].
To speed up the adaptive estimation, the recursive least square (RLS) method is applied to
the reconstruction of signals on graphs [75]. The probabilistic-sampling-based reconstruction
approaches are then proposed by using the LMS and RLS strategies in [76]. In [77], to enhance
convergence rate of the previous estimation algorithm of graph signals, the authors present
two novel adaptive algorithms. First, the extended LMS (ELMS) was proposed, which extends
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the LMS algorithm via redeveloping the former vectors. To enhance the performance of ELMS,
authors present the fast ELMS via using optimization for the gradient MSD. However, these
graph sampling methods will suffer from severe performance deterioration when heavy-tailed
impulsive noise occurs. The previous references regarding the graph sampling with adaptive
strategy have been summarized in Table 1.

Table 1. Graph sampling with adaptive strategy.

The Literature Algorithm

[72] LMS on graph

[74] Distributed LMS on graph

[75] RLS on graph

[76] probabilistic LMS and RLS on graph

[77] ELMS and FELMS on graph

3. Background of Graph Signal Processing

Consider an undirected graph G = (V , E) that is defined by two sets: the set of vertices
V = {1, 2, ..., N} and the set of weight edges E =

{
aij
}

i,j∈V , where aij > 0 if nodes i and
j are connected and aij = 0 otherwise. Let A be the graph adjacency matrix whose ith
entry is aij representing the edge weight from node i to node j. For undirected graphs, A is
symmetric. The degree matrix is a diagonal matrix K, whose ith diagonal entry is expressed

as ki =
N
∑

j=1
aij.

As the most fundamental operator in GSP, the graph Laplacian matrix takes the
form L := K−A. Obviously, for undirected graphs, L is also positive semidefinite and
symmetric. Therefore, L can be eigendecomposed. Given the eigendecomposition of L
as UΛUT with U = [u1, . . . uN ] and Λ = diag(λ1, λ2, . . . , λN), the ascending-order set of
eigenvalues 0 < λ1 < λ2 < . . . < λN denote the graph frequencies.

A signal x : V → RN is defined as an N × 1 vector whose ith entry xi represents the
vertex value of node i. For graph signal x, the definition of the GFT is given by

s = UTx. (1)

Alternative definitions for the GFT are also available, e.g., via the use of adjacency
matrix [10]. We focus on the definition dependent on the Laplacian matrix in this paper.

In many cases, the graph signal is usually band-limited and can be given by

x = Us (2)

where the GFT s is sparse. The support of s is defined as

F = {i ∈ {1, ..., N} : si 6= 0}. (3)

The cardinality of F , i.e., |F |, leads to the bandwidth of x. We denote DS as the vertex
limiting operator:

DS = diag{1S} (4)

where 1S denotes a vector and S denotes a subset of V , i.e., S ⊆ V . If i /∈ S , the ith element
of 1S becomes 0. For i ∈ S , the ith element of 1S is 1. The band-limiting operator over the
set F that satisfies F ⊆ V is defined as

BF = UΣFUT (5)
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where ΣF denotes a diagonal matrix whose ith diagonal element is zero, if i /∈ F , and one
otherwise. Note that both matrices DS and BF are idempotent and self-adjoint.

4. Adaptive WL-G Estimation on Graphs

Given a graph signal xo =
{

xoi
}N

i=1∈ RN defined over the graph G = (V , E), we
assume that

Assumption 1. (band-limited): The signal xo is F -bandlimited.

The observed signal is corrupted by the additive noise v[n] including the background
noise η[n] with covariance matrix Cη and the impulsive noise ξ[n] with covariance matrix
Cξ . Therefore, the observed noisy signal has the following form at each time n

y[n] = D(xo + v[n]) = DBxo + Dv[n] (6)

where the D is given by (4). For convenience, we omit the subscript in DS . The covariance
matrix of v[n] can be denoted as Cv. The objective of the graph signal reconstruction under
consideration is to recover xo. The previous graph signal reconstruction algorithms were
developed based on the mean-squared error criterion under the assumption of Gaussian
noise. However, the MSE-based approaches are unstable to outliers and thus performs
rather poorly under the presence of impulsive noise. To make the recovering process robust
against the impulsive noise, we use the cost function based on Welsch loss [61]

f (x[n]) = 1−
N

∑
i=1

exp(−
e2

i [n]
2c2 ) (7)

where c denotes a scale parameter that restraints the scale of the quadratic bowl of loss
and ei[n] is the ith entry of e[n] with e[n] = y[n]−DBx[n]. The Welsch loss given by the
kernel width verified to be effective in suppressing the impacts of impulsive noise or large
outliers. Figure 1 depicts the cost function (7) and its first derivative to demonstrate the
robustness of the arctangent function.

