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Abstract: Galactic dynamics is the foundation for simulating galactic structure and for solving other
problems. However, the traditional dynamic equations include some unreasonable assumptions
and are therefore scientifically invalid. In this paper, by introducing the following three working
assumptions, we established the galactic dynamics of high precision and convenient formalism. 1. In
the research of large-scale structure, the retarded potential of the gravitational field should be taken
into account, and the weak field and low velocity approximation of Einstein’s field equation should
be adopted. 2. The stars in a fully developed galaxy should be zero-pressure and inviscid fluid,
and the equation of motion is different from that of ordinary continuum mechanics. Stars move
along geodesics. 3. The structure of the galaxy is only related to the total mass density distribution.
The equation of state of dark halo is different from that of ordinary luminous interstellar matter,
so their trajectories are also very different. In a galaxy, the dark halo and the ordinary matter are
automatically separated. The total mass density distribution can be presupposed according to the
observation data, and then it can be determined by comparing the solution of the equations with
the observed data. These assumptions and treatments are supported by theory and observation.
The variables of the equations of simplified galactic dynamics are separated from each other, and
the equations are well-posed and can be solved according to a definite procedure. The solution
explains the Tully–Fisher relation. Therefore, this simplified dynamic equation system provides a
more reasonable and practical framework for the further study of galactic structure, and can solve
many practical problems. In addition, it is closely related to the study of dark matter halo in galaxy.

Keywords: galactic dynamics; spiral structure; density wave; gravitational retarded potential;
Tully–Fisher relation; dark halo; dark matter distribution

1. Introduction

Most fully developed galaxies have vivid spiral structures that have a profound effect
on the generation and evolution of stars. In the past 70 years, a great deal of research has
been done to reveal the essence of spiral structures. Although great progress has been made
in understanding the mechanism of spiral arm formation, there are still many mysteries
to be revealed. We do not even know whether the spiral is a long-standing phenomenon,
or whether it is a transient and multiple regeneration phenomenon in the evolution of
galaxies [1–3]. The prevailing view now is that the galactic spiral structure should be a
quasi-stationary density wave [4]. According to the concept of density wave proposed by
B. Lindblad, C. C. Lin and F. H. Shu analyzed and solved the quasi-stable solution of
planetary fluid dynamics in gravitational field. However, there are other ideas that the spiral
structure is a short-lived but recurring spiral pattern formed by the vibration amplification
in the rotating galaxy disk [5], or caused by external forces [6]. In the literature [7,8],
by comparing the distant galaxies observed by the Hubble Space Telescope with those
observed on the ground, the results suggest that the spiral structure in the range of 0 < z < 1
in the universe may be a long-standing quasi-stationary pattern.

In density wave theory, Lin and Shu assume that the spiral structure is quasi-stationary
in the form of density waves on the disk of a galaxy. The key points of this assumption are
as follows: 1. The spiral galaxy has an invisible background gravitational field, which has a
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regular spiral structure, and the visible optical spiral arm is only the external manifestation
of this spiral force field. 2. The galactic spiral pattern is made up of flowing materials,
which is not the fixed same materials on the spiral arm, but changes over time. 3. The entire
spiral pattern is quasi-steady and rotates at constant angular velocity Ω like a rigid body.
The above assumption is called the quasi-stable spiral structure assumption.

A spiral galaxy consists of at least three parts: disk, bulge and halo. Because of the
large dispersion velocity of the two parts of the bulge and halo, it is not easy to produce
density disturbance, so it is usually treated as rigid body, and its function is to form a part
of the fundamental gravitational field. Only the galactic disk is part of the density wave.
In terms of composition, most of the matter in the galactic disk is stars, but there is also a
small amount of gas. Because of the great distance between stars, the average ‘collision
interval’ is several orders of magnitude larger than the age of the galaxy, so the collision
can be omitted.

If the spiral arm of a spiral galaxy is made of fixed matter, and the matter near the
center of the galaxy rotates faster than the matter at the edge of the galaxy, then the spiral
arm becomes tighter and tighter. After only a few cycles, the arms become entangled and
indistinguishable. Density wave theory has succeeded in avoiding this contradiction, with
the arm matter not made up of fixed planets but of regions with higher star densities,
similar to traffic jams on highways. For dynamic reasons, luminous matter such as a star
moves slowly within the spiral arm, lingering for more time and gathering together, but
the stars outside the spiral arm move fast and have lower densities.

