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Abstract: The interplay between topological hyperconvex spaces and sigma-finite measures in such
spaces gives rise to a set of analytical observations. This paper introduces the Noetherian class of k-
finite k-hyperconvex topological subspaces (NHCs) admitting countable finite covers. A sigma-finite
measure is constructed in a sigma-semiring in a NHC under a topological ordering of NHCs. The
topological ordering relation maintains the irreflexive and anti-symmetric algebraic properties while
retaining the homeomorphism of NHCs. The monotonic measure sequence in a NHC determines
the convexity and compactness of topological subspaces. Interestingly, the topological ordering
in NHCs in two isomorphic topological spaces induces the corresponding ordering of measures
in sigma-semirings. Moreover, the uniform topological measure spaces of NHCs need not always
preserve the pushforward measures, and a NHC semiring is functionally separable by a set of
inner-measurable functions.

Keywords: topological spaces; sigma-semiring; measure spaces; convex; Noetherian class

MSC: 54F05; 54E15; 28C15

1. Introduction

The interplay between topological spaces, Borel sets, Baire categorization and mea-
surability in a σ− semiring structure is interesting as well as complex. The interactions
between topology and measure theory are generally formulated by forming the smallest
σ− f ield, where the compactness of a subspace facilitates the computation of measure [1].
It is known that a metrizable space may be separable or may not be separable, affecting
the measures in the σ− semiring structures within the spaces. This effectively gives rise to
the formation of a Borel hierarchy in metrizable spaces [2]. Note that the Borel sets as well
as Baire sets are members of σ−algebra generated by a set of subspaces in a topological
space X. The existence of scattering in a topological space affects Borel classification as
well as measures. A topological space X is called a scattered space if ∀A ⊂ X, ∃a ∈ A such
that A ∩ (U ⊂ X) = {a} where U = Uo (here, Uo represents the interior of a respective
open set). If we consider a continuous function f : X → Y from a topological space X to a
Hausdorff topological space Y, then an interesting question arises: what is the condition to
form a function f (.) in Baire first class? The answer is mainly two-fold in view of topology
and convexity: (1) if X is a metric space and Y is a convex subspace of a Banach space,
and (2) if X is a normal topological space and Y = R, where R is a set of real numbers.
Interestingly, the connectedness of a topological space has a role in this case. For example,
the properties of Baire first category are preserved by f : X → Y if the topological space X
is normal and the topological space Y is arc-connected [2]. If a space is metrizable, then
one can find σ−discrete bases within the space affecting the measurability. A function
f : X → Y induces the co−σ−discrete bases in Y, given as { f (Uo) : Uo ⊂ X}, if X has

respective σ−discrete bases [3]. Note that the concept of σ−discrete bases in a space can
be extended to the concept of hyper-Borel sets in a space [3]. Interestingly, the continuous

Symmetry 2022, 14, 422. https://doi.org/10.3390/sym14020422 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14020422
https://doi.org/10.3390/sym14020422
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://doi.org/10.3390/sym14020422
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14020422?type=check_update&version=2


Symmetry 2022, 14, 422 2 of 10

Borel measurable functions between non-separable spaces do not necessarily preserve the
structures of σ−discrete bases. Similarly, the interplay between the topological homeo-
morphism and Borel isomorphism shows that not all topological properties are retained
in Borel isomorphic spaces. A bijection f : X → Y is called Borel isomorphic if f , f−1 are
both Borel. Moreover, every Borel measurable function is analytically measurable (i.e.,
Souslin measurable) [4]. However, it is found that every topological homeomorphism is a
Borel isomorphism, but the converse is not always true [4]. As a consequence, one cannot
guarantee that the measurability can be preserved in a generalized topological space, even
if the Borel isomorphism is attained by f : X → Y . Moreover, the Borel measure need
not be always real valued in a topological space. For example, the complex-valued Borel
measures exist in a Minkowski topological space, which allows computing densities with
respect to the Lebesgue measure [5].

