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Abstract: This study experimentally investigates vibration-based approaches for fault diagnosis
of automotive gearboxes. The primary objective is to identify methods that can detect gear-tooth
cracks, a common fault in gearboxes. Vibrational signals were supervised on a gearbox test rig under
different operating conditions of gears with three symmetrical crack depths (1, 2, and 3 mm). The
severity of the gear-tooth cracks was predicted from the vibrational signal dataset using an artificial
feedforward multilayer neural network with backpropagation (NNBP). The vibration amplitudes
were the greatest when the crack size in the high-speed shaft was 3 mm, and the root mean square of
its vibration speed was below 3.5 mm/s. The vibration amplitudes of the gearbox increased with
increasing depth of the tooth cracks under different operating conditions. The NNBP predicted the
states of gear-tooth cracks with an average recognition rate of 80.41% under different conditions.
In some cases, the fault degree was difficult to estimate via time-domain analysis as the vibration
level increases were small and not easily noticed. Results also showed that when using the same
statistical features, the time-domain analysis can better detect crack degree compared to the neural
network technique.

Keywords: gear-crack detection; vibration-based approaches; artificial neural network; fault recognition

1. Introduction

In advanced machinery, the gearbox transmits the required power or motion to the
device of the application. Any malfunction of the gearbox parts degrades the efficiency
and productivity of the system. Gears are responsible for many common machine break-
downs that lead to improper operating conditions and failure of the entire mechanism [1].
Gearboxes are widely used in automotive, manufacturing, and railway applications. Fault
diagnosis of the gearbox considerably reduces the total cost of maintenance. Various faults
could occur within the gearbox due to inadequate lubrication, excessive applied load,
decoupling, misalignment, poor cooling, improper gear design, and others [2].

The gear system is a vital subsystem of any machinery tool, and gear cracking is the
most important issue of the failure mode. The gearing operation majorly relies on the
durability of the tooth conditions. Link et al. [3] reported that gear failures contribute
to approximately 59% of the failure modes in wind turbines. Astridge [4] reported that
approximately 19.1% of all transmission-system failures are attributable to gear failures.
Yin et al. reported that crack propagation diminishes the lifetime of the machinery [5].
Aslantaş and Taşgetiren [6] simulated the crack propagation path on a gear-tooth surface
and compared their simulated results with those obtained experimentally to detect the
pitting formation life.

Recently, the vibration signals of faulty parts have been used for fault detection [7].
Ma et al. [8] considered the vibration features of a gear pair with spalling faults, which
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are fundamental to fault diagnosis and identification of the spalling mechanism. They
estimated the time-varying mesh stiffness for many crack lengths and crack paths and
detected the vibration signatures of cracked gears using the suggested model. Recently,
Shalaan et al. [9] found that vibration signals are crucial in the evaluation of gearbox defects.
Moreover, the highest peak value in the time domain fluctuates around the x-axis and
increases with gear speed.

During the past three decades, diagnostic techniques for the detection of gearbox
defects have been intensively researched, including those reported by Dalpiaz et al. [10],
Ma et al. [11], Mohammed et al. [12], Saxena et al. [13], Wu et al. [14], and Li [15]. Rezaei
et al. [16] detected multicrack locations and lengths from transmission-error ratios. In
solved examples, they showed that when the cracks are sufficiently far, their effects on the
transmission error are clearly distinguishable, and their lengths can be observed precisely.
Gritli et al. [17] diagnosed the faults resulting from tooth root cracks in a gear pair. Finite
element analysis and dynamic simulations of the gear system performed in MATLAB soft-
ware can obtain the mesh stiffness of a gear pair. The modulation created more sidebands
than that of a normal gear with healthy teeth.

Belsak and Flasker [18] examined gear-tooth cracks in time and frequency domains
under healthy and defect conditions. Combet et al. [19] experimentally monitored the
vibration signals of a cracked gear to validate their simulation results. They observed that
their diagnostic approach depended on the angle within a specific frequency range. They
measured the damage degree of cracked teeth using the root mean square and kurtosis
degree. Furthermore, they analyzed the fault features of a gear system with crack and
tooth fracture faults. The amplitude of the meshing frequency was found to increase with
crack length.