Despite the great success of density wave theory, there are still some defects and
problems. 1. nonlinear effects; 2. analysis of the open arm and barred spiral system;
3. detailed study of the near-central region; 4. dynamical classification of galaxies and so
on. When using density wave theory to make galaxy arm pattern, for some cases, the rotary
arm pattern is in good agreement with the actual one. However, some other galaxies are
not the case, and the barred spiral structure is not clearly explained. The better coincident
part is mainly on the outer side of the spiral galaxy, but the results are often far from the
actual observations when approaching the center.

The orbit of a star in a non-central potential field is usually a non-closed and com-
plicated spatial curve, which is closely related to the initial velocity and its direction [1].
Therefore, it is more reasonable to take the star system in a galaxy as fluid rather than
mass points. Although the dynamics of both models are essentially the same Newtonian
mechanics, the initial and boundary conditions are set differently. In the case of fluid, the
streamlines are consistent fields, which are a natural result of stars generating from nebula.

W. Dehnen and J. Binney fitted the mass distribution within the galaxy with the
observed data (such as the rotation curve and the Oort constant [9]), but found that
the mass distribution of the fitting was uncertain. In [10,11], the authors numerically
simulated the two-dimensional stellar fluid dynamics embedded in a planar galactic disk
in dark matter halo and solved the Boltzmann equation to the second-order moment [1].
The references [12] propose a kinetic approach to explain the formation of spirals and
rings in galaxy clusters based on spiral arms, rings, and pseudo-rings driven near the
unstable equilibrium point of a given rotating barred potential, and so on, associated with
the invariant manifold composed of periodic orbitals around the equilibrium point. By
adjusting the kinetic parameters of the main galaxy, the spiral and ringed structures are
obtained. The dark matter is beyond the standard model, how to disclose its nature is one
of the most challenging problem in astrophysics.

In this paper, we propose a more reasonable and practical galactic dynamics to study
the structure and properties of galaxies, which is closely linked to the study of dark matter
halo. This framework has the following advantages: 1. The galactic dynamic equations are
highly accurate and convenient to solve for the solution, but the previously used equations
is not suitable due to unreasonable assumptions. 2. We derived the structure equations
for a stable non-warped galaxy. 3. The galactic dynamics is the foundation to analyze and
explain other properties of galaxies, on which other problems can be easily solved. We
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derived and confirmed the experimental law—the Tully–Fisher relation according to the
model. 4. By calculating the high precision total density distribution ρ, we can study the
dynamic properties of dark matter halo such as the state functions. In simplified dynamical
equations, the physical variables are separated from each other. The equations can be
solved by fixed procedure, and give a clearer explanation for the spiral and barred structure
of galaxies. Thus, this simplified system of equations provides a more reasonable and
practical framework for further study of the galactic structure and properties of the dark
matter halo.

The dark matter halo provides a dynamical background for the generation and de-
velopment of stars and planets in a galaxy, and the relationship is similar to that of the
amniotic fluid and the fetus. Therefore, the mechanical properties of dark matter are very
different from those of ordinary luminous matter, and their moving trajectories are also
very different. Technical schemes for detecting dark matter particles by means of detecting
ordinary particles are not feasible, because dark matter particles do not interact with ordi-
nary particles at all and any other interaction will result in instable structure of a galaxy.
Dark matter detection can only be performed by dynamic methods.

2. Simplification of Galactic Dynamic Equation

In the current theoretical analysis, the commonly used galactic dynamics is similar to
the following one [13]

∇2Φ = κρ, (1)

(∂t + ~V · ∇)~V + 2Ω× ~V = −∇Φ− 1
ρ∇P, (2)

∂tP +∇ · (P~V) = −P(γ− 1)∇ · ~V −Λ, (3)

∂tρ +∇ · (ρ~V) = 0, (4)

in which κ = 4πG, Ω is the angular speed of the galactic disk, γ adiabatic index, Λ the
cooling term reflecting the gravitational disturbance. Some more complicated models also
introduce viscous term.

