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Abstract: A systematic study of wave theory in thermoviscoelastic soil is essential for engineering
applications such as geophysical exploration. In the present work, the influences of flow-independent
viscosity of the soil skeleton and the thermal effect on elastic waves are considered, and the prop-
agation behaviors of body waves in thermoviscoelastic saturated soil are investigated. Firstly, the
thermoviscoelastic dynamic coupling model of saturated soil were established by employing the
Biot model, the generalized thermoelastic theory, and the Kelvin–Voigt linear viscoelastic model.
Secondly, the dispersion equations of body waves in thermoviscoelastic saturated soil were theo-
retically derived with structural symmetry considered. Finally, the variations of wave velocity and
the attenuation coefficient of the body waves with the thermophysical parameters are discussed.
The results revealed that the enhancement of the relaxation time of soil caused an increase of wave
velocity and the attenuation coefficient of P1, P2, and S waves, and a decrease of the wave velocity
and attenuation coefficient of the thermal wave. Different ranges of the permeability coefficient and
frequency have different effects on the P1, P2, and S waves. The variation of thermal conductivity
and the phase-lags of heat flux and temperature gradient only affect the thermal wave.

Keywords: thermoviscoelasticity; saturated soil; body wave; wave velocity; attenuation coefficient

1. Introduction

The nondestructive detection of industrial materials, such as mutiphase soil, oil re-
serves, pile testing, concrete testing, etc., are implemented on the basis of wave response,
such as phase velocity, attenuation, and travel time. The propagation behaviors of the elastic
wave in materials are not only dependent on the materials’ elastic characteristics, but also
the thermal and viscous characteristics. Therefore, it is of great engineering and theoretical
significance to investigate the relationship of materials’ thermoviscoelastic parameters and
the propagation behaviors of the elastic wave.

Under an isothermal condition, there are generally two types of elastic waves present in
the single-phase medium, namely, body waves and surface waves. Body waves, including
compression and shear waves, propagate in unbounded domains. Surface waves, mainly
for Rayleigh and Love waves, are identified as the superposition of body waves and
propagate along the medium boundary. Therefore, the research of body waves propagation
is a crucial basis for studying the other types of waves. When considering the influences of
temperature change, there is a type of thermal wave in the single-phase medium besides
compression, shear, and surface waves. Because the form of natural soil is generally biphase
or even complex multiphase, researchers have carried out many related works on elastic
wave propagation in multiphase media. Biot [1,2] first developed the dynamic equation
of saturated poroelastic media filled with single-phase fluid, and successfully predicted
that there are two compression waves, i.e., P1 and P2 waves, and one shear wave, i.e., S
wave, in fluid-saturated poroelastic media, which has been validated by Plona [3] and
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Berryman [4] through laboratory experiments. Therefore, the model developed by Biot
laid the foundation for the dynamic analysis in biphase or even multiphase porous media.
Since then, based on the Biot model, many researchers [5–24] carried out various related
works on the propagation of elastic waves in saturated porous media.

In the process of interdisciplinary research, such as the petrochemical process and
nuclear waste management, the thermal effect, such as temperature change, also has serious
influence on the propagation of elastic waves, which is keenly noticed by researchers.
Biot [25] first developed the thermoelastic coupling model of single-phase solid medium
and predicted a kind of thermal wave propagating at infinite speed, which is contrary to
the fact that the wave propagates at finite speed. Then, Lord and Shulman [26] modified
the early thermoelastic coupling model of single-phase solid medium and predicted the
finite wave velocity propagation of thermal wave. In subsequent studies, considering the
polyphasy of natural soil, researchers macroscopically regard it as a kind of porous elastic
medium with pores filled with fluids such as water, oil, or gas to construct the thermoelastic
wave model in saturated soil. Youssef [27] considered a homogeneous, isotropic elastic
body with a boundary filled by compressible ideal liquid and established a generalized
thermoelastic theory. Following, Singh [22] developed a more complex thermoelastic
coupling model of porous media; however, the meaning of some of the physical parameters
were not sufficiently clear due to the complexity of the model. For the propagation of
thermoelastic body waves in saturated soil, Liu et al. [28] developed a thermoelastic
dynamic model for studying the spherical cavity’s thermoelastic dynamic response in
saturated porous medium under nontorsional loads. Recently, Zhou et al. [29] established
a thermal-fluid-solid coupling elastic wave model for saturated porous media with clear
physical parameters, and studied the evolution of Rayleigh wave velocity, whereas the
non-Fourier heat conduction with single-phase lag model was adopted so that only the
phase-lag of the temperature gradient influenced the wave characteristics.