Artificial neural networks (ANNs) are commonly employed in fault diagnosis. Ex-
amples of ANN-based studies are those by Ghazaly et al. [20], who detected misfires in
a spark-ignition engine, and Kumar et al. [21], who monitored the condition of rolling
element bearings. Tosun et al. [22] predicted engine characteristics via linear regression
and ANN modeling. When trained and tested on the data obtained from experimental
studies, ANNs can accurately predict the fault parameters. For instance, Tosun et al. [22]
demonstrated that an ANN efficiently predicts the failure load in single-lap adhesive joints
under tensile loading. Ghazaly et al. [20] found combustion faults in an internal combustion
engine using an ANN and the wavelet packet transform.

Figures 1 and 2 show two examples of the proposed method. A gearbox of lathe
machine and drilling machine. The machines are used in various applications. It is essential
to early detect gears faults and bearings faults inside these rotating machines before they
exaggerate into higher degrees of faults and propagate through interfering systems resulting
in machine failures or even causalities.

Herein, several sets of gears were experimentally tested at different speeds on a
gearbox test rig. The healthy gears were fastened inside the gearbox casing, and their
vibration signals were collected by data acquisition systems for affording healthy baseline
characteristics. The healthy gears were then replaced with cracked gears with symmetrical
crack depths (1, 2, and 3 mm), and the vibration signals in each case were separately
collected under the same conditions. The defect signals in the gears were identified using
different approaches: time domain, frequency domain, crest factor, kurtosis, and root mean
square. The results obtained from the analysis of the faulty gears were compared with
those obtained from gears with healthy teeth. The time-domain analysis used in the feature
extraction was input to the network, and the defect signals of the gears were analyzed
using the crest factor, kurtosis, peak, and root mean square. The recognition rate was then
summarized in each state. This is an important topic when it comes to designing gears for
different applications as vibration detection, fault, and signature are great measures of gears
performance. The work fits the aim of symmetry as it provides readers with information
about the current and latest advancement in this area.
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Figure 1. Examples of method 2: (a) Lathe machine headstock gearbox, (b) drilling machine. 
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2. Experimental Test Rig

The faults in the gearbox were detected and analyzed in an experimental gearbox
setup (see Figure 1). The data were sufficiently accurate and abundant to be evaluated via
complex signal-processing techniques. The primary objective of these experimental studies
was to monitor the conditions of healthy and cracked gearboxes operating under different
applied loads and operating speeds. The experimental facility was developed to obtain
the vibration signatures of gearboxes. The driving unit comprised a 7.5-kW AC motor
with a maximum speed of 1500 rpm and a three-phase frequency inverter that rotated the
driving shaft at different rotational speeds. The disc brake assembly was connected directly
to the electrical motor. The braking unit comprised a hydraulic system that applied the
required load to the brake system. The pressure value was controlled by a hydraulic valve
and displayed on a pressure gauge. The vibration data were provided by a piezoelectric
accelerometer with a sensitivity of 100 mV/g, which was directly waxed and placed on
the casing near the selected gear to ensure the accuracy of the data. The measured signals
were sent to the dual-channel analyzer and saved as vibration signatures. The time-domain
signals were acquired under several operating conditions. The stored data in the vibration
analyzer were retrieved through a cable connected to the computer for further analysis
using PULSE software. A MATLAB code was utilized for training the ANN. More details
are provided in the block diagram of the gearbox test rig (see Figure 2).

Figure 3 shows a block diagram of the gearbox test rig. The electrical motor speed
is controlled by an inverter unit. The output shaft of the motor is coupled with the input
shaft of the gearbox. The braking unit uses a hydraulic system to provide the required load
to the output shaft through the gearbox. The output shaft of the gearbox is controlled by a
hydraulic disc brake unit. The vibration signals are collected using the accelerometer and
stored in a PC using Bruel and Kjaer Data acquisition device (analyzer). Finally, features
are extracted from the raw time-domain signal, stored, and analyzed.
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Table 1 shows data acquisition device specifications and parameters used in the experiments.
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Table 1. Data acquisition device.

3560-B-130 (Bruel and Kjaer)

Channels 5-input channels

Input type Direct/CCLD, 1 Tacho conditioning

Frequency range 0 Hz to 25,600 Hz

Communication to PC LAN interface

Voltage 10–32 V DC

Digital signal size 13 Bits

Sampling Frequency (Hz) 12,500

Number of data points 8192

Sampling period (seconds per
sample) 0.00008

Duration of samples (s) 0.655

Filter
Anti-aliasing filter (analog)

Finite Impulsive Response (FIR)
Band-pass digital filter (10–25 kHz)

3. Time-Domain Analysis and Features Extraction

Faulty conditions were determined based on the signal features extracted using signal-
processing techniques (such as time analysis) and statistical parameters of the signals
(mean, variance, standard deviation, kurtosis, root mean square, crest factor, maximum,
minimum, mode, and median). These features of the statistical parameters can describe the
trend of gearbox faults. The maximum and minimum may not only seem to provide similar
information but are also useful for notifying the range (upper and lower limit values in
the network).