-10 -5 0 5 10

e[n]

0

0.5

1

J
[n

]

-10 0 10

e[n]

-0.2

0

0.2

J
‘[
n

]

Figure 1. Cost function based on Welsch loss and its derivative.

An estimate for xo can be obtained by

min
x[n]

E{ f (x[n])}

s. t. Bx[n] = x[n]
(8)

This optimization problem is robust against the impulsive noise because the objective
function grounded in the Welsch loss has been proven to be insensitive to the impulsive
noise [45,78,79]. In contrary to the sign algorithm, which can be derived from the l1-norm-
based cost function, the Welsch loss is differentiable and mathematically tractable.
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A common method to address optimization problem (8) is stochastic steepest-descent
method, which is expressed as [62]

x[n + 1] = x[n] + µBDφ(y[n]− x[n]) (9)

where µ > 0 denotes the convergence rate, φ(y[n]− x[n]) denotes a vector whose ith

element is given by φ(yi[n]− xi[n]) = exp(− (yi [n]−xi [n])
2

2c2 )(yi[n]− xi[n]) and the second
equation is relied on the fact that D is an idempotent operator. To satisfy the constraint in
(8), the following equation should hold

x[n + 1] = Bx[n + 1] (10)

Using (9), we have

Bx[n + 1] = B{x[n] + µBDφ(y[n]− x[n])} = Bx[n] + µBDφ(y[n]− x[n]) (11)

According to (10), to make x[n+ 1] = Bx[n+ 1] hold, x[n] should equal to Bx[n]. Then,
we have the following equations

x[n− 1] = Bx[n− 1], x[n− 2] = Bx[n− 2], · · · , x[1] = Bx[1] (12)

To make (12) hold, we have
x[0] = Bx[0] (13)

In the other words, when the initialization of x[n] satisfies x[0] = Bx[0], the algorithm (9)
satisfies the constraint in (8). The algorithm (9) is referred to as the WL-G algorithm. It is
important to note that the properties of the proposed WL-G algorithm is strongly dependent
on the sampling matrix D and the band-limiting operator matrix B. Therefore, to optimize
the WL-G method, a mean square analysis is presented in the next part to characterize
the dependence of the WL-G performance on the choice of sampling matrix D. Using
these outcomes,the effective sampling strategies for the WL-G are developed in Section 6.
An adaptive graph sampling method is then presented in Section 7.

Computational Complexity

The computational complexity of the LMS, LMP, and WL-G algorithms is provided
in Table 2. Compared with LMS, the additional complexity of the WL-G arises from the
calculation of function φ. Significantly, in spite of growth complexity, the WL-G surpasses
the LMS and LMP algorithm.

Table 2. Graph sampling with adaptive strategy.

Algorithm Multiplications Additions p-Norm Exponent

LMS on graph N(N + 1) 2N2 - -

LMP on graph N(N + 1) 2N2 N -

WL-G 2N2 2N2 + 2N - N

5. Mean Square Analysis

Rewriting the WL-G algorithm as follows

xi[n + 1] = xi[n] + µ
N

∑
j=1

bijdjφ
(
yj[n]− xj[n]

)
, i = 1, 2, . . . , N (14)

We then define the error vector x̃[n] = x[n]− xo whose ith entry is x̃i[n].
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Lemma 1. Using (14), the recursion of error vector x̃[n] is given by

x̃[n + 1] = (I− BDDB)x̃[n] + µBDvg
n(x[n]). (15)

where vg
nx[n] is defined in Appendix A.

Proof. See Appendix A.

Multiplying both sides of (15) by UT and using (5), we obtain

s̃[n + 1] =
(

I− ΣUTDDUΣ
)

s̃[n] + µΣUTDvg
n(x[n]) (16)

where s̃[n] = UT x̃[n] is the GFT of x̃[n]. We only consider ŝ[n] = [s̃[n], i ∈ F ] ∈ R|F |.
The error recursion (16) becomes

ŝ[n + 1] =
(

I− ΣUT
FDDUF

)
ŝ[n] + µUT

FDvg
n(x[n]) (17)

where ŝ[n] = UT
F x̃[n].

Using (17), the recursion of E
{
‖ŝ[n + 1]‖2

c

}
can be derived as follows.

Lemma 2. E
{
‖ŝ[n + 1]‖2

c

}
can be calculated as

E
{
‖ŝ[n + 1]‖2

c

}
= E

{
‖ŝ[n]‖2

Qc

}
+ µ2vec(G)Tc (18)

where D and Q are given in Appendix B.