Although many works have been carried out on the propagation characteristics of
elastic/thermoelastic waves in saturated soils, most of which only consider the viscosity
associated with the pore-fluid flow, i.e., the coupling effect between pore fluid and the
solid skeleton. However, it is well known that the deformation of nature soils under
the action of external force is apparently time dependent. That is, the viscoelasticity of
the solid skeleton is associated with the flow-independent viscosity, which is likely to
affect the propagation characteristics of elastic waves, but is mostly ignored in existing
related literatures. Fortunately, the dependence of soil and structure responses on the
viscoelasticity of the soil skeleton was established many years ago [30–32]. Naturally, it
is necessary to establish a closer relationship between the propagation behavior of elastic
waves and the flow-independent viscosity of the soil skeleton. The elastic constants of soil
(i.e., the bulk modulus, the Lame constant, and shear modulus) should be related to the
flow-independent viscosity by the relaxation time.

The present work simplifies the natural soil to a fluid-saturated porous medium,
which consists of a soil particle composing the solid skeleton and liquid filling the pores
between the skeleton. Considering the influences of the thermal effect and the flow-
independent viscosity of natural soil, a thermoviscoelastic dynamic coupling model of fluid-
saturated soil were established by employing the Biot model, the generalized thermoelastic
theory, and the Kelvin–Voigt linear viscoelastic model, and the dispersion equations of
the body waves were theoretically derived by employing the Helmholtz resolution. Then,
the variations of the wave velocity and the attenuation coefficient of the body waves
with the thermophysical parameters, such as the relaxation time (characterizing the flow-
independent viscosity), thermal expansion coefficient of the soil particle and pore fluid, and
the permeability coefficient (characterizing the flow-dependent viscosity) are discussed
with some numerical examples.
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2. Thermoviscoelastic Dynamic Model

In general, the volume change of viscoelastic materials is closely related to its elasticity
and viscosity, that is, loading and time. For natural soil, its deformation under the action of
external force is apparently time dependent, which exhibits obvious viscoelastic properties.
In order to express the viscoelastic properties of natural soil, the present work introduced
a linear viscoelastic model that is commonly employed to characterize materials’ creep
behavior, i.e., generalized Kelvin–Voigt model [33,34], which is composed of a spring in
parallel with a dashpot, as illustrated in Figure 1.
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The spring displayed in Figure 1 represents the material’s linear-elastic response to
the acting force, and the dashpot displayed in Figure 1 represents the material’s damping
behavior, and is employed to prevent the spring from reaching immediately to the applied
force. The elastic constants of the material (denoted by λe and µe) are related to the viscosity
constants (denoted by λv and µv) by the relaxation time (denoted by ts) [35], which is
written as:

λv = tsλe, µv = tsµe (1)

where the relaxation time ts characterizes the viscosity normalized with respect to the Lame
elastic moduli and is assumed to be constant without loss of generality [31,32]. In the
present work, the relaxation time ts is utilized to determine the flow-independent viscosity
from the solid skeleton.

It is assumed that the saturated soil is a kind of homogeneous and isotropic thermo-
viscoelastic porous medium composed of the soil skeleton and pore fluid, and that the
viscoelastic property of the soil skeleton may be simulated by the generalized Kelvin–Voigt
model. According to the Biot theory, the motion equation for a unit total volume of biphase
mixture in the absence of body force and dissipation can be expressed as [1,2]:

σij,j = ρ
..
ui + ρw ..

wi (2)

in which σij denotes the total stress, and ui and wi represent the displacement of solid particles
and the relative displacement of fluid in the direction i, respectively. ρ = (1 − n s)ρs+nsρw

is the density of media, where ns denotes the porosity, ρs represents the density of solid
particle, and ρw designates the density of pore fluid.