The kurtosis indicates the impulsiveness of the signal. It is expressed as

kutosis =
∑N

I=1
(xi−x)4

N
S4 (1)

The information from the root mean square (RMS) differs from that of the mean; the
mean denotes the center of the dispersed data, whereas the RMS is important when the
values range between positive and negative (such as sinusoids). The RMS is used in the
calculation of the crest factor of a time-domain analysis:

RMS =

√
∑N

i=1(xi)
2

N
(2)

The crest factor is determined as

crest f actor =
xmax

RMS
(3)

where xi is a data point in the sample, N is the sample size, x is the mean, and S is the
standard deviation.

The crest factor is defined as the maximum peak value of the vibration signal x over a
period of measured time divided by the RMS of the vibration signal.

The severity of the defect is calculated to distinguish crack degree. The crack severity
is calculated using Equations (4)–(7):

Sp =
Crack Peak

CrackFree Peak
(4)
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SRMS =
Crack RMS

CrackFree RMS
(5)

SCF =
Crack CF

CrackFree CF
(6)

SKurt =
Crack KURT

CrackFree KURT
(7)

where Sp, SRMS, SCF, and SKurt are crack severity calculated from peak, root mean square,
crest factor, and kurtosis, respectively.

In the time-domain statistical feature analysis, 60 instances were randomly selected
from 75 instances cases. The remaining 15 instances were reserved for validation and
correctness. In all experiments, five operating speeds and five loads were selected.

4. Artificial Neural Network Training

ANNs mimic the neural system in the human brain. A biological neuron takes an
input, performs calculations in its processing unit, and outputs the result. The hidden layer
in the neuron (unlike the input and output layers) does not interact with the environment.
A typical biological neuron is shown in Figure 3. ANN is considered an important tech-
nique in machine learning and artificial intelligence and has considerably improved the
performance of fault detection. The interconnected processing units in an ANN are highly
simplified models of those in real biological neural networks. ANNs can solve complicated
engineering problems without requiring complex rules and mathematical formulations;
instead, they learn the key information patterns within a multi-information domain.

In the present application, the classification task must recognize the patterns of gear-
tooth cracks. The dataset comprised 200 samples divided into four states (50 observations
of each label-targeted state: crack-free, 1-mm, 2-mm, and 3-mm cracks). Seventy percent
(140 of 200 samples) of the data were randomly selected for the training network, 15%
(30 samples) were reserved for validating the network, and the final 15% (30 samples)
were used for testing the network subsequent to training. During validation, the weights
were adjusted until there was no need to update the network connections. The number of
hidden neurons was four. The training function (learning algorithm) used was the simple
gradient descent method, and the error method used for backpropagation was the mean
square error.

5. Experimental Procedure

Prior to conducting the experiment, the gearbox test rig vibrations were measured
and verified to assess their ovality and misalignment. The experimental test was executed
for 15 min to ensure a steady-state system. An accelerometer with a magnetic base was
mounted directly over the bearing support to acquire the vibration signals. The output
signal was collected from the accelerometer and fed into the dual-channel vibration analyzer.
The time-domain information was acquired at different operating speeds under different
applied loads. The stored data were retrieved and passed through a cable to the computer
for analysis using PULSE software. After obtaining the necessary signatures of the system
with the healthy gear, the healthy gear was replaced with a defective gear that had a specific
crack size, and the experimental tests were then repeated under the abovementioned
conditions. Figure 4 is a flowchart of the research methodology used herein, and Figure 5
illustrates a healthy and defective helical gear. The vibration events were recorded at five
speeds (600, 700, 800, 900, and 1000 rpm) and five load capacities (0%, 25%, 50%, 75%,
and 100%).

In real-world applications, accelerometers measure the complex voltage waveforms,
and their time-domain signals provide a detailed understanding of the vibration patterns
and events. In this experiment, the time-domain signals were collected and the statistical
features fed into the ANN were extracted using the traditional time-domain technique. The
vibration signal is recorded using Bruel and Kjaer accelerometer. The network was a simple
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feedforward backpropagation network trained using the gradient descent method, and its
performance measure was the mean square error.
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Figure 5. (A) Healthy helical gear, (B) defective helical gear.