Proof. See Appendix B.

According to Lemma 2, we obtain two theorems regarding steady-state mean square
deviation (MSD) and convergence stability as follows.

Theorem 1. Assuming that the data model (6) and Assumption 1 hold, the steady state of the
WL-G algorithm is given by

MSD = µ2vec(G)T(I−Q)−1vec(I). (19)

Proof. In steady-state, and assuming that the matrix I−Q is invertible, from the recursive
expression (18), we obtain

lim
n→∞

E‖ŝ[n]‖2
(I−Q)c = µ2vec(G)Tc. (20)

Let c = (I−Q)−1vec(I), we obtain

MSD = µ2vec(G)T(I−Q)−1vec(I). (21)

The theorem is proved.

Theorem 2. Assume that Assumption 1 and (6) hold, the WL-G can converge if the step-size µ

0 < µ <
2

λmax
(
UT
FDDUF

) . (22)

Proof. Iterating recursion (18) starting from n = 0, we find that

E‖ŝ[n + 1]‖2
c = E‖ŝ[0]‖2

Qn+1c + µ2vec(G)T
n

∑
i=0

Qic (23)
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with initial condition ŝ[0]. Note Q is stable when I − UT
FDDUF is stable. Thus, we

require 0 <
∣∣1− µλmax

(
UT
FDDUF

)∣∣ < 1. After some algebraic manipulations, (22) can
be obtained.

6. Sampling Strategy

According to (18), (19) and (22), the performance of the WL-G algorithm relies on
the vertex limiting operator D. Therefore, sampling signals defined on graphs is not only
about choosing the number of samples but also about (if possible) having an appropriate
strategy to optimally determine where to sample because the sampling locations has a great
influence on the performance of the WL-G.

The objective is to determine the optimal sampling set (i.e., the vertex limiting
operator D), which minimizes the value of MSD for sampling strategy. Assuming that
the matrix Q can be eigendecomposed by Q = VΠVT , the MSD in (19) can be rewritten as

MSD = µ2vec(T)T
(

I−VΠVT
)−1

vec(I)

= µ2vec(T)TV(I−Π)−1VTvec(I)

= µ2
|F |2

∑
i=1

piqi
1− λi(Q)

.

(24)

where qi and pi are the ith terms of the vectors VTvec(I) and VTvec(T), respectively. In
order to get as a low MSD value as possible, the matrix Q should be selected such that
its eigenvalues

λi(Q) =
(
1− µλk

(
UT
FDDUF

))(
1− µλl

(
UT
FDDUF

))
are as far as from 1, where k, l = 1, 2, · · · , |F |. In other words, the eigenvalues of the matrix
UT
FDDUF should differ from 0 as much as possible. As a result, we can use the greedy

approximation method to obtain an approximate minimization of (24). The main idea is
to iteratively select the samples from the graph that maximize the pseudodeterminant of
the matrix UT

FDDUF , denoted by Det
(
UT
FDDUF

)
. Using the greedy method results in

the sampling strategy (called the greedy determinant–maximization method) as given in
Table 3. Since the computational steps of the greedy determinant–maximization sampling
strategy have high computation complexity, it is desirable to reduce the computational
complexity while at the same not significantly compromising the reconstruction perfor-
mance. Motivated by the partial method in [80,81], we propose the partial greedy approach
as summarized in Table 4, where p is the partial probability and randit(1, (1− p)N, [1, N])
denotes (1− p)N random integer sets between 1 and N.

Table 3. Maximizing Det
(
UT
FDDUF

)
.

Inputdata: M
Outputdata: S

Initialization :S ≡ ∅
Function:
while |S| < M

s = arg max
j

Det
(

UT
FDS∪{j}DUF

)
S = S ∪ {s}

end
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Table 4. Partial greedy determinant–maximization sampling strategy.

Inputdata: M
Outputdata: S

Initialization :S ≡ ∅
Function:
for i = 1 : M
Ki = {1, ...., N}
Ti = randit(1, (1− p)N, [1, N])

s = arg max
j∈Ki\Ti

Det
(

UT
FDS∪{j}DUF

)
+

S = S ∪ {s}
end

In Table 5, we provide the framework of proposed WL-G estimation algorithm. N in
Table 5 denotes the iteration number.

Table 5. Framework of proposed WL-G algorithm.