Motivation and Contributions

The developments in topological measure theory are propelled by Alexandrov and
Varadarajan, considering that the topological spaces are always completely regular as well
as Hausdorff [6,7]. The fundamental question in measure theory and its topological variants
is the extensibility of σ−algebras [8]. The approach of Alexandrov is based upon the finitely
additive set-valued functions in a topological space, and the approach of Varadarajan is
primarily based upon the Cb algebraic forms of bounded continuous real-valued functions
in the completely regular spaces. Kirk and Crenshaw further generalized the Cb algebraic
approach by introducing the concept of paving W(X) in a space X and then constructing
a σ− ring based on the paving [6]. However, the concept of paving has a strong flavor
of general topology, and the corresponding topological measure is finitely W − regular.
Moreover, the structure of σ− ring depending on W(X) is a modification of a standard
σ− semiring in a topological space. Furthermore, the algebra-based topological separa-
tion of subspaces also depends on W(X). In the case of a completely regular topological
space, an extremely disconnected space (i.e., closure of open set is open) exists, where
the corresponding Baire sets become reduced and the zero-sets are easy to identify [7].
In other words, the topological determination of measure compactness becomes simpler
in this setting. It is shown that topological measures and deficient measures may not
always support subadditivity and the properties of linear functionals while admitting the
weak convergence of topological measures, which is a variety of Alexandrov weak conver-
gence [9]. Interestingly, if we consider a ring of sets σ(A) and a topological vector space X,
then the measure µ : σ(A)→ X may show strong convergence to zero if µ(〈B〉ni=1)→ 0 in
σ(A) where the sets in sequence 〈B〉ni=1 under measure are disjoint [10]. These observations
are the motivation to investigate the properties of topological measure in the topologically
ordered spaces under an anti-symmetric ordering relation. Moreover, it is interesting to
analyze the inherent topological properties, such as invariances and measure sequences, if
the topological spaces are hyperconvex Noetherian varieties. The interesting questions are
as follows: (1) How do we formulate an irreflexive and anti-symmetric topological order-
ing relation between two Noetherian classes? (2) What are the properties of topological
measures in such Noetherian hyperconvex classes under topological ordering relation?
(3) What are the properties of a topological measure sequence in the hyperconvex space?
This paper addresses these questions and presents the analytical results by combining the
elements of topology and measure theory.

The main contributions made in this paper can be summarized as follows. A Noethe-
rian k-hyperconvex class (NHC) in a Hausdorff topological space is constructed such that
every local neighborhood basis is countably coverable, and a fiber can be suitably attached
for finite k. A topological ordering relation is introduced between two NHCs, where the
ordering relation is irreflexive, anti-symmetric and transitive without affecting the home-
omorphism of topological spaces. This paper proposes a set of analytical properties of
finite measures in sigma-semirings under the topological ordering relation in NHCs. We
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show that pushforward measures are not always maintainable, and the sigma-semiring is
topologically separable by inner-measurable functions.

The rest of the paper is organized as follows. The preliminary concepts and a set of
existing classical results are presented in Section 2. The proposed definitions of topological
structures are presented in Section 3. The analytical results are presented in Section 4.
Finally, Section 5 concludes the paper.

2. Preliminaries

In general, a real-valued measure is formulated based on the algebraic semiring struc-
ture on sets. The generalized algebraic structure of the semiring on a set S is given by
〈S,+, ·〉 where 〈S,+〉 is a commutative semigroup, 〈S, ·〉 is a semigroup and the multi-
plication · : S2 → S distributes over + : S2 → S within the structure. The concept of the
zero-set plays important roles in the inter-relationship between the algebraic semiring
structure and the topological space, which is defined as follows [11].

Definition 1 (zero-set in topological space). Let X be a Hausdorff topological space and
f : X → R be a real-valued function. The zero-set in the topological space A ⊂ X is defined to be a

subset such that A = f−1(0).

The co-zero set is the complement of the zero-set, which is denoted as coz(A). The set
of continuous functions in a topological space can generate a σ−semiring structure. As
a result, we can define the zero-set in a topological space alternatively as presented the
following definition [2,12].