6. Results and Discussions

Cracks in the gear teeth were detected using a vibration-based technique. The results
of three crack sizes (1, 2, and 3 mm) were compared with those of the healthy case at
five shaft-rotation speeds (600, 700, 800, 900, and 1000 rpm) under 0%, 25%, 50%, 75%,
or 100% load. All vibration measurements were obtained under the same operational
conditions, and dry friction was assumed. Figure 6 compares the RMS values of the
systems with different symmetrical crack depths (including the healthy condition with
crack depth = 0 mm). The maximum amplitude of the vibration signature reflected the
intensity of the defect in the system. Specifically, the maximum amplitude of the vibration
increased with the symmetrical crack depth of the teeth.
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As seen from the crest factors in Figure 6, the maximum amplitude of the vibration
signature reflects the intensity of the defect in the system. The maximum amplitude of
vibration was an increasing function of the symmetrical crack depth. Identical results were
obtained from the kurtosis analysis. From the experimental results at a given operating
time, it was observed that the greater the applied running speed, the greater the RMS, and
the greater were the maximum and average values of the signals.

Figure 6 Regular time-domain analysis results at different speeds (left to right blocks:
600, 700, 800, 900, 1000 rpm) under different load capacities (left to right bars in each block:
0%, 25%, 50%, 75%, 100%). From top to bottom are plotted the peak (max), root mean
square (RMS), crest factor = peak/RMS, and kurtosis.

As evidenced in Figure 6, increasing the severity of the fault increased the values of
the statistical features up to load capacities of 50–75%. At higher load capacities, the values
tended to decrease. One can thus conclude that although the threshold for fault detection is
determinable, it cannot be generalized because the behavior differs under different speed
and load-capacity conditions.

Table 2 shows the crack severities boundaries using equation 4 of 60 instances under
different operating conditions. The severity is the ratio between the statistical feature
extracted from the crack signal and the statistical feature extracted from the crack-free
signal. The results indicate that the crack degree boundaries can be determined using the
size of the crack.

Table 3 illustrates the validation of the 15 instances that were not involved in obtaining
the results in Table 1. Passed statistical features are defined as how many features severities
passed the test using the information provided in Table 1. Table 3 shows that at 1 mm crack
size, the first two instances (75%) failed to pass the statistical features, and the other three
instances passed the statistical features. The result also shows that five instances passed the
statistical features of tests conducted on 2 mm and 3 mm crack sizes under shown speed
and load conditions.
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Table 2. Crack Severities boundary.

Degree of Crack Severity More Than Less Than or Equal

1 mm

Peak Severity 1 1.27

Root mean square Severity 1.013 1.10

Crest Factor Severity 0.90 1.23

Kurtosis Severity 0.52 3.04

2 mm

Peak Severity 1.38 2.00

Root mean square Severity 1.48 1.55

Crest Factor Severity 0.92 1.29

Kurtosis Severity 0.83 3.23

3 mm

Peak Severity 1.64 2.24

Root mean square Severity 1.79 1.87

Crest Factor Severity 0.90 1.20

Kurtosis Severity 0.76 3.15

Table 3. Crack severities validation.

Degree of Crack Instance Passed Statistical Features (%)

1 mm

600 RPM at 0% load 75

700 RPM at 25% load 75

800 RPM at 50% load 100

900 RPM at 75% load 100

1000 RPM at 100% load 100

2 mm

600 RPM at 0% load 100

700 RPM at 25% load 100

800 RPM at 50% load 100

900 RPM at 75% load 100

1000 RPM at 100% load 100

3 mm

600 RPM at 0% load 100

700 RPM at 25% load 100

800 RPM at 50% load 100

900 RPM at 75% load 100

1000 RPM at 100% load 100

Table 4 shows a mix-up evaluation of crack severities of five instances used to validate
each of the three degrees of crack. The results show that all real cracks were predicted as
expected, which means that there is no misclassification.

Table 4. Crack severities confusion matrix.