Problem: Recovering the band-limited graph signal xo from partial observations
y[n] = DBxo + Dv[n] with impulsive noise.
Inputdata: M, y[n],N
Outputdata: x[n]

Initialization :S ≡ ∅, x[0]
Function:
while |S| < M

s = arg max
j

Det
(

UT
FDS∪{j}DUF

)
S = S ∪ {s}

end
Using S to calculate D
while n < N

x[n + 1] = x[n] + µBDφ(y[n]− x[n])
end

7. Wl-G Estimation with AGS

The band-limiting operator B is assumed in (9) to be known in advance. However,
since the graph may vary over time, the prior knowledge of B is sometimes unrealistic in
certain applications. To overcome the lack of prior knowledge of B, we present an AGS
technique for the WL-G algorithm.

Using (1), the graph signal observation model can be rewritten as

y[n] = DUso + Dv[n]. (25)

As a result, estimating xo is equivalent to estimating so. Motivating by the fact that
the support identification for so is acutely associated with the set of sampling, the optimal
problem (8) could be recast as

min
s,D

E{ f (s)}+ λg(s) (26)

where g(·) is a l0−norm or l1− norm, and λ denotes a constant that regulates the sparsity
level of s. The minimization problem (26) is a nonconvex program; thus, it is generally
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challenging to be solved. The ISTA [82] is adopted to solve (26). Provided D[n], s is updated
through the improved ISTA algorithm as

s[n + 1] = Tγ(s[n] + µ
∂ f (s)
∂s[n]

)

= Tγ(s[n] + µUTD[n]φ(y[n]−Us[n]))
(27)

where Tγ is a thresholding function, µ denotes a step-size. Here, the thresholding function
is selected as a hard threshold given by

Tγ(sm) =

{
sm |sm| > γ
0 |sm| < γ.

(28)

where Tγ(sm) is the mth element of the thresholding function Tγ(s).

8. Simulation

This part carries out simulation examples to demonstrate the advantages of the pro-
posed algorithm on graphs and verify the correctness of the performance analysis. A graph
signal with 50 nodes is considered. The graph is depicted in Figure 2.

Original signal

-1.5

-1

-0.5

0

0.5

1

Figure 2. Graph topology and graph signal.

8.1. On the Theoretical Results

We now verify the precision of the mean square analytical theory provided in Theorem 1
by comparing the analytical MSD values with the MSD obtained via simulations for both
the cases of nonimpulsive noise and impulsive noise. |F | is set to 10.
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Example 1. (No impulsive Noise): In this scenario, the observation noise only contains the
background noise. The background noise η[n] is the zero-mean Gaussian process with diagonal
covariance matrix,

Cη =


c2

η,1
c2

η,2
. . .

c2
η,N

 (29)

where c2
η,i is generated uniformly randomly between 0 and 0.01. Figure 3 shows the simulated MSD

of the WL-G compared with the theoretical MSD value given by Theorem 1 for various values of the
step sizes µ = 0.001, 0.003, 0.006, 0.008. Here, |S| is set to 10. The steady-state MSD of WL-G
gained from the experiments closely match the analytical MSD value given by Theorem 1. This thus
confirms the correctness of the mean square analysis given by Theorem 1. In addition, it is observed
that, although providing a higher learning rate (convergence rate) of the WL-G algorithm, a larger
µ results in an inferior property. In contrast, a smaller value of step size results in a better MSD
performance of the WL-G algorithm but with a slower learning rate.

Iterations
0 100 200 300 400 500 600 700 800

M
S

D

-50

-40

-30

-20

-10

0

10

20

Simulation(µ=0.8)

Theory(µ=0.8)

Simulation(µ=0.4)

Theory(µ=0.4)

Simulation(µ=0.2)

Theory(µ=0.2)

Simulation(µ=0.1)

Theory(µ=0.1)

Figure 3. Transient behavior of the MSD of the WL-G algorithm in comparison with the theoretical
steady-state MSD value given in Theorem 1 for the case of nonimpulsive noise.

Example 2. (Impulsive Noise): This example considers the case of impulsive noise where the
impulsive noise ξ[n] is generated from the Bernoulli–Gaussian (BG) process, which is often used in
the performance analysis. By denoting ξi[n] as the ith element of ξ[n], we have ξi[n] = bi[n]gi[n],
where bi[n] is a Bernoulli process whose probabilities are expressed by P[bi[n] = 1] = Pi, and gi[n]
is a zero-mean white Gaussian process with variance κc2

η,i. Note that pr,i stands for the probability
of occurrence of impulsive noise sample. In the simulation, the probability pr,i is set to 0.05, and the
constant κ is set to 10,000. In addition to the impulsive noise ξ[n], the background noise η[n] is
generated in the same manner as in Example 1. Figure 4 compares the transient behavior of the
MSD of the WL-G algorithm with the theoretical steady-state MSD value given in Theorem 1 for
the step sizes of µ = 0.0008, 0.001, 0.003, 0.006. A similar observation as in Example 1 is made
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here, where the theoretical steady-state MSD value derived in Theorem 1 closely agrees with the
simulated steady-state MSD. This once again verifies the correctness of Theorem 1.