Following the single stress state variable proposed by Bishop and Blight [2], the
effective stress tensor σ′ij can be described as:

σ′ ij = σij + pwδij (3)

where δij designates the Kronecker delta, and pw designates the pore-fluid pressure.
According to the generalized thermoelastic theory, the compression of the solid skele-

ton is pore-fluid pressure and temperature variation dependent. Thus, the stress-strain
relationship of the solid skeleton can be expressed as [36,37]:

σ′ ij = cs
ij

(
εij − ε

p
ij − εT

ij

)
(4)
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where cs
ij designates the isotropic viscoelastic coefficient matrix of the solid skeleton. εij

denotes the strain tensor of the solid skeleton, ε
p
ij represents the strain tensor of the solid

skeleton under the spherical tensor of the pore pressure, and εT
ij signifies the strain tensor

of the solid skeleton under temperature variation.
The strain tensor of the solid skeleton can be expressed as:

εij =
1
2
(
ui,j + uj,i

)
(5)

The strain tensor of the solid skeleton under the spherical tensor of liquid pressure, ε
p
ii,

can be expressed as:

ε
p
11 = ε

p
22 = ε

p
33 = − 1

3Ks
pw (6)

where Ks denotes the compressibility moduli of the solid particles.
The strain tensor of the solid skeleton under the temperature variation, εT

ij , is written as:

εT
ij = acθδij (7)

where ac denotes the linear thermal expansion coefficient of the solid skeleton. θ = T − T0
designates the temperature variation from the reference temperature T0 to the medium
temperature T with the formula |θ/T0| � 1.

Substituting Equations (5)–(7) into Equation (4) and making algebraic operations yield:

σ′ ij =

(
λe + λv

∂

∂t

)
εvδij + 2

(
µe + µv

∂

∂t

)
εij +

Ks
b

3Ks
pwδij − Ks

bacθδij (8)

in which
Ks

b = 3λe + 2µe + (3λv + 2µv)
∂

∂t
(9)

where εv= ui,i designates the volumetric strain of the solid skeleton. λe and µe are the
Lame elastic moduli of the solid skeleton. λv and µv are the shear and dilatant constants
describing the flow-independent viscosity from the solid skeleton. It is worth noting herein
that Equation (9) is the bulk modulus after considering the flow-independent viscosity
associated with the solid skeleton, which is different from the convention in that the third
term on the right of the formula is added to characterize the flow-independent viscosity.

For facilitating the writing of the symbols, let

λs = λe + λv
∂

∂t
(10)

µs = µe + µv
∂

∂t
(11)

Substitution of Equation (8) in Equation (3) gives the total stress tensor of fluid-
saturated soil as:

σij = λsεvδij + 2µsεij − αs pwδij − Ks
bacθδij (12)

where αs= 1 − Ks
b/3Ks.

Considering the compressibility of liquid in pores and solid grains, the constitutive
model of the pore fluid under the effect of temperature variation for the thermoviscoelastic
fluid-saturated media can be written as [28]:

pw = M(ξ − αsεv + auθ) (13)

where au = nsaw+(1 − n s)as − (1 − α s)ac is the thermal expansion coefficient of the
thermoviscoelastic fluid-saturated media, in which as and aw represent the linear thermal
expansion coefficient of the solid particle and pore fluid, respectively. M is the Biot
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modulus, 1/M = ns/Kw+(1 − n s)/Ks, in which Kw denotes the volume modulus of pore
fluid. ξ = −wi,i designates the relative strain of the pore fluid.

The flow equation of the liquid phase under a nonisothermal condition can be ex-
pressed as [28]:

− pw ,i = ρw ..
ui + (ρw/ns)

..
wi + b

.
wi + bDTθ,i (14)

where b = ρwg/kw, in which kw denotes the permeability coefficient and g represents the
gravitational acceleration. DT designates a phenomenological coefficient associated with
the influence of the thermal gradient on the water flux.

The generalized non-Fourier heat conduction law proposed by Tzou [38,39] can be
described by: (

1 + τq
∂

∂t

)
qi = −KT

(
1 + τθ

∂

∂t

)
∇θ (15)

in which qi is the heat flux. KT is the thermal conductivity. τq and τθ denote the phase-lag
of the heat flux and the temperature gradient, respectively.

Employing Equation (15), the heat conduction equation for fluid-saturated porous
media can be written as:

KT

(
θ,ii + τθ

.
θ,ii

)
= cm

( .
θ + τq

..
θ
)
+ Ks

bacT0
( .
εv + τq

..
εv
)
− auT0

( .
pw + τq

..
pw
)

(16)

where cm= (1 − n s) ρscs+ns ρwcw is the weight specific heat for fluid-saturated porous
media, in which cs and cw denote the specific heat capacity of the solid grains and pore
fluid, respectively. Equation (16) is the non-Fourier heat conduction equation that is derived
from the double-phase lag model, which considers the influence of the phase-lag of the heat
flux and temperature gradient that is employed, which can be coupled with the motion in
Equations (12)–(14).