Predicted Crack
1 mm

Predicted Crack
2 mm

Predicted Crack
3 mm

Real Crack 1 mm 5 (33.33%) 0 0

Real Crack 2 mm 0 5 (33.33%) 0

Real Crack 3 mm 0 0 5 (33.33%)
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Table 5 lists the recognition rates (percentages) of the different classes in the ANN. By
discerning the fault degree, the ANN can isolate different crack depths under different load
and speed conditions. When the recognition rate was 100%, the ANN correctly classified
the fault in all instances. Thus, the pattern recognition performance of the network is
optimal at higher speeds and under half-load capacities.

Table 5. ANN recognition rates.

600 RPM

Load 0% 25% 50% 75% 100%

Crack free 38 66 6 44 50

Crack 1 mm 78 42 100 40 100

Crack 2 mm 15 66 100 100 2

Crack 3 mm 100 100 100 100 100

700 RPM

Load 0% 25% 50% 75% 100%

Crack free 74 98 100 66 76

Crack 1 mm 68 86 46 46 78

Crack 2 mm 100 46 48 80 80

Crack 3 mm 20 96 80 100 100

800 RPM

Load 0% 25% 50% 75% 100%

Crack free 100 100 92 6 18

Crack 1 mm 100 14 96 98 90

Crack 2 mm 8 96 100 100 98

Crack 3 mm 100 100 82 84 100

900 RPM

Load 0% 25% 50% 75% 100%

Crack free 86 84 100 82 96

Crack 1 mm 90 100 100 100 68

Crack 2 mm 84 64 100 100 92

Crack 3 mm 100 98 96 100 100

1000 RPM

Load 0% 25% 50% 75% 100%

Crack free 100 100 100 100 76

Crack 1 mm 16 100 100 100 100

Crack 2 mm 100 100 100 100 100

Crack 3 mm 96 86 100 10 100

Table 6 shows the average recognition rates of four cases: crack-free and cracks with 1,
2, and 3 mm depth. The average recognition rate is defined as the average of recognition
rates for all different cases at five speeds and five loads, as illustrated in Table 5. Damages
are detected irrespective of the transmitted power and rotational speed. The results indicate
that the ANN with fed features could discern healthy condition (crack free) by 78.8%, 78.24%
with 1 mm crack depth, 75.8% with crack 2 mm crack depth, and 89.76% with 3 mm crack
depth 3 mm on average when compared to the networks shown in Table 5.
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Table 6. Average recognition rate of the networks.

Condition Average Recognition Rate

Crack free 78.8%

Crack 1 mm 78.24%

Crack 2 mm 75.8%

Crack 3 mm 89.76%

Table 7 provides a comparison between the proposed method and the other two
methods: Novel convolution neural network (NCNN) [21] and Convolution neural network
(CNN) [22]. The proposed method provides a much simpler technique while it has an
accuracy of 80.65%. Table 7 also provides a summary of features, operating conditions, and
application of the three methods.

Table 7. Comparisons of different methods.

Method Signal Element
Optimizer or

Learning
Strategy

Test
Instances,

Sample Rate

Defect
Conditions

Operation
Conditions Accuracy

Back
propagation
feed forward

neural
network for
gear fault
detection

(proposed)

Vibration Gears Gradient
decent

200 (50 × 4),
12,500

sample/s.

-Crack defect 1
mm, 2 mm, and 3

mm.

600, 700, 800,
900, 1000
rpm/0%,
25%, 50%,
75%, 100%

loads.

80.65%

Novel
convolution

neural
network

(NCNN) [21]

Vibration Bearings

Transfer
learning.

Sigmoid +
Existing Cost

function.

240 (20 × 12),
70,000

sample/s.

- Outer race
defect: 22.4, 46.4,
67.7 Mils.
- Inner race
defect: 18.5, 40.5,
58.6, 71.2 Mils.
- Ball defect of
18.1, 44.0, 56.6,
79.1 Mils.

2050
rpm/0.16 HP

load.
91%

Convolution
neural

network
(CNN) [22]

Acoustic
Emission Bearings Stochastic

line-search

1200 (30 ×
40), 10 M
sample/s.

Cracks 3, 6, 12
mm at locations:
Outer raceway,
inner raceway,
roller, inner +

outer raceways,
outer raceway

and roller, inner
raceway and
roller, inner

raceway + outer
raceway + roller.