Next we take the dynamic Equations (1)–(4) as example to analyze several problems
in current galactic dynamics. 1. The Einstein’s field equation of gravity is essentially a
wave equation. In [14], the measurement discloses that gravitational waves travel at c to a
precision of 10−15. The diameters of galaxies are over 100,000 light-years, so the effect of
retarded potential of gravity should be taken into account in solving the dynamic equations
in such cases. The stars near the center of a galaxy turn around the center several times
before the change of the corresponding gravitational field reaches the edge of the galaxy.
Whereas the Newton’s gravity is an action at a distance and ignores this time delay. So
there is a hidden danger to use (1) to calculate the gravitational field in such an occasion,
and the relativistic effect must be considered in the large-scale structure.

The weak field and low velocity approximation of the Einstein’s field equation is as
follows (see Appendix A)

∂α∂αΦ = −κρ, (5)

in which ρ is the total equivalent mass density. The solution of (5) is retarded potential

Φ(t,~x) = − κ

4πc2

∫
r≤ct

ρ(ct− r,~y)
r

d3y, r = |~x−~y|.

In contrast with the Newtonian gravitational potential of (1), the retarded potential has
finite propagating speed c for perturbation. Not only in the cases of high-speed we need
relativity, but also in the cases of large distance or large structure we need relativity. The
galactic dynamics must be discussed by general relativity, because the characteristic time
of gravity propagating from the center to the edge is much larger than the moving period
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of the stars near the center, and this time difference has strong effect on the structure of
the galaxy.

2. In the early stages of galaxy formation, luminous matter consists of hot plasma. The
evolution process is complex at this time, and the dynamics should indeed take into account
the influence of pressure, temperature, viscosity, and even magneto fluid effect. However as
galaxies mature, luminous matter forms stars, and the motion of the stellar system becomes
more and more orderly, which is similar to what happened in the solar system. The stars
and ordinary luminous matter in the galaxy are mainly moving along geodesics, and these
materials form zero-pressure and non-viscous fluid, so the energy-momentum tensor of
the fluid should be as follows

Tµν
s = ρsUµUν, (6)

where ρs is the comoving mass density of stars and ordinary luminous particles, Uµ is the
4-vectors speed distribution of ordinary matter. The ordinary matter satisfies the energy
conservation law Tµν

s;ν = 0 independent of dark halo. In the form of continuity equations
and equations of motion, we obtain the dynamic equations of the stellar system as

Uµ∂µρs + ρsU
µ
;µ = 0, (7)

UνUµ
;ν = 0. (8)

For convenience, we take c = 1 as unit of speed. The Equations (2) and (3) derived from
continuum theory and thermodynamics are not consistent with the actual conditions as
mentioned above. The variables in such equations are strongly coupled, which brings great
inconvenience and complexity to the analysis and solution of the equations.

3. The equation of state of the dark halo is different from that of ordinary luminous
interstellar matter. For dark halo with self-action nonlinear potential, its energy-momentum
tensor has the following form [15,16]

Tµν = (ρtot + P)UµU ν + (W − P)gµν, (9)

where W = W(ρtot) corresponds to the nonlinear potential of the dark particles, which
has the effect of negative pressure and causes the moving trajectories of the dark halo to
deviate from geodesics. For dark spinors, we have W∼ρ � P, so it also acts like dark
energy. According to the energy-momentum conservation law Tµν

;ν = 0, we obtained the
continuity equation UµTµν

;ν = 0 and the equation of motion of the dark halo

(ρtot + P)U νUµ
;ν = (gµν −UµU ν)∂ν(P−W), (10)

which is quite different from the geodesic equation (8). Thus the dark halo is automatically
separated from ordinary matter during galaxy formation. So near the solar system, there
are few traces of the dark matter that dominates galaxies. Dark halo consists of diffuse
gases, and the equation of motion (10) is a complete 1 + 3 dimensional nonlinear field
equation. To analyze or solve such equation system is extremely difficult. However, the
equation system (6) can be regarded as a planar dynamics in the domain that deviates
slightly from the center of the galaxy, and that greatly simplifies the analysis and solving
process for the equations. The galactic dynamics currently used confuses the two different
kinds of concepts in (6) and (9). For example, in Equations (1)–(4), the mass density ρ in
each equation should be different concept. Therefore, the generality and effectiveness of
the traditional galactic dynamic equations are quite weak, and it is difficult to obtain the
right results in accordance with the actual situation.
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Taking into account all above factors, we obtain the galactic dynamic equations in
Minkowski space-time under weak field and low speed approximations of relative error
∼10−6(see Appendix A)