After incorporating Equations (2), (12)–(14), and (16), the wave equations in terms of
displacement for thermoviscoelastic fluid-saturated medium can be yielded as:

µeui,jj + a1uj.ji + µv
.
ui,jj + a2

.
uj.ji + a3

..
uj,ji + a4wj,ji + a5

.
wj,ji + a6θ,i + a7

.
θ,i + a8

..
θ,i = ρ

..
ui + ρw ..

wi (17)

a4uj,ji + a5
.
uj,ji + Mwj,ji + a9θ,i + a10

.
θ,i = ρw ..

ui + (ρw/ns)
..
wi + b

.
wi (18)

a6T0
( .
ui + τq

..
ui
)

,i + a7T0
( ..
ui + τq

...
u i
)

,i + a8T0
(...

u i + τq
....
u i
)

,i + Mυ1T0
( .
wi + τq

..
wi
)

,i+

a10T0
( ..
wi + τq

...
wi
)

,i + a11

( .
θ + τq

..
θ
)
+ a12

( ..
θ + τq

...
θ
)
+ a13

(...
θ + τq

....
θ
)
= −KT

(
θ + τθ

.
θ
)

,ii

(19)

with
a1 = λe + µe + α2

e M

a2 = λv + µv − 2αeαv M

a3 = α2
v M

a4 = αe M

a5 = −αv M

a6 = αeυ1M− (3λe + 2µe)ac

a7 = αvυ2M− (3λv + 2µv)ac

a8 = −α2
v Mac

a9 = Mυ1 − bDT

a10 = αv Mac

a11 = υ2
1 MT0 − cm

a12 = 2α10υ1T0



Symmetry 2022, 14, 408 6 of 17

a13 = α2
va2

c MT0

υ1 = (1− αe)ac − nsaw − (1− ns)as

υ2 = (2αe − 1)ac + nsaw + (1− ns)as

αe = 1− (3λe + 2µe)/3Ks

αv = (3λv + 2µv)/3Ks

3. Wave Field Solution of Body Waves

In thermoviscoelastic saturated soil, body waves include compression, thermal, and
shear waves, and propagate inside an unbounded domain. The diagram of wave field
motion of body waves in soil half-space is displayed in Figure 2. As illustrated in Figure 2,
the compression and thermal waves, a kind of propulsive wave, propagate along the particle
vibration direction. The shear wave, caused by rotating external force and generated under
shear deformation, propagates along the route perpendicular to the vibration direction of
the particle.
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According to Helmholtz vector decomposition principle, the vector field can be re-
placed as the sum of the gradient of the scalar field (ϕs and ϕw) and the curl of the vector
field (ψs and ψw):

u = ∇ϕs +∇×ψs (20)

w = ∇ϕw +∇×ψw (21)

where the two sets symbols, ϕs, ϕw and ψs, ψw, denote the scalar potential and vector
potential of the solid skeleton and pore fluid, respectively.

Substituting Equations (20) and (21) into Equations (17)–(19) and making divergence
and curl operations yield

(a1 + µe)∇2 ϕs + (a2 + µv)∇2 .
ϕs + a3∇2 ..

ϕs + a4∇2 ϕw + a5∇2 .
ϕw + a6θ + a7

.
θ + a8

..
θ = ρ

..
ϕs + ρw ..

ϕw (22)

a4∇2 ϕs + a5∇2 .
ϕs + M∇2 ϕw + a9θ + a10

.
θ = ρw ..

ϕs + (ρw/ns)
..
ϕw + b

.
ϕw (23)

a6T0∇2( .
ϕs + τq

..
ϕs
)
+ a7T0∇2( ..

ϕs + τq
...
ϕs
)
+ a8T0∇2(...ϕs + τq

....
ϕ si
)
+ Mυ1T0∇2( .

ϕw + τq
..
ϕw
)
+

a10T0∇2( ..
ϕw + τq

...
ϕw
)
+ a11

( .
θ + τq

..
θ
)
+ a12

( ..
θ + τq

...
θ
)
+ a13

(...
θ + τq

....
θ
)
= −KT∇2

(
θ + τθ

.
θ
) (24)

ρ
..
ψs + ρw ..