Iterations
0 200 400 600 800 1000 1200

M
S

D

-50

-40

-30

-20

-10

0

10

20

Simulation(µ=0.8)

Theory(µ=0.8)

Simulation(µ=0.4)

Theory(µ=0.4)

Simulation(µ=0.2)

Theory(µ=0.2)

Simulation(µ=0.1)

Theory(µ=0.1)

Figure 4. Transient behavior of the MSD of the WL-G algorithm in comparison with the theoretical
steady-state MSD value given in Theorem 1 for the case of impulsive noise.

8.2. On the Performance of The WL-G Algorithm

Example 3. (Effect of Cardinality |S|): This example examines how the behavior of the WL-G
algorithm is affected by the number of samples in the observation set S . Figure 5 plots the transient
MSD of the WL-G algorithm for |S| = 10, 20, 30, and 40. Here, the simulation setup is the same as
in Example 2 except that the step size is set to 0.06. We can see from Figure 5 that, as expected,
growing the samples improve the convergence speed.

Iterations

0 20 40 60 80 100 120 140 160 180 200

M
S

D

-50

-40

-30

-20

-10

0

10

20

|S|=50

|S|=30

|S|=20

|S|=10

Figure 5. Transient MSD for different |S|.
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Example 4. (WL-G Versus LMS): In this example, the behavior of WL-G algorithm is compared
with those of the LMS algorithm [72] and the LMP algorithm on graph. Here, the cardinality |S| is
set to 10. The probabilities Pi are set to 0.05, 0.01, and 0.005. Other parameters remain the same as
those in Example 3.

Figure 6 compares the WL-G, LMP, and LMS on graph in the impulsive noise back-
ground. It is observed that the LMS algorithms yields a poor MSD performance due to the
impulsive noise. It is as expected as the LMS algorithm is in virtue of MSE criterion which is
unstable to outliers. In contrast, the WL-G and the LMP algorithm on graph can effectively
cope with the impulsive noise by producing a much more reliable MSD performance.
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=0.01)

LMP(p
r,i

=0.05)
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Figure 6. Performance comparison between the WL-G, LMP, and LMS algorithms with impulsive noise.

The MSD curves of the WL-G and LMS algorithm in the Guassian noise are depicted
in Figure 7. As can be seen from Figure 7, we obtain that the WL-G algorithm exhibits
nearly same performance as the LMS algorithm.
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LMS( =0.2)
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Figure 7. Performance comparison between the WL-G and LMS algorithms without impulsive noise.

Figures 8–10 shows the measured graph signal and the reconstructed graph signals
obtained by the LMS and WL-G algorithms. The WL-G algorithm is observed to produce a
reconstructed signal that is almost identical to the ground-truth signal in Figure 2. On the
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other hand, the LMS algorithm results in an unsatisfactory reconstructed signal where
the signal values at most of the nodes are far different from the corresponding true val-
ues. These observations demonstrate one more time the performance advantages of the
proposed WL-G algorithm over the LMS.

Measured signal (i=126)

-100

-50

0

50

100

Figure 8. Measured signals (n = 126).

Recovered signal

-1.5

-1

-0.5

0

0.5

1

Figure 9. Reconstructed signals obtained by the WL-G algorithm.
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Recovered signal
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0

1

2

3

4

Figure 10. Reconstructed signals obtained by the LMS algorithms.

Example 5. (Effect of scale parameter c): This example examines how the performance of the
WL-G algorithm is affected by the scale parameter c. Figures 8 and 9 depict the MSD curves of the
WL-G algorithm with different scale parameters c under impulsive noise, where pr,i are set to 0.05
and 0.5 in Figures 11 and 12, respectively. Smaller c leads to smaller steady-state error but lower
convergence rate. Therefore, we can select a suitable value for c according to the specific requirement.
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Figure 11. MSD curves of WL-G for different values of c with pr,i = 0.05.
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Figure 12. MSD curves of WL-G for different values of c with pr,i = 0.5.

Example 6. (WL-G (greedy) Versus WL-G (partial greedy)): We conduct the simulation to
test the partial greedy approach, where p is set to 0.8. The simulated result is depicted in Figure 13.
From the results of the simulation, we can determine that the algorithm in Table 4 has the similar
performance to the algorithm in Table 3.