∂α∂αΦ = −κρ, (11)
d
dt
~V ≡ (∂t + ~V · ∇)~V = −∇Φ, (12)

d
dt ρs ≡ (∂t + ~V · ∇)ρs = −ρs∇ · ~V, (13)

where ~V(t,~x) is the velocity field of ordinary matter, and the total equivalent mass density
is given by

ρ=̇ρtot − 2W + 3P. (14)

In the above galactic dynamic equations, the variables (ρ, ~V, ρs) are relatively separated
from each other, and the equations for Φ and ρs are linear and easy to be solved. These
features are significant advantages over traditional dynamical Equations (1)–(4). If the total
mass density ρ is known, the gravitational potential of Φ(t,~x) can be integrated, and the
velocity field of ~V or stellar orbits can be obtained from (12)

d2

dt2
~X(t) = −∇Φ(t, ~X). (15)

If the gravitational potential Φ is independent of time, the mechanical energy of each star
is conserved. Integrating the above equation, we obtained

1
2
~V2 + Φ(~X) = E(~X0). (16)

Thus, the inappropriate approximation in traditional galactic dynamics brings unnecessary
complexity of the equations.

In theory, the complete dynamic equation should include the continuity equation and
the dynamic equation of the dark halo. However these equations rely on the equations of
state for dark matter and dark energy, which is now an unsolved puzzle. The following
analysis shows, the lack of this knowledge can be compensated by observational data. For
example, by the rotational velocity curves of the stars, we can then conversely derive some
important information about the total density distribution and spiral structure of the dark
halo. In some sense, we study the inverse problem of the literature [9,12].

3. Structural Equations of Non-Warped Stationary Galaxies

In the context of general relativity, the structure of galaxies depends on the distribution
and properties of dark halo, which is unknown in the present situation [15–17]. Because
the gravity in the galactic disk is very weak, except for the region near the center, the
single gravitational potential Φ can describe the spiral structure precisely enough. We
express equations in spherical coordinate system (t, r, θ, φ). In this case, we have gkl =
diag(1, r2, r2 sin2 θ) and the non-zero Christoffel symbols{

Γr
θθ = −r, Γr

φφ = −r sin2 θ, Γθ
rθ = Γφ

rφ = 1
r ,

Γθ
φφ = − sin θ cos θ, Γφ

θφ = cot θ.
(17)

By 3-d tensor calculus, (11) and (12) becomes

c−2∂2
t Φ− gkl(∂kl − Γm

kl∂m)Φ = −κρ, (18)

∂tVm + Vk(∂kVm + Γm
klV

l) = −gml∂lΦ. (19)
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Substituting (17) into the above equations, we obtained the dynamic system in spherical
coordinate system as

c−2∂2
t Φ− (∂2

r +
2
r

∂r +
1
r2 L̂2)Φ + κρ = 0, (20)

DtVr − rV2
θ − r sin2 θV2

φ + ∂rΦ = 0, (21)

DtVθ +
2
r

VrVθ − sin θ cos θV2
φ +

∂θΦ
r2 = 0, (22)

DtVφ +
2
r

VrVφ + 2 cot θVθVφ +
∂φΦ

(r sin θ)2 = 0, (23)

where the derivative operators are defined as

L̂2 = ∂2
θ + cot θ∂θ +

1
sin2 θ

∂2
ϕ,

Dt = ∂t + Vr∂r + Vθ∂θ + Vφ∂φ,

and the velocity of the stars is defined in the form of a three-dimensional contra-variant vector

Vr ≡
d
dt

r(t), Vθ ≡
d
dt

θ(t), Vφ ≡
d
dt

φ(t). (24)

Equations (21)–(23) is the Newton’s second law for stellar motion.
For the stars moving in the galactic disk, we have

θ =
π

2
, Vθ ≡ 0. (25)

In this case (22) holds automatically, so we obtained the two-dimensional equation of
motion and continuity equation for stellar fluid in non-warped disk as [3,10,15]

(∂t + Vr∂r + Vφ∂φ)Vr − rV2
φ + ∂rΦ = 0, (26)