ψw = µe∇2ψs + µv∇2 .
ψs (25)

ρw ..
ψs + (ρw/ns)

..
ψw + b

.
ψw = 0 (26)
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The potentials of solid phase, liquid phase, and temperature variation when the body
waves propagate in the fluid-saturated soil can be expressed as:

ϕs = Asei(ωt−kpr), ϕw = Awei(ωt−kpr), θ = ATei(ωt−kpr) (27)

ψs = Bsei(ωt−ksr), ψw = Bwei(ωt−ksr) (28)

where As, Aw, AT , Bs, and Bw stand for the amplitudes of corresponding potential; i =
√
−1

denotes the imaginary unit; ω = 2π f designates the angular frequency in which f repre-
sents the frequency; kp and ks signify the complex wavenumber of the compressional wave
including thermal wave and shear wave, respectively; r is the position vector.

The following formulas can be yielded by substituting Equations (27) and (28) into
Equations (22)–(26) and making some algebraic operations as: p11 p12 p13

p21 p22 p23
p31 p32 p33

 As
Aw
AT

 =

 0
0
0

 (29)

(
s11 s12
s21 s22

)(
Bs
Bw

)
=

(
0
0

)
(30)

with
p11 = ρω2 +

[
a3ω2 − (a2 + µv)iω− (a1 + µe)

]
k2

p

p12 = ρwω2 − (a4 + a5iω)k2
p

p13 = a6 + a7iω− a8ω2

p21 = ρwω2 − (a4 + a5iω)k2
p

p22 = ρwω2/ns − biω−Mk2
p

p23 = a9 + a10iω

p31 = ωT0k2
p

[
a7ω

(
1 + τqiω

)
+
(

a8ω2 − a6

)(
i− τqω

)]
p32 = ωT0k2

p
[
a10ω

(
1 + τqiω

)
−Mυ1

(
i− τqω

)]
p33 = ω

(
a11 − a13ω2

)(
i− τqω

)
− a12ω2(1 + τqiω

)
− KTk2

p(1 + τθiω)

s11 = ρω2 − (µe + µviω)k2
s

s12 = ρwω2

s21 = ρwω2

s22 = (ρw/ns)ω2 − biω

At last, the characteristic equation for body waves in thermoviscoelastic fluid-saturated
medium is obtained ∣∣∣∣∣∣

p11 p12 p13
p21 p22 p23
p31 p32 p33

∣∣∣∣∣∣ = 0 (31)

∣∣∣∣ s11 s12
s21 s22

∣∣∣∣ = 0 (32)

where Equation (31) is the dispersion equation for compression and thermal waves, and
Equation (32) is the dispersion equation of shear wave.



Symmetry 2022, 14, 408 8 of 17

The following two formulas can be derived from formulas (31) and (32), respectively,
by implementing the determinant operation as:

e1k6
p + e2k5

p + e3k4
p + e4k3

p + e5k2
p + e6kp + e7 = 0 (33)

e8k2
s + e9 = 0 (34)

where the coefficients e1–e7 and e8–e9 can be expressed as the combination of the elements
p11–p33 in Equation (31) and the elements s11–s22 in Equation (32) respectively, in which
the specific forms of these coefficients are not given herein. Considering the attenuation
of the amplitudes for the body waves along its propagation direction, Equation (33) has
only three meaningful complex roots, i.e., kp= Re(k p) + iIm(k p), two of which stand for
the complex wavenumbers of the compression waves (typically signed as P1 and P2 waves
in descending order of phase velocity), whereas the third of which stands for the complex
wavenumber of the thermal wave (typically signed as T wave). Likewise, Equation (34)
has only one meaningful complex root, i.e., ks= Re(k s) + iIm(k s), which is the complex
wavenumber of the shear wave (typically signed as S wave).

In general, the wave velocity and attenuation coefficient of P1, P2, T, and S waves can
be defined as:

vp1 =
ω

Re
(
kp1
) , vp2 =

ω

Re
(
kp2
) , vT =

ω

Re
(
kp3
) , vs =

ω

Re(ks)
(35)

δp1 = Im
(
kp1
)
, δp2 = Im

(
kp2
)
, δT = Im

(
kp3
)
, δs = Im(ks) (36)

where the two sets of symbols, vp1, vp2, vT , vs and δp1, δp2, δT , δs represent the wave velocity
and attenuation coefficient of P1, P2, T, and S waves, respectively.