Definition 2 (semiring zero-set in topological space). If X is a topological space and C(X, (0, ∞])
denotes a set of continuous functions generating a semiring in the topological space X, then a closed
set Cl( f ) of a function f (.) is the zero-set such that Cl( f ) = f−1(0).

It is well known that a Hausdorff topological space X is a Tychonoff space if every
subspace B ⊆ X and a point a ∈ X\B are functionally separable, where B = B 6= φ. Note
that B is the closure of the corresponding set. Suppose we consider a family of subspaces
F in a Tychonoff topological space X. Hence, we can define the concept of measurability,
which is given as follows [2].

Definition 3 (measurable topological subspaces). Let X be a set and Y be a Tychonoff space.
A function f : X → Y is called F−measurable if [U ⊂ Y]⇒ [ f−1(U) ∈ F] where U = Uo.

It is important to note that not all subspaces are measurable. For example, the Bernstein
set, which is a Baire–Lindelöf variety, is not measurable [11]. In a linear space, the convexity
of functionals and bounded real-valued linear functions have an interesting relationship in
terms of measures. Suppose ω : X → R ∪ {+∞} is an increasing functional on the linear
space of real-valued functions with convexity [13]. If we consider two functions f and
g in the space X, then the convexity of ω : X → R ∪ {+∞} satisfies the condition given
by [ f ≥ g]⇒ [ω( f ) ≥ ω(g)] . Let us consider that X is a family of continuous real-valued
functions on a topological space A represented as f : A→ R . If the measure µ : σ(X)→ R
is finite, then it results in the following theorem [13].

Theorem 1. Every finite measure µ : σ(X)→ R is regular and closed. Moreover, if 〈Bn〉mn=1 is a
sequence of compact sets in σ(X) such that the measure preserves µ(〈Bn〉mn=1)→ µ(A) then the
measure is regular in the corresponding topological measure space.

The inter-relationship between the measurability and Baire categorization of a topo-
logical space X is presented in the following theorem where zer(A) denotes a respective
zero-set A within the topological space [11].
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Theorem 2. A real-valued function f : X → R in a topological space X is Baire first category if,
and only if, f (.) is zer(A)−measurable.

There is a relationship between the homeomorphism in topological spaces and the
multiplicative isomorphism of a semiring structure under the mapping, which is presented
in the following theorem [12].

Theorem 3. In a topological space X the function f (x) = 1/x induces the homeomorphism
between the topological spaces (0, ∞], [0, ∞) and also induces the multiplicative isomorphism
between semirings in (0, ∞], [0, ∞).

The interplay between the convexity of a topological subspace and homeomorphism
is illustrated in the following theorem [11].

Theorem 4. Any completely regular topological space X is homeomorphic to a closed subspace
A ⊂ X if X is convex compact, where A is a set of extreme points of the respective topological space.

Note that if the set of extreme points of a topological space A ⊂ X is Lindelöf, then
the Baire first category measurable function f (.) exists in A ⊂ X, and it can be extended to
X, which is also Baire first category measurable. Moreover, it is important to note that the
Zariski topological space can be established within the Noetherian space, admitting a finite
as well as signed Borel measure [14].

3. Definitions: Hyperconvexity and Measures

In this paper, Λ ⊆ Z+ denotes an index set, and the topological spaces are Hausdorff
as well as first countable. If two topological spaces, A, B are isomorphic, then it is denoted
by the algebraic relation A ∼=isom B.

Definition 4 (topological k-hyperconvexity). Let (X, τX) be a Hausdorff topological space and
xp ∈ X be a point. An open neighborhood of xp given by Np ⊂ X is called topologically hyperconvex
if Np ⊂ ∩

i∈Λ
Ai where each Ai is convex in X and i < +∞. A hyperconvex open neighborhood of{

xp
}
∈ τX in Hausdorff space is denoted by HNp. A HNp is called k− hyperconvex if i ∈ [1, k].