(∂t + Vr∂r + Vφ∂φ)Vφ +
2
r

VrVφ +
1
r2 ∂φΦ = 0, (27)

(∂t + Vr∂r + Vφ∂φ)Σ + (∂rVr + ∂φVφ +
1
r

Vr)Σ = 0, (28)

where Σ ≥ 0 is the mass surface density of stars in the disk.
For quasi-stationary spiral structures, the galactic structure moves as a whole at con-

stant angular velocity Ω around the z-axis. Therefore, under the coordinate transformation
ϕ = φ−Ωt, the solution of the structural equation in the new coordinate system (t, r, θ, ϕ) is
static, that is, the solution is independent of time t. So we obtained the following structural
equations for non-warped galaxies

(∂2
r +

2
r

∂r +
1
r2 L̂2 − Ω2

c2 ∂2
ϕ)Φ = κρ, (29)

(Vr∂r + Vϕ∂ϕ)Vr − r(Vϕ + Ω)2 + ∂rΦ = 0, (30)

(Vr∂r + Vϕ∂ϕ)Vϕ +
2
r

Vr(Vϕ + Ω) +
1
r2 ∂ϕΦ = 0, (31)

(Vr∂r + Vϕ∂ϕ)Σ + (∂rVr + ∂ϕVϕ +
1
r

Vr)Σ = 0. (32)

The terms related with Ω in the above formulas have obvious physical significance, r(Vϕ +

Ω)2 is centrifugal force, and 2
r VrΩ Coriolis force. Because of the background gravitational

force, Equations (29)–(31) is represented in spherical coordinate system, but (32) is described
in polar coordinate system.
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4. Second-Order Approximation of Structural Equation

The Equations (29)–(32) can be solved according to the following procedure: At first, a
reasonable total mass density ρ is assumed, which can be expressed as series expansion of
spherical harmonic function Ylm(θ, ϕ). The distribution of the dark halo can be determined
inversely by comparing the calculated solutions with the observed data. Second, for given
ρ, (29) is a linear equation with respect to Φ, which can be easily solved with natural
boundary conditions. Third, by (30) and (31), the velocity function can be represented by
the trigonometric series of ϕ. Due to symmetry, the trigonometric series has only the terms
with an integer multiple of a fixed base frequency, usually only even terms. The fourth,
equation (32) for the surface mass density is a first-order linear equation, which is also easy
to solve. In this way, the stellar distribution and movement are perfectly determined for
non-warped stationary galaxies.

In what follows, we demonstrate the solving process of using the triangular series
expansion according to this procedure. Consider the following second-order approximation
of mass and gravitational potential distributions

ρ = ρ0 + (ρ1 + ρ2 cos 2ϕ + ρ3 sin 2ϕ) sin2 θ, (33)

Φ = Φ0 + (Φ1 + Φ2 cos 2ϕ + Φ3 sin 2ϕ) sin2 θ, (34)

in which all (ρn, Φn) are functions of r and satisfy ρ ≥ 0. The relative error of (33) and (34) is
about 3−2s < 12%, where s ≥ 1 reflects the degree of mass distribution similar to (33). The
corresponding second order velocity of the stars in the disk is given by

Vr = v1 cos 2ϕ + v2 sin 2ϕ, Vθ = 0, (35)

Vϕ = ω0 + ω1 cos 2ϕ + ω2 sin 2ϕ, (36)

in which all (vn, ωn) are functions of r.
Substituting (33) and (34) into (29), we obtained the equation of Φn as

Φ′′0 +
2
r

Φ′0 +
4
r2 Φ1 = κρ0, (37)

Φ′′1 +
2
r

Φ′1 −
6
r2 Φ1 = κρ1, (38)

4Ω2

c2 Φk + Φ′′k +
2
r

Φ′k −
6
r2 Φk = κρk, (39)

where k = 2, 3. The solution is given by

Φ1 = −κ

5
[

1
r3

∫ r

0
ρ1(χ)χ

4dχ + r2
∫ ∞

r

ρ1(χ)

χ
dχ], (40)