4. Calculation Examples and Parametric Analysis

In order to study the propagation behavior of body waves in the thermoviscoelastic
fluid-saturated ground, this section utilizes calculation examples to discuss the effect of
various thermophysical parameters of the thermoviscoelastic fluid-saturated medium on
wave velocity and the attenuation coefficient of each body wave. In the present work, the
values of thermophysical parameters refer to the values selected in Table 1 [28] unless oth-
erwise specified. Figure 3 highlights the thermophysical parameters utilized for sensitivity
analysis of wave velocity and attenuation coefficient of body waves in thermoviscoelastic
soil. In this work, the influences of frequency, relaxation time, permeability coefficient,
thermal expansion coefficient of solid particle and water, phase-lag of heat flux and temper-
ature gradient, and thermal conductivity on the wave velocity and attenuation coefficient
of body waves were the main object of study.

To verify the correctness of the above derivation, the results of this paper were com-
pared with those obtained by Yang et al. [40] without considering the nonflowing viscosity
of the saturated soil solid skeleton. The values of the relevant soil parameters were taken as:
ns = 0.05 ~ 0.45, ρs = 2650 kg/m3, ρw = 1000 kg/m3, Ks = 36 GPa, Kw = 2 Gpa, kw = 10−5 m/s,
µe = 26.1 Mpa, Ks

b = 43.6 Mpa, and f = 100 Hz, ts = 0 s. Figure 4 shows the comparison
curves of P1, P2, and S waves with the porosity of saturated soil. It can be seen from Figure 4
that the wave velocity of the P1 wave in saturated soil gradually decreased nonlinearly and
the wave velocity of the S wave increased approximately linearly as the porosity of the soil
increased, whereas the wave velocity of the P2 wave was almost unaffected. It can also be
seen that the results obtained from the calculations in this paper are in good qualitative and
quantitative agreement with those of Yang et al. [40], which can indicate the correctness of
the theoretical derivation and the validity of the paper’s calculation results.
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Table 1. Thermoviscoelastic parameters of fluid-saturated soil for calculation examples.

Parameters/Symbol Value/Unit Parameters/Symbol Value/Unit

Porosity ns 0.4 Thermal conductivity of soil KT 2.2 J/s/m/K
Density of solid grain ρs 2650 kg/m3 Specific heat of solid grain cs 937 J/kg/K

Density of water ρw 820 kg/m3 Specific heat of water cw 4186 J/kg/K
Bulk modulus of solid grain Ks 35 GPa Initial temperature T0 300 K

Bulk modulus of water Kw 2 GPa Thermo-osmosis DT 2.7 × 10−11 m2/s/K
Lame constant λe 1.2 × 108 Pa Volume thermal expansion of soil ac 3.0 × 10−5 K−1

Lame constant µe 2.6 × 107 Pa Thermal expansion of solid grain as 3.0 × 10−5 K−1

Permeability coefficient kw 1.0 × 10−4 m/s Thermal expansion of water aw 3.0 × 10−4 K−1

Relaxation time ts 0.5 × 10−3 s Phase-lag of heat flux τq 2.0 × 10−2 s
Frequency f 50 Hz Phase-lag of temperature gradient τθ 1.5 × 10−2 s
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Figure 4. Comparison curve of the wave velocity of body waves for various values of the soil porosity.

The dependency of the wave velocity and the attenuation coefficient of body waves on
the relaxation time ts and frequency f are depicted in Figures 5 and 6. The frequency ranged
from 0.01 Hz to 150 Hz therein. The relaxation time associated with the flow-independent
viscosity was taken to be 0 s, 5 × 10−4 s, and 1 × 10−3 s, respectively.
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Figure 5. Wave velocities of body waves for various values of the relaxation time and frequency.
(a) P1 wave, (b) P2 wave, (c) T wave and (d) S wave.

As depicted in Figure 5, the wave velocity of the P1 wave was the largest, followed by
the S wave, and then the P2 wave, whereas the wave velocity of the thermal wave was the
smallest. More importantly, Figure 5a,b,d show that although the wave velocities of P1, P2,
and S waves all increased with the increase of relaxation time ts, the influence of relaxation
time ts on the wave velocity of P1 wave was unnoticeable compared with its influence on
the other waves. Whereas Figure 5c shows that the wave velocity of the thermal wave
will decrease with the increase of relaxation time ts. In other words, under the frequency
condition herein, the positive relativities between the wave velocity of P1, P2, and S waves
and the frequency f gradually increased with the relaxation time ts increasing; however,
the positive relativity of the thermal wave gradually decreased with the relaxation time
ts increasing.