Iterations
0 20 40 60 80 100 120 140 160 180 200

M
S

D

-50

-40

-30

-20

-10

0

10

20

30

WL-G(greedy)

WL-G(partial greedy,p=0.8)

Figure 13. MSD performance of the WL-G (greedy) and WL-G (partial greedy) algorithms.

8.3. On the Performance of WL-G Algorithm with Adaptive Graph Sampling

In this section, we present a performance evaluation for the proposed WL-G algo-
rithm with adaptive graph sampling. A time-varying graph signal with N = 50 nodes



Symmetry 2022, 14, 426 16 of 24

is considered, where the spectral content of the signal switches between the first 5, 15,
and 10 eigenvectors. The graph topology is the same as in Figure 3. The elements of the
GFT so inside the support are set to 1. The observation noise consists of both background
noise and impulsive noise. The background noise has covariance matrix Cη = c2

η I where
c2

η = 2× 10−4. The impulsive noise follows the Bernoulli–Gaussian (BG) process as de-
scribed in Section 8.1, where the probability pr,i is set to 0.05 and the constant κ associated
with the noise level is set to κ = 1000. The step size µ, the sparsity parameter λ, and the hard
threshold value γ are set to 0.9, 0.056, and 0.05, respectively. The normalized mean-square
deviation (NMSD), i.e., NMSD[n] = ||s[n]− s0||2/||s0||2, is adopted as the measurement
to evaluate the performance of the proposed algorithm.

Figure 14 shows the performance of the WL-G in comparison with that of the LMS
algorithm with adaptive sampling. Similar to other simulation examples, the proposed
WL-G algorithm significantly outperforms the LMS algorithm. The LMS algorithms pro-
duces an unreliable NMSD performance. In contrast, the WL-G algorithm is capable of
effectively tracking the time-varying scenarios. Specifically, the sudden increases in the
NMSD performance of the WL-G algorithm correspond to the changes in the spectral
content of the signal. However, by adapting the sampling set, the WL-G algorithm is able
to quickly converge to the steady state conditions. Figure 15 depicts the F curves of WL-G
with adaptive sampling in comparison to LMS with adaptive sampling.

0 50 100 150 200 250 300

Iterations

-30

-20

-10

0

10

20

30

40

50
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S
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(d
B

)
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Figure 14. MSD performance of WL-G with adaptive sampling in comparison to LMS with
adaptive sampling.
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Figure 15. F curves of WL-G with adaptive sampling in comparison to LMS with adaptive sampling
(Red: LMS; Blue: WL-G).

Figures 16–18 report the samples chosen by the proposed WL-G algorithm at iterations
n = 86, n = 150, and n = 279.

Figure 16. Optimal sampling at iteration n = 86 (depicted as brown nodes).
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Figure 17. Optimal sampling at iteration n = 150 (depicted as brown nodes).

Figure 18. Optimal sampling at iteration n = 279 (depicted as brown nodes).

9. Discussion
9.1. Discussion about Adaptive WL-G Estimation on Graphs

Comparing the Equation (9) with the LMS algorithm in [72], we obtain that the update

equation of the WL-G algorithm contains just an extra scaling factor exp(− (yi [n]−xi [n])
2

2c2 ).
The outlier rejection property of the Welsch loss can be reflected from this factor [45]. There-
fore, if the desired graph signal has impulsive characteristics or strong outliers, the WL-G
is more stable than LMS algorithm in [72]. It is worth noting that the computational
complexity of the WL-G algorithm is slightly more than that of the LMS algorithm. To im-
plement the WL-G algorithm compared with LMS, we need only a few extra multiplications
and additions.

9.1.1. Discussion about WL-G Estimation with AGS

The WL-G estimation on graphs in Table 5 supposes complement awareness of the
support. Nevertheless, this assumption is fantastic in the practice, because the signal,
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the signal model, and the graph topology might be time-variant. The WL-G estimation with
AGS is proposed. The signal support is tracked and estimated via the WL-G estimation,
which is also fit to the AGS strategy.

9.1.2. Discussion about Simulation Results

Figures 3 and 4 verify the precision of the mean square analytical theory provided
in Theorem 1. From Figures 3 and 4, we can determine that notional outcomes computed
by (19) can fit fully with the simulated outcomes. Figure 6 verifies advantages belongs
to WL-G algorithm on graph under the impulsive noise environment. From Figure 6, we
get the WL-G can effectively cope with the impulsive noise by producing a much more
reliable MSD performance. Figure 14 verifies the merits of WL-G algorithm with adaptive
graph sampling. The proposed algorithm can get lower MSD and faster convergence rate.
In summary, Figures 3 and 4 in simulation section validate the precision of theory analysis
in Theorem 1 while Figures 6 and 14 verifies the advantages of proposed algorithms.