Φ0 = −1
r

∫ r

0
(χ2κρ0 − 4Φ1)dχ−

∫ ∞

r

1
χ
(χ2κρ0 − 4Φ1)dχ (41)

and

Φk =
κc5

32Ω5r2 [A(r)
∫ r

0
B(χ)ρk(χ)dχ + B(r)

∫ ∞

r
A(χ)ρk(χ)dχ], (42)

in which

A(r) =
6Ω
c

cos(
2Ωr

c
) +

4Ω2r2 − 3c2

rc2 sin(
2Ωr

c
),

B(r) =
4Ω2r2 − 3c2

rc2 cos(
2Ωr

c
)− 6Ω

c
sin(

2Ωr
c

).
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Substituting (34)–(36) into (30) and (31), and restricting θ = 1
2 π, we obtained

0 =
d
dr

[Φ0 + Φ1 +
1
4
(v2

1 + v2
2)]−

1
2

R[2(ω0 + Ω)2 + ω2
1 + ω2

2 ] +

ω1v2 −ω2v1 + [2ω0v2 − 2r(ω0 + Ω)ω1 + Φ′2] cos 2ϕ−
[2ω0v1 + 2r(ω0 + Ω)ω2 −Φ′3] sin 2ϕ + · · · (43)

as well as

0 =
1
2
[(rω′1 + 2ω1)v1 + (rω′2 + 2ω2)v2] +

[(rω′0 + 2ω0 + 2Ω)v1 + 2rω0ω2 +
2
r

Φ3] cos 2ϕ +

[(rω′0 + 2ω0 + 2Ω)v2 − 2rω0ω1 −
2
r

Φ2] sin 2ϕ. (44)

Let the coefficients of the terms (sin 2ϕ, cos 2ϕ) in (43) and (44) be 0, we obtained

v1 = −K[ω0r2Φ′3 + 2r(ω0 + Ω)Φ3], (45)

v2 = K[ω0r2Φ′2 + 2r(ω0 + Ω)Φ2], (46)

ω1 = K[(
1
2

r2ω′0 + r(ω0 + Ω))Φ′2 + 2ω0Φ2], (47)

ω2 = K[(
1
2

r2ω′0 + r(ω0 + Ω))Φ′3 + 2ω0Φ3], (48)

K ≡ {r2[r(ω0 + Ω)ω′0 + 2Ω(2ω0 + Ω)]}−1. (49)

Substituting the above results into (44), that is, into the equation

(r∂rω1 + 2ω1)v1 + (r∂rω2 + 2ω2)v2 = 0, (50)

we obtained a first-order linear ordinary differential equation for ω0

ω′0 =
1
r
(3ω0 + Ω) +

ω0r
2
·

Φ′3Φ′′2 −Φ′2Φ′′3
Φ3Φ′2 −Φ2Φ′3

+

(ω0 + Ω)
Φ3Φ′′2 −Φ2Φ′′3
Φ3Φ′2 −Φ2Φ′3

, (51)

and another solution with no physical meaning ω′0 = − 2
r (ω0 + Ω). It is important to

note that, while Φ2 ≡ 0 or Φ3 ≡ 0, ω0 cannot be determined by above Equation (51).
In this case (50) holds automatically. Substituting (45)–(49) into (43), i.e., substituting
them into

d
dr

[Φ0 + Φ1 +
1
4
(v2

1 + v2
2)] = −ω1v2 + ω2v1 +

1
2

r[2(ω0 + Ω)2 + ω2
1 + ω2

2 ], (52)

we obtained a constraint between the mass density distribution and Ω, so Ω is determined
by the total mass density. From (45)–(51) we learn that, the stellar speed ~V is completely
determined by (ρ2, ρ3, Ω). After the velocity distribution is determined, the surface mass
density Σ(r, ϕ) of the stars can be solved from (32). At this point, the second-order approxi-
mation of galactic dynamics is completely solved. The above process only involves solving
ordinary differential equations.
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5. Simple Solutions to Stationary Galaxy Structure

The calculations in the preceding section show that the structure of a stationary galaxy
is determined by (ρ2, ρ3, Ω). If the total mass density distribution is known, it is easy to
determine the structure of the galaxy according to the above procedure. However, it is
difficult to directly determine the density distribution. The data observed are mainly the
moving speeds of the stars. High-precision observation show that the stellar speeds in
galaxies in a larger range is approximately equal. To illustrate the above solving procedure
in detail and obtained some enlightening conclusions, we concretely solve two of the
simplest examples. As a working hypothesis, we assume [18,19],