In this paper, we write the hyperconvex subspace to indicate a k− hyperconvex sub-
space for k > 1. Note that the topological hyperconvexity maintains the countable and
finitely boundedness property such that if i ∈ I ⊂ Λ then sup(I) < +∞ and |I|> 1 , in
general. However, in this case, the finite intersection property excludes the possibilities of
attaining HNp = φ as well as

{
xp
}
= HNp where

{
xp
}
∈ τX. As a result, the concept

of hyperconvex Noetherian class within the topological space (X, τX) can be established,
which is defined as follows.

Definition 5 (hyperconvex Noetherian class). Let xp ∈ X be a point in Hausdorff first countable topo-
logical space (X, τX) with a hyperconvex open neighborhood basis NBp =

{
Np(k) ⊂ X : k ∈ Λ, HNp(k)

∼= Np(k)

}
within the space. An open convex collection Sp =

{
Ai ⊂ X : i ∈ Λ, xp ∈ Ai

}
is called a Noethe-

rian hyperconvex class (NHC) at
{

xp
}
∈ τX if the following properties are satisfied.

∀Ai ∈ Sp, Ai = Ao
i ,

∀Ai ∈ Sp, ∃HNp(i)∃HNp(k), HNp(i) ⊂ Ao
i ⊂ HNp(k),

[i ≤ k]⇒ [Ai ⊆ Ak].
(1)

A Noetherian hyperconvex class Sp is a relaxed variety such that HNp(i) 6= Ai. In other
words, HNp(i) need not be locally dense in subspaces in Sp. The Noetherian hyperconvex
class Sp is called finite if i ∈ I ⊂ Λ.
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Remark 1. Note that, in general, Sp is not a proper neighborhood basis of
{

xp
}
∈ τX although Sp

is countable. The reason is that if we consider that X is not compact and I = Λ, then ∃k ∈ Λ such
that ∀i > k, Ai = Ak in (X, τX) admitting a finite Noetherian class. In an alternative view, it is
possible that ∪

∀i∈Λ
(Ai ∈ Sp) ⊂ X, where (X, τX) is a compact topological space. In summary, the

compactness of a topological space does not influence the nature of finite Sp.

Note that from now on, if we consider two Hausdorff first-countable topological
spaces (X, τX) and (Y, τY), then the corresponding Noetherian hyperconvex classes at
any arbitrary points in two spaces are denoted as SX and SY, respectively. The formation
of a neighborhood fiber in a hyperconvex topological subspace at a point xp ∈ X in the
corresponding Noetherian hyperconvex classes SX ≡ Sp in (X, τX) is defined as follows.

Definition 6 (neighborhood fiber). Let (X, τX) be a first-countable topological space and
∪
∀i∈Λ

Ai ⊆ X such that Ai ∈ SX . A fiber I ⊆ R, µp×I =
{

xp
}
× I at

{
xp
}
∈ τX is a neighborhood

fiber if HNp ⊂ ∩
∀i∈Λ

Ai is a hyperconvex neighborhood of xp.

Remark 2. Note that the condition given by ∃HNp ⊂ ∩
∀i∈Λ

Ai such that ∃k ∈ Λ, Np(k) ∈ NBp

and HNp ⊂ HNp(k) is maintained in SX ≡ Sp, where k < +∞. The neighborhood fiber µp×I is a
symmetrically compact fiber in SX if ∃(a ∈ R) 6= 0, I = [−a, a].

If we consider that (X, τX) and (Y, τY) are two first-countable Hausdorff topological
spaces with respective Noetherian hyperconvex class SX and the Noetherian class SY then
it is possible to establish a topological ordering relation < f between the spaces under the
function f : (X, τX)→ (Y, τY) by considering the closure of subspaces. The definition of
topological ordering is defined as follows.

Definition 7 (topological ordering). The Noetherian hyperconvex class SX and the Noetherian
class SY in the respective first-countable Hausdorff topological spaces are topologically ordered if
∀Ai ∈ SX , ∃Bi ∈ SY such that f−1(E ⊂ Bi) ⊂ (F ⊂ Ai). The topological ordering is represented
as SX < f SY.