10. Conclusions

We propose the WL-G algorithm for adaptive graph signal reconstruction with im-
pulsive noise in this work. Different to existing LMS methods, which are based on the
least-squares criterion, the proposed WL-G leverages the use of Welsch loss to formulate
its cost function. The framework of the WL-G algorithm is given in Table 5. The proposed
algorithm can leverage the graph signal’s basal framework to recover signals from partial
observations with impulsive noises under a band-limited supposition. The relationship
between the sampling strategy and the performance of the WL-G algorithm was revealed
via the theoretical analysis on the performance of the WL-G algorithm. Effective sampling
strategies were then developed relied on analysis. An adaptive graph sampling technique
was developed and used in conjunction with the WL-G algorithm to determine the support
in the GFD while allowing the graph sampling strategy to be adapted in an online man-
ner. Extensive simulation is carried out to verify the analysis and merits of the proposed
algorithms. Specifically, Figures 3 and 4 show that our theoretical analysis is correct, since
theoretical results match well with the simulated results. Figure 6 show that the WL-G is
sturdy against the impulsive interference. Figure 14 shows the proposed WL-G algorithm
with the adaptive sampling strategy.
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Appendix A. Proof of the Lemma 1

Using (6) and the definition of error vector, the term φ
(
yj[n]− xj[n]

)
in (14) can be

expressed as

φ
(
yj[n]− xj[n]

)
= φ

(
xoj + vj[n]− xj[n]

)
= φ

(
−x̃j[n] + vj[n]

)
.

(A1)

where vj[n] is the the ith entry of v[n]. We approximate φ
(
−x̃j[n] + vj[n]

)
using a first-order

Taylor series approximation of the function φ(x) around x̃j[n] = 0,

φ
(
−x̃j[n] + vj[n]

)
≈ φ

(
vj[n]

)
− x̃j[n]φ′

(
vj[n]

)
(A2)
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The expectation of the term φ
(
−x̃j[n] + vj[n]

)
is expressed as

E
{

φ
(
−x̃j[n] + vj[n]

)}
= −E

{
x̃j[n]

}
E
{

φ′
(
vj[n]

)}
= −E

{
x̃j[n]

}
φ̄′
(
vj
) (A3)

where φ̄′
(
vj
)

= E
{

φ′
(
vj[n]

)}
. Let ĝj,n

(
x̃j[n]

)
= φ

(
−x̃j[n] + vj[n]

)
≈ φ

(
vj[n]

)
−

x̃j[n]φ′
(
vj[n]

)
, Equation (14) can be rewritten as

xi[n + 1] = xi[n] + µ
N

∑
j=1

bijdj ĝj,n
(
xj[n]

)
. (A4)

Using (A2), the update term ĝj,n in term of x ∈ F[n− 1] can be approximated by

ĝj,n(x) ≈ φ
(
vj[n]

)
+
(
xoj − x

)
φ′
(
vj[n]

)
. (A5)

where F[n − 1] denotes filtration generated by the past history of iterations
{

x̃j[m]
}

for
m ≤ n− 1 and all j. For adequately big n, we have

E
{

ĝj,n(x)|F[n− 1]
}
= φ̄′

(
vj
)(

xoj − x
)

, gj(x).
(A6)

In other words, there exists a deterministic function such that, for all x in the filtration
F[n− 1], it holds that

E
{

ĝj,n(x)|F[n− 1]
}
= gj(x). (A7)

Taking the gradient of the function gj(x), we obtain

Dj = ∇xgj(x) = φ̄′
(
vj
)
. (A8)

The noise incurred by stochastic approximation for each node j and any x ∈ F[n− 1],
i.e., the update noise is defined as

vg
j,n(x) , ĝj,n(x)− gj(x). (A9)

Using (A9) and (A4) implies

xi[n + 1] = xi[n] + µ
N

∑
j=1

bijdj

{
gj
(
xj[n]

)
+ vg

j,n
(
xj[n]

)}
. (A10)

Subtracting xoi from (A10) yields

x̃i[n + 1] = x̃i[n] + µ
N

∑
j=1

bijdj

[
gj
(
xj[n]

)
+ vg

j,n
(
xj[n]

)]
. (A11)

Using some basic algebra manipulations, we have

gj
(

xj[n]
)
= gj

(
xoj
)
−
{∫ 1

0
∇xgj

(
xoj − txj[n]