The enlargement of relaxation time ts increased the wave velocity of P1, P2, and S
waves and decreased the wave velocity of the thermal wave, as illustrated in Figure 5. At
the same time, Figure 6 shows that the attenuation coefficient of the thermal wave was the
largest, followed by the P2 wave, and then the S wave, whereas the attenuation coefficient
of the P1 wave was the smallest. The variation trends of the attenuation coefficient of P1, P2,
and the S waves with the frequency f were basically the same as their wave velocity trends.
However, the attenuation coefficient of the thermal wave had a different variation with
and without considering the relaxation time accounting for flow-independent viscosity.
The attenuation coefficient of the thermal wave increased rapidly at first, then gradually
stabilized and remained constant when the relaxation time was not considered, i.e., ts= 0,
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and then slightly reduced when the relaxation time was considered, i.e., ts 6= 0 herein,
in which the greater the relaxation time, the more prominent the decreasing trend of the
attenuation coefficient of thermal wave.
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Figure 6. Attenuation coefficients of body waves for various values of the relaxation time and
frequency. (a) P1 wave, (b) P2 wave, (c) T wave and (d) S wave.

The relationships of thermal expansion coefficients of solid particle and pore fluid and
the wave velocity and attenuation coefficient of body waves are portrayed in Figures 7 and 8
when ts= 0.5 × 10−4 s. The thermal expansion coefficients of solid particle and pore fluid
all ranged from 0.0 K−1 to 1.0 × 10−3 K−1. The enlargement of the thermal expansion
coefficient of solid particle was accompanied by the increase of both wave velocity and the
attenuation coefficient for the P1 wave, whereas the augmentation of the thermal expansion
coefficient of pore fluid was accompanied by the increase of wave velocity and the decrease
of the attenuation coefficient for the P1 wave, as depicted in Figures 7a and 8a. Meanwhile,
a diminution of the thermal expansion coefficient of the solid particle resulted in a negative
growth of wave velocity and a positive growth of the attenuation coefficient for the P2
wave, whereas the influence of the thermal expansion coefficient of pore fluid on the P2
wave was quite contrary, as displayed in Figures 7b and 8b.
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the solid particle and pore fluid. (a) P1 wave, (b) P2 wave, (c) T wave and (d) S wave.

In addition, Figures 7d and 8d present that the wave velocity and attenuation co-
efficient of the S wave are independent on the change in the thermal expansion co-
efficients of the solid particle and pore fluid, which can also be obtained legibly by
Equations (32) and (34). Lastly, the dependency of the wave velocity and attenuation
coefficient of the thermal wave on the thermal expansion coefficient is presented in
Figures 7c and 8c, which is not repeated herein because the thermal wave had a very
small wave velocity (about 1/105 of vp1) and a very fast attenuation (about 105 times δp1)
that is difficult to measure in practice.

The flow-dependent viscosity of the fluid-saturated soil is characterized by the pa-
rameter b shown in Equation (14), where b is expressed as the ratio of the product of
the fluid density ρw and gravitational acceleration g to the permeability coefficient kw.
Apparently, the flow-dependent viscosity of the fluid-saturated soil was finally repre-
sented by the permeability coefficient kw. In this work, the permeability coefficient kw
ranged from 10−6 m/s to 1 m/s, which included common soil types such as normal-
consolidation/overconsolidation clay and dense/loose sand. The permeability coefficient
of 1 m/s was selected in this work only to make the discussion convenient. The actual per-
meability coefficient of the oil was much smaller than 1 m/s. Figures 9 and 10 demonstrate
the effects of the permeability coefficient kw and relaxation time ts on the wave velocity and
attenuation coefficient of P1, P2, and S waves. As mentioned above, the thermal wave had
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slow velocity and fast attenuation which are difficult to measure in practice; thus, the effect
of the permeability coefficient on its dispersion behavior will not be discussed herein.
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Figure 8. Attenuation coefficients of body waves for various values of the thermal expansion
coefficient of the solid particle and pore fluid. (a) P1 wave, (b) P2 wave, (c) T wave and (d) S wave.
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Figure 9. Wave velocities of body waves for various values of the permeability coefficient under
different relaxation times. (a) P1 wave, (b) P2 wave, (c) S wave.
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Figure 10. Attenuation coefficients of body waves for various values of the permeability coefficient
under different relaxation times. (a) P1 wave, (b) P2 wave, (c) S wave.