It can be observed that the topological ordering relation preserves the concept of
continuity of f : (X, τX)→ (Y, τY) . Later, we will show that SX < f SY enforces Noetherian
hyperconvexity in the codomain of f : (X, τX)→ (Y, τY) under homeomorphism. Interest-
ingly, if ∀Ai ∈ SX one can find that Ai = ∪

k∈[1,n]
Fk, Fk = Fo

k such that n ∈ Λ, n < +∞ then

SX ∼= σsr(X), where σsr(X) is a σ− semiring in SX. As a result, one can consider the corre-
sponding topological space as a topological measure space (X, σsr(X), µX) incorporating a
consistent topological measure as defined next.

Definition 8 (NHC measure). A finite measure µX : σsr(X) → [0,+∞) is a topological NHC
measure in SX if the following conditions are maintained.

∀Fk ∈ σsr(X), µX(Fk) < µX(Fk), µX({φ}) = 0,
∀m, n ∈ Λ, [Am ⊆ An]⇒ [µX(Am) ≤ µX(An)],
[Am ⊂ An]⇒ [µX(Am ∪ An) = µX(An)].

(2)

Note that the NHC topological measure in a σ− semiring is measure consistent in local
subspaces and also in the global subspaces within the corresponding topological space.
The NHC topological measure µae : σsr(X∪Y) → [0,+∞) is called almost-everywhere in two
topological spaces X, Y if ∀xp ∈ X, ∃yp ∈ Y it is true that ∃Nx ∈ σsr(X), ∃Ny ∈ σsr(Y) such
that µae(Nx) = µae(Ny), where xp ∈ Nx, yp ∈ Ny are two respective open neighborhoods
and X ∩Y = φ.
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Remark 3. A topological NHC measure in SX generates a non-zero monotone sequence
Φ(SX) =

〈
µ(Ai)

〉n
i=1 determining the compactness as well as convexity of (X, τX). For ex-

ample, if (X, τX) is a compact and convex topological space, then n < +∞, ∃l ∈ R+ such that
∪
∀i∈Λ

Ai = X and Φ(SX)→ l > 0 . As a result, Φ(SX) is bounded and strongly convergent.

Otherwise, the sequence Φ(SX) is divergent in nature, where n→ +∞ .

4. Main Results

The analytical results are presented in two parts as follows. First, we illustrate the
topological and measure theoretic properties of sigma-semiring measures in NHC in
Section 4.1. The topological separability of sigma-semiring structures in a NHC and the
properties of measures are presented in Section 4.2.

4.1. Properties of Topological NHC Measures

There is a relationship between the k-hyperconvex topological subspaces and the first-
countable property of a Hausdorff topological space. This interrelationship is presented in
the following theorem.

Theorem 5. In a topological space (X, τX) if NBp is a finite hyperconvex neighborhood system
at xp ∈ X then it is a Noetherian hyperconvex class if (X, τX) is a first-countable non-compact
topological space.

Proof. Let (X, τX)be a first-countable topological space, where xp ∈ X is an arbitrary point. A local
hyperconvex neighborhood system at xp ∈ X is given by NBp =

{
Np(k) ⊂ X : k ∈ Λ, HNp(k)

∼= Np(k)

}
such that one can find a bijection f : Z+ → NBp . The corresponding Noetherian hyperconvex
class is SX at xp ∈ X. If we consider that k ∈ [1, n < +∞] then we can find a corresponding
l ∈ [1, m < n] such that ∪

l
(Al ∈ SX) ⊂ X if, and only if, (X, τX) is non-compact and

X\∪
l

Al 6= φ is open. Moreover, according to the definition ∀Np(k) ∈ NBp, ∃Al ∈ SX such that

Np(k) ⊂ Al in (X, τX). Inductively, it can be concluded that [(a ∈ Λ) < (b ∈ Λ)]⇒ [Np(a) ⊂ Np(b)]

and ∃l ∈ [1, m] such that Al ⊂ Np(b) in non-compact (X, τX). Hence, the local neigh-
borhood system NBp is a Noetherian hyperconvex class where m < b ≤ n and f (.) is
finitely countable. �

Remark 4. Note that a first-countable topological space may admit a k-finite k-hyperconvex class.
It is important to note that a non-convex Hausdorff topological space (X, τX) need not always admit
a Noetherian hyperconvex class of NBp for k ∈ Λ at any arbitrary

{
xp
}
∈ τX within the space

irrespective of the compactness of X. The reason is that if Bp(k) ⊂ X is not a convex neighborhood of
xp ∈ X in the compact non-convex (X, τX) then ∪

k∈Λ
Bp(k) = X; otherwise if (X, τX) is non-convex

as well as non-compact, then ∪
k∈Λ

Bp(k) ⊂ X. This results in the following corollary, which is a

stronger property.