250, 350, 450
rpm 98.21%

7. Conclusions

This study performed a crack-fault diagnosis of helical gears and analyzed them based
on their vibrational amplitudes under different operating-speed conditions. The vibration
signatures of healthy and cracked gears were obtained in an experimental facility under
different operating conditions. The experimental results confirmed that vibration signal
analysis is crucial in the evaluation of gearbox crack defects. The statistical parameters
(RMS, crest factor, and kurtosis) of the systems with healthy and defective gears signifi-
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cantly depended on their operating speeds. Moreover, increasing the depth of the defect
increased the vibration generation of the gearbox. The vibration amplitudes increased with
symmetrical crack depth in gears running at different speeds.

Moreover, the results showed that the time-domain analysis is a better ANN method
in detecting the sizes of the cracks. This is due to adopting simpler and fewer requirements
than ANN. The ANN requires large datasets to raise the model accuracy. The average recog-
nition rate for detection of 1 mm crack using the ANN method was 78.8% and 90% using
the time-domain analysis. These results indicate that the time-domain analysis improved
the results by 11.2% compared to using the ANN method. The severity calculation with the
help of time-domain signature could be an indication of detecting gear crack degree using
vibration measurement. It is recommended to compare these methods using different faults
with larger data samples and other statistical features. Finally, it is recommended to train
the ANN using the data collected at higher speeds and half-load capacities to maximize
the recognition performance of gear-crack detection.

Author Contributions: Conceptualization, S.A.M. and N.M.G.; methodology, S.A.M.; software,
N.M.G.; validation, S.A.M., N.M.G. and J.A.; formal analysis, J.A.; investigation, S.A.M.; resources,
N.M.G.; data curation, N.M.G.; writing—original draft preparation, S.A.M.; writing—review and edit-
ing, J.A.; visualization, N.M.G.; supervision, J.A.; project administration, N.M.G.; funding acquisition,
S.A.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The study didn’t report any data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, P.; Zhao, X.; Jiang, H. A New Method of Fault Feature Extraction Based on Hierarchical Dispersion Entropy. Shock Vib.

2021, 2021, 8824901. [CrossRef]
2. Xu, J.; Xu, P.; Wei, Z.; Ding, X.; Shi, L. DC-NNMN: Across Components Fault Diagnosis Based on Deep Few-Shot Learning. Shock

Vib. 2020, 2020, 3152174. [CrossRef]
3. Yuan, Z.; Zhou, T.; Liu, J.; Zhang, C.; Liu, Y. Fault Diagnosis Approach for Rotating Machinery Based on Feature Importance

Ranking and Selection. Shock Vib. 2021, 2021, 8899188. [CrossRef]
4. Zhang, D.; Ren, X.; Zuo, H. Compound Fault Diagnosis for Gearbox Based Using of Euclidean Matrix Sample Entropy and

One-Dimensional Convolutional Neural Network. Shock Vib. 2021, 2021, 6669006. [CrossRef]
5. Long, Y.; Shi, X.; Chen, Q.; Xiao, Z.; Qin, Y.; Lv, J. Early Fault Diagnosis Technology for Bearings Based on Quantile Multiscale

Permutation Entropy. Math. Probl. Eng. 2021, 2021, 7718074. [CrossRef]
6. You, D.; Chen, L.; Liu, F.; Zhang, Y.; Shang, W.; Hu, Y.; Liu, W. Intelligent Fault Diagnosis of Bearing Based on Convolutional

Neural Network and Bidirectional Long Short-Term Memory. Shock Vib. 2021, 2021, 7346352. [CrossRef]
7. Xu, Z.; Li, X.; Wang, J.; Wang, Z. Reliable Fault Diagnosis of Rolling Bearing Based on Ensemble Modified Deep Metric Learning.

Shock Vib. 2021, 2021, 5153751. [CrossRef]
8. Mohamad, S.A.; Makrahy, M.M.; Ghazaly, N.M. Fault Diagnosis of Helical Gear through Various Vibration Techniques in

Automotive Gearbox. J. Mech. Des. Vib. 2019, 7, 21–26.
9. Ghazali, M.H.M.; Rahiman, W. Vibration Analysis for Machine Monitoring and Diagnosis: A Systematic Review. Shock Vib. 2021,

2021, 9469318. [CrossRef]
10. Zhang, X.; Cong, Y.; Yuan, Z.; Zhang, T.; Bai, X. Early Fault Detection Method of Rolling Bearing Based on MCNN and GRU

Network with an Attention Mechanism. Shock Vib. 2021, 2021, 6660243. [CrossRef]
11. He, J.; Li, X.; Chen, Y.; Chen, D.; Guo, J.; Zhou, Y. Deep Transfer Learning Method Based on 1D-CNN for Bearing Fault Diagnosis.