From Figure 9a,c, it can be captured that the wave velocities of the P1 and S waves re-
mained constant in the high zone (kw= 0.1 ∼ 1 m/s) and low zone (kw= 10−6∼ 10−3 m/s) of
the permeability coefficient, whereas they increased rapidly with the augmentation of the
permeability coefficient in the middle permeability zone (kw= 10−3∼ 10−1 m/s). The dif-
ference was that the wave velocity of the P2 wave increased sharply with the increase of the
permeability coefficient in the low and middle permeability zones (kw= 10−6∼ 10−1 m/s)
and remained constant in the high permeability zone (kw= 0.1 ∼ 1 m/s), as illustrated
in Figure 9b. Furthermore, Figure 9 shows that the increase of relaxation time ts made
the dependence curves of the wave velocity of P1, P2, and S waves on the permeability
coefficient kw move upward (in the positive direction of the vertical coordinate), in which
the upward movement of the S wave curve was the most obvious, followed by the P2 wave,
and the least obvious was the P1 wave. The influence law of relaxation time shown in
Figure 9 corresponds to that in Figure 5.

As shown in Figure 10a,c the variation of the attenuation coefficients of the P1 and S
waves were an approximately normal distribution over the whole permeability zone. How-
ever, with the augmentation of the permeability coefficient kw, the attenuation coefficient
of the P2 wave first decreased rapidly, then decreased tardily, and then finally tended to
be steady. Similarly, the greater the relaxation time ts, the more the curves of attenuation
coefficients of the P1, P2, and S waves moved upward.

In addition to the influence of thermophysical parameters such as relaxation time,
frequency, thermal expansion coefficient of the solid particle and pore fluid, and the
permeability coefficient in the preceding discussion, the authors found that the change
in the thermal conductivity, phase-lag of the heat flux, and phase-lag of the temperature
gradient had little effect on the dispersion behavior of P1, P2, and S waves, which can
almost be ignored. However, the change in these parameters had a great influence on
the dispersion behavior of the thermal wave, as presented in Figures 11 and 12. Due to
limited space, the current study will not elaborate on it. It should be noted that the above
theoretical study can be further proven by a nondestructive testing technique [41–44].
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Figure 11. Wave velocity of the thermal wave for different values of the phase-lag and thermal con-

ductivity. (a) phase-lag of the heat flux, (b) phase-lag of the temperature gradient. 
Figure 11. Wave velocity of the thermal wave for different values of the phase-lag and thermal
conductivity. (a) phase-lag of the heat flux, (b) phase-lag of the temperature gradient.
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5. Conclusions 

In this work, the influences of flow-independent viscosity of the soil skeleton and the 

thermal effect on elastic waves were considered, and then the propagation characteristics 

of body waves in thermoviscoelastic fluid-saturated ground were studied. The calculation 

examples were employed to calculate the wave velocity and attenuation coefficient of each 

wave and analyzed the influence of the thermophysical parameters. The main conclusions 

obtained from the parametric analysis are as follows:  

1. The flow-independent viscosity of the soil had a great influence on the propagation 

behavior of each body wave, which cannot be ignored. 
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Figure 12. Attenuation coefficient of the thermal wave for different values of the phase-lag and
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5. Conclusions

In this work, the influences of flow-independent viscosity of the soil skeleton and the
thermal effect on elastic waves were considered, and then the propagation characteristics
of body waves in thermoviscoelastic fluid-saturated ground were studied. The calculation
examples were employed to calculate the wave velocity and attenuation coefficient of each
wave and analyzed the influence of the thermophysical parameters. The main conclusions
obtained from the parametric analysis are as follows:

1. The flow-independent viscosity of the soil had a great influence on the propagation
behavior of each body wave, which cannot be ignored.

2. The propagation behavior of the P1 and P2 waves was related to the thermal ex-
pansion coefficient of the solid particle and pore fluid, whereas the S wave was
almost independent.

3. The permeability coefficient and frequency had important influences on the propaga-
tion of body waves.

The conclusions found in this work had certain guiding significance for related re-
search and engineering application.
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