Corollary 1. A Noetherian
{

Bp(n) ⊆ X, n ∈ [1, k]
}

admits hyperconvex NBp in a compact
Hausdorff and first-countable (X, τX) if, and only if, Cov(X) = {X ⊂ Ei, i ∈ [1, m]} is a countable
finite cover of X , where each Fi ⊂ Ei is a convex subcover of X.

The topological ordering relation SX < f SY between the two spaces maintains the
respective NHC structures. However, the relation < f also preserves the hyperconvexity in
the NHC in the codomain of continuous f (.). The following theorem presents this property.

Theorem 6. If (X, τX) and (Y, τY) are first-countable topological spaces with hyperconvex E ⊂ X
and E < f (F ⊂ Y) , then F is also hyperconvex in Y.
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Proof. Let (X, τX) and (Y, τY) be two first-countable topological spaces such that X ∩Y = φ.
Suppose xp ∈ X is an arbitrary point with the corresponding hyperconvex neighborhood
basis NBp. If SX is a NHC in (X, τX) such that ∀Ai ∈ SX , xp ∈ Ai then ∃Np(n), Np(m) ∈ NBp

within the topological space, maintaining the property that [n < m]⇒ [Np(n) ⊂ Ai ⊂ Np(m)] in
(X, τX). If we consider a continuous function f : (X, τX)→ (Y, τY) , then ∀Ai ∈ SX , ∃Bi ∈ SY
such that [ f−1(Bi) ⊂ Ai]⇒ [ f−1(Bi) ⊂ Ai] . However, if Ai < f Bi topological ordering
is preserved by f : SX → SY in the two respective topological spaces, then
[E ⊂ Bi]⇒ [ f−1(E) ⊂ (F ⊂ Ai)] where E = Eo and F = Fo. Hence, it can be concluded
that E ⊂ ∩

i∈[1,k]
(Nq(i) ⊂ Y) where k < +∞ such that Bi ⊂ Nq(k). As a result, E ⊂ Y is also

hyperconvex under SX < f SY. �

Note that the converse of Theorem 6 may not always be satisfied under the anti-
symmetric topological ordering relation, and additional conditions are required. The
following lemma is a natural extension of the topological ordering property.

Lemma 1. The topological ordering SX < f SY preserves homeomorphism of f : (X, τX)→ (Y, τY) .

There is an interplay between the isomorphisms of the two topological subspaces,
topological ordering between the respective NHCs and the corresponding topological
measures of the NHCs. The topological ordering in the two NHCs induces an algebraic
order between the topological measures in the corresponding NHCs. This property is
presented in the following theorem.

Theorem 7. If SX < f SY is preserved in topological spaces X ∼=isom Y then (µae ◦ f−1)(F) < µae(E)
where F ⊂ Y and E ⊂ X.

Proof. Let (X, τX) and (Y, τY) be two first-countable Hausdorff topological spaces with
respective NHCs SX, SY. Note that the topological spaces are separated as X ∩ Y = φ.
Suppose we consider Ai ∈ SX and Bi ∈ SY preserving SX < f SY, which results in Ai < f Bi.
If the topological measure µae : σsr(X∪Y) → [0,+∞) is an almost-everywhere variety and
X ∼=isom Y then the µae(Ai ∈ σsr(X)) = µae(Bi ∈ σsr(Y)) condition is maintained. However,
due to the topological ordering (E = Eo) < f (F = Fo) between E ⊂ Ai and F ⊂ Bi one can
conclude that [ f−1(F) ⊂ E]⇒ [(µae ◦ f−1)(F) < µae(E)] . �

The above theorem influences the Baire categorization of topological subspaces as
illustrated in the following corollary.