Shock Vib. 2021, 2021, 6687331. [CrossRef]
12. Chen, Y.; Yuan, J.; Luo, Y.; Zhang, W. Fault Prediction of Centrifugal Pump Based on Improved KNN. Shock Vib. 2021, 2021,

7306131. [CrossRef]
13. Shu, L.; Shen, J.; Liu, X. Fault Diagnosis Method for Rotating Machinery Based on Hierarchical Amplitude-Aware Permutation

Entropy and Pairwise Feature Proximity. Shock Vib. 2021, 2021, 4395500. [CrossRef]
14. Ghazaly, N.M.; Abdel-Fattah, M.; Makrahy, M.M. Determination of Engine Misfire Location using Artificial Neural Networks. Int.

J. Veh. Struct. Syst. 2019, 11, 407–412. [CrossRef]

http://doi.org/10.1155/2021/8824901
http://doi.org/10.1155/2020/3152174
http://doi.org/10.1155/2021/8899188
http://doi.org/10.1155/2021/6669006
http://doi.org/10.1155/2021/7718074
http://doi.org/10.1155/2021/7346352
http://doi.org/10.1155/2021/5153751
http://doi.org/10.1155/2021/9469318
http://doi.org/10.1155/2021/6660243
http://doi.org/10.1155/2021/6687331
http://doi.org/10.1155/2021/7306131
http://doi.org/10.1155/2021/4395500
http://doi.org/10.4273/ijvss.11.4.13


Symmetry 2022, 14, 417 14 of 14

15. Zhang, Y.; He, L.; Cheng, G. A Vibrational Signal Fault Diagnosis Rule Extraction Method Based on DST-ACI Discriminant
Criterion. Shock Vib. 2021, 2021, 8085421. [CrossRef]

16. Chen, J.; Xu, B.; Zhang, X. A Vibration Feature Extraction Method Based on Time-Domain Dimensional Parameters and
Mahalanobis Distance. Math. Probl. Eng. 2021, 2021, 2498178. [CrossRef]

17. Ren, Q.; Kou, Z.; Wu, J.; Li, T.; Yahya, W. Development and Parametric Analysis of Vibration System Controlled by Hydraulic
Shock Rotary Vibrator. Shock Vib. 2021, 2021, 1082963. [CrossRef]

18. Miao, F.; Zhao, R.; Jia, L.; Wang, X. Multisource Fault Signal Separation of Rotating Machinery Based on Wavelet Packet and Fast
Independent Component Analysis. Int. J. Rotating Mach. 2021, 2021, 9914724. [CrossRef]

19. Kou, F.; Wu, J.; Gao, J.; Wu, D.; Chen, R. Active Fault-Tolerant Control Based on the Fault of Electromagnetic Hybrid Active
Suspension. Shock Vib. 2021, 2021, 4273698. [CrossRef]

20. Yang, Z.; Ying, S.; Wang, B.; Li, Y.; Dong, B.; Geng, J.; Zhang, T. A System Fault Diagnosis Method with a Reclustering Algorithm.
Sci. Program. 2021, 2021, 6617882. [CrossRef]

21. Kumar, A.; Vashishtha, G.; Gandhi, C.P.; Zhou, Y.; Glowacz, A.; Xiang, J. Novel Convolutional Neural Network (NCNN) for the
Diagnosis of Bearing Defects in Rotary Machinery. IEEE Trans. Instrum. Meas. 2021, 70, 1–10. [CrossRef]

22. Pham, M.T.; Kim, J.-M.; Kim, C.H. Intelligent Fault Diagnosis Method Using Acoustic Emission Signals for Bearings under
Complex Working Conditions. Appl. Sci. 2020, 10, 7068. [CrossRef]

http://doi.org/10.1155/2021/8085421
http://doi.org/10.1155/2021/2498178
http://doi.org/10.1155/2021/1082963
http://doi.org/10.1155/2021/9914724
http://doi.org/10.1155/2021/4273698
http://doi.org/10.1155/2021/6617882
http://doi.org/10.1109/TIM.2021.3055802
http://doi.org/10.3390/app10207068

	Introduction 
	Experimental Test Rig 
	Time-Domain Analysis and Features Extraction 
	Artificial Neural Network Training 
	Experimental Procedure 
	Results and Discussions 
	Conclusions 
	References