)
dt
}

x̃j[n]

= −Dj x̃j[n].
(A12)
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where the second equation holds due to (A8) and the fact that gj
(

xoj
)
= 0. Using (A12),

the error recursion (A11) becomes

x̃i[n + 1] = x̃i[n] + µ
N

∑
j=1

bijdj

{
−Dj x̃j[n] + vg

j,n
(
xj[n]

)}
. (A13)

Using the following definitions,

vg
n(x[n]) , col

{
vg

1,n(x1[n]), vg
2,n(x2[n]), ..., vg

N,n(xN [n])
}

, (A14)

D = diag{D1,D2, ...,DN}, (A15)

Equation (A13) implies

x̃[n + 1] = (I− BDDB)x̃[n] + µBDvg
n(x[n]). (A16)

Appendix B. Proof of the Lemma 2

At the steady state, the update noise vector vg
n(x[n]) can be approximated by

vg
n(x[n]) ≈ vg

n(xo)

≈ ĝn(xo)− g(xo)

≈ ĝn(xo)

≈ φv[n]

(A17)

where ĝn(xo) is the vector whose jth term is ĝj,n
(
xoj
)

and hv[n] is the vector whose jth term
is h
(
vj[n]

)
. Thus, the covanriance of φv[n] is denoted by

Cg
v = E{φv[n]φT

v [n]} (A18)

Evaluating the weighted norm of ŝ[n] in (17), we obtain:

E
{
‖ŝ[n + 1]‖2

Ψ

}
= E

{
‖ŝ[n]‖2

Ψ′

}
+ µ2Tr

(
ΨUT
FDCg

vDUF
)

(A19)

where Ψ is any Hermitian positive-definite matrix, which can be chosen freely. Tr(·)
represents the trace operator, and

Ψ′ =
(

I− ΣUT
FDDUF

)
Ψ
(

I− ΣUT
FDDUF

)
. (A20)

Vectorizing matrices Ψ and Ψ′ by c = vec(Ψ)and c′ = vec(Ψ′), it can be verified that:

c′ = Qc (A21)

where the matrix Q is given by:

Q =
(

I−UT
FDDUF

)
Ψ
(

I−UT
FDDUF

)
. (A22)

Equation (A19) can then be expressed as:

E
{
‖ŝ[n + 1]‖2

c

}
= E

{
‖ŝ[n]‖2

Qc

}
+ µ2vec(G)Tc (A23)

where

G = UT
FDCg

vDUF . (A24)
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40. Nguyen, N.H.; Doğançay, K. Improved Weighted Instrumental Variable Estimator for Doppler-Bearing Source Localization in

Heavy Noise. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Calgary, AB, Canada, 15–20 April 2018; pp. 3529–3533.

41. Georgiou, P.G.; Tsakalides, P.; Kyriakakis, C. Alpha-stable modeling of noise and robust time-delay estimation in the presence of
impulsive noise. IEEE Trans. Multimed. 1999, 1, 291–301. [CrossRef]

42. Pascal, F.; Forster, P.; Ovarlez, J.P.; Larzabal, P. Performance analysis of covariance matrix estimates in impulsive noise. IEEE
Trans. Signal Process. 2008, 56, 2206–2217. [CrossRef]
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64. Chen, S.; Varma, R.; Singh, A.; Kovačević, J. Signal recovery on graphs: Fundamental limits of sampling strategies. IEEE Trans.

Signal Inf. Process. Netw. 2016, 2, 539–554. [CrossRef]
65. Tsitsvero, M.; Barbarossa, S.; Di Lorenzo, P. Signals on graphs: Uncertainty principle and sampling. IEEE Trans. Signal Process.

2016, 64, 4845–4860. [CrossRef]
66. Anis, A.; Gadde, A.; Ortega, A. Towards a sampling theorem for signals on arbitrary graphs. In Proceedings of the 2014 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014; pp. 3864–3868.
67. Tanaka, Y. Spectral domain sampling of graph signals. IEEE Trans. Signal Process. 2018, 66, 3752–3767. [CrossRef]
68. Shin, J.; Kim, J.; Kim, T.K.; Yoo, J. p-Norm-like Affine Projection Sign Algorithm for Sparse System to Ensure Robustness against

Impulsive Noise. Symmetry 2021, 13, 1916. [CrossRef]
69. Dogariu, L.M.; Stanciu, C.L.; Elisei-Iliescu, C.; Paleologu, C.; Benesty, J.; Ciochină, S. Tensor-Based Adaptive Filtering Algorithms.
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