Corollary 2. In SX < f SY and SX ∼=isom SY if (µae ◦ f−1)(F) < µae(E) then E ⊂ X and F ⊂ Y
need not be locally dense in Ai and Bi.

Proof. The proof is relatively straightforward because µae is a measure consistently main-
taining algebraic ordering < under topological ordering < f even if (E ∪ ∂E) ⊂ Ai and
(F ∪ ∂F) ⊂ Bi. �

There is an interplay between the topological ordering and pushforward measure in
the two NHCs. Suppose the function g : (X, σsr(X), µX)→ (Y, σsr(Y), µY) is a uniformly
measurable function in two isomorphic topological measure spaces. It is interesting to
note that the topological ordering < f does not preserve the pushforward measure in
NHC under composition with the measurable function g : (X, σsr(X), µX)→ (Y, σsr(Y), µY) .
This property is presented in the following theorem, where f−1 is the inverse of the
corresponding function under the topological ordering relation.
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Theorem 8. If g : (X, σsr(X), µX)→ (Y, σsr(Y), µY) is uniformly measurable in X ∼=isom Y then
( f−1 ◦ g) is not a pushforward measure in SX < f SY.

Proof. Let (X, σsr(X), µX), (Y, σsr(Y), µY) be two measure spaces in respective topologi-
cal spaces, where the SX < f SY condition is maintained between two NHCs. Suppose
g : (X, σsr(X), µX)→ (Y, σsr(Y), µY) is a uniformly measurable function with X ∼=isom Y
such that µX(Ai ∈ σsr(X)) = µX(g−1(Bi ∈ σsr(Y))). However, the topological ordering
SX < f SY induces an inequality in measures under composition ( f−1 ◦ g) which is given
by µY(Bi ∈ σsr(Y)) > µX(( f−1 ◦ g)(Ai ∈ σsr(X))). Hence, the condition of the pushforward
measure is not preserved by ( f−1 ◦ g) under < f between the two NHCs. �

Although the pushforward measure is not preserved by < f topological ordering
between multiple NHCs, the hyperconvex neighborhood system is finitely measurable
in each topological measure space, and the topological ordering induces an order in the
corresponding measures. This observation is illustrated in the following lemma.

Lemma 2. In every first-countable (X, τX) the topological measure space (X, σsr(X), µX) admits
finite measures of hyperconvex neighborhood basis and the topological ordering SX < f SY between
NHCs induces a corresponding order in the neighborhood measures.

Proof. Let (X, τX)be a first-countable topological space, where NBp =
{

Np(k) ⊂ X : k ∈ Λ, HNp(k)
∼= Np(k)

}
is an open hyperconvex neighborhood basis. Clearly, NBp is countable under the bijection

h : Z+ → NBp where NBp =
{

Np(k)

}
. As a result, the measure (µX ◦ h) ∈ (0,+∞) is finite

in the corresponding measure space (X, σsr(X), µX) where 0 < µX(Np(k)) < µX(Np(k)) by
the definition of topological NHC measure. Moreover, if (Y, τY) is another first-countable
topological space with NBq for some yq ∈ Y then (µX ◦ f−1)(Nq(k)) < µY(Nq(k)) under < f
between the topological measure spaces (X, σsr(X), µX), (Y, σsr(Y), µY). �

4.2. Topological Separation of Sigma-Semiring and Measurability

It is noted earlier in this paper that the increasing convex functional ω : X → R ∪ {+∞}
can be formulated in a linear function space X, where ω is convex. However, the measure
of the convex bounded measurable functions in a linear function space is finitely additive
with the assumption that the sequential semicontinuity of Borel measurable functions is
preserved. Note that the convex functional measure can be extended to be infinite. The
relationship between the measures and the hyperconvex topological space presented in
this paper consider finite measures under the topological decomposition and separation of
measure spaces while at least preserving subadditivity. The Hausdorff topological measure
space admitting a NHC is considered to be continuous and simply connected in nature.

Let Ak, Ak−1 ∈ SX be the k − hyperconvex and (k − 1) − hyperconvex subspaces,
respectively, in a NHC in (X, τX). Suppose we consider E((k−1),n) ⊂ X such that
E((k−1),n) = (Ak ∪ Ak−1)\Ak where Ak = Ak−1 and n ∈ Λ. If we take the collection
E((k−1),n) = ∪

i∈[1,n]
D((k−1),i) such that D((k−1),i) = Do

((k−1),i), then a topological separation of

the corresponding σX − semiring is given by the following equation.

m, n, u ∈ Λ, i ≤ u, j ≤ u,
∀E((k−m),u), [i 6= j]⇒ [D((k−m),i) ∩ D((k−m),j) = φ],

Ω(σX) = {Ak} ∪
{

D((k−m),u)

}
,

∪
m,u

E((k−m),u) ⊂ SX .

(3)

This immediately leads to the following lemma.
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Lemma 3. A (k − i) − hyperconvex subspace is locally dense in the respective component in
Ω(σX) if, and only if, i = 0.

The proof of the lemma is directly derivable from the structure of the topologically
separated σX − semiring. However, it further results in the following theorem.

Theorem 9. A topologically separated Ω(σX) is functionally separable by {gv : Ω(σX)→ R, v ∈ Λ}
such that ∩

v
gv = φ and every gv(.) is inner-measurable.

Proof. Let a topologically separated Ω(σX) be in (X, τX) and a set of real-valued functions
be given by {gv : Ω(σX)→ R, v ∈ Λ} such that ∩

v
gv = φ. Suppose that the functions in

the set maintain the property of local continuity in the topological space by open map-
ping as ∀v ∈ Λ, gv(Wv) ⊂ Nv such that Nv = No

v and ∀B ⊂ Nv, g−1
v (B) ⊂ Wv with

B = Bo. As a result, it can be concluded that [v 6= (u ∈ Λ)]⇒ [Nv ∩ (Nu ⊂ R) = φ] . More-
over, as Nv = No

v and Wv = Wo
v , every gv(.) is pushforward inner-measurable due to

(µX ◦ g−1
v )(Nv) < µX(Wv). �

Example 1. Let us consider a topological space in 1D such that Ak = (−a, a), Ak−i = (−(a+ δ(i)), (a+ δ(i)))

where δ(i) > 0, i ∈ Λ. In this case, the topological separation of the σX − semiring is given by

i ∈ Λ, n ∈ Z+ ∪ {0},
Ω(σX) = {(−a, a)}∪
{(−(a + (n + 1).δ(i)),−(a + n.δ(i))), ((a + n.δ(i)), (a + (n + 1).δ(i)))}.

(4)

As a result, the topological separation Ω(σX) is also separated by gv : Ω(σX)→ R if, and only if,
the open neighborhoods under locally continuous mappings are disjoint as [i 6= j]⇒ [(Ni ⊂ R)∩ (Nj ⊂ R) = φ]

where the ∀(B = Bo) ⊂ Ni, g−1
i (B) ⊂ Wi condition is preserved. Moreover, every topological

separation in Ω(σX) is inner-measurable because (µR ◦ gi)(Wi) < µR(Ni) where µR is a finite
positive measure in reals.

5. Conclusions

In a Hausdorff first-countable topological space, the Noetherian hyperconvex class
is a generalization of a neighborhood basis without preserving the open property of
the singleton element under the intersection of corresponding neighborhoods of that
element. The k-finite convex intersection generates a k-hyperconvex topological subspace
admitting a sigma-semiring, which is finitely measurable. The irreflexive, anti-symmetric
and transitive topological ordering between two Noetherian k-hyperconvex classes retains
the homeomorphism of respective topological spaces and induces the ordering in measures
in corresponding sigma-semirings. The measure sequence in a Noetherian k-hyperconvex
class helps in determining compactness of the topological subspace. The measures under
the topological ordering do not always preserve the pushforward property, and the sigma-
semirings are topologically separable by a set of inner-measurable functions. The concepts
presented in this paper may find applications in the topological analysis of dynamics.
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