ω0 =
v
r
−Ω, (r ∈ [R0, R1]), (53)

where v is a constant velocity with a typical value of |v| = 200∼400 km/s, [R0, R1] is
the effective domain of assumption (53). Usually we have R0 = 100∼500 pc and R1 =
10∼60 kpc, which are about the radius of the bulge and the radius of the visible range,
respectively. In the bulge region r < R0, the mass distribution can be approximated by a
rigid sphere. No loss of generality, we can set (ω0 > 0, v > 0), otherwise we can make
a transformation φ → −φ to obtained this condition. So we always have v > rΩ in the
effective domain. As shown below, using the star’s velocity curve v = v(r) to calculate the
total mass density is a good method to study the properties of dark halo [15,20–23].

5.1. Barred Spiral Galaxy

We consider the simple case ρ2 6= 0, ρ3 = 0. In this case we have P3 = 0, and P2(r) can
be calculated by (42). By (45)–(49), we obtained

v1 = 0, v2 = − r(v− rΩ)P′2 + 2vP2

2(v− rΩ)2 − v2 , (54)

ω2 = 0, ω1 = − rvP′2 + 4(v− rΩ)P2

2r[2(v− rΩ)2 − v2]
. (55)

The effective region of the above formulas is r < (2−
√

2)v
2Ω . Substituting (53)–(55) into (32),

we obtained the surface density of stars as

Σ = [Σ0 + C2rv2 cos(2ϕ)]−1, (56)

in which

Σ0 = rv2e−
∫ 2ω1

v2
dr
[C1 + 2C2

∫ v− rΩ
rv2

e
∫ r 2ω1(χ)

v2(χ)
dχ

dr],

(C1, C2) are integration constants.
The above results show the structural characteristics of a barred spiral galaxy. For

given total mass density ρ and boundary values, all the above formulas can be calculated
concretely, but the analytical expression is a little complicated. If a restriction v2 = 0 is
added, that is Vr ≡ 0, then the stars move around circles, the results are relatively simple.
In this case, by (54), we have

Φ2 = − q
r2 (v− rΩ)2, Φ3 = 0, (57)

in which q ≥ 0 is an integral constant. Substituting (57) into (45)–(49) we obtained

Vr = 0, Vϕ =
1
r3 (v− rΩ)(r2 + q cos 2ϕ). (58)
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Again by (32), we obtained the surface mass density of stars

Σ =
$(r)

r2 + q cos 2ϕ
, (59)

in which $(r) is determined by boundary condition. Substituting the above results into
(52), we obtained a restriction between Ω and potential

Φ0 + Φ1 = v2 ln
(

r
r0

)
− q2

24r4 (3v2 − 8vrΩ + 6r2Ω2), (60)

in which r0 > 0. In the case of q = 0, the solution (57)–(60) is exact, which correspond to
elliptical galaxy. However, as long as the conditions deviate a little, the elliptical galaxy will
evolve into a spiral one. The spiral structure should be an inevitable result for the evolution
of ordinary galaxies.

As an application of (60), we derive the Tully–Fisher relation L ∝ v4 [24]. In astro-
physics, we have the following empirical laws for a galaxies

L ∝ M ∝ R2, (61)

in which L is the luminosity, M the total mass and R the visible radius. For an elliptical
galaxy, in (60) we have

q = Ω = 0, |Φ1| � |Φ0|. (62)

Then, we obtained

4πGρ = Φ′′ +
2
r

Φ′=̇
v2

r2 . (63)

So we have relation

M = 4π
∫ R

0
ρr2dr=̇

v2

G
R. (64)

Taking v as known parameter and solving (61) and (64), we obtain relations

R ∝ v2, L ∝ M ∝ v4. (65)

In general case, if the perturbative terms Ω, Vr and L̂2 in (29) and (30) can be omitted
and v is almost a constant, then we have equations

∂rΦ=̇
v2

r
, 4πGρ = ∂2

r Φ +
2
r

∂rΦ=̇
v2

r2 . (66)

Equation (66) implies that the Tully–Fisher relation also approximately holds for all stable
galaxies.

5.2. Spiral Galaxy

Now, we calculate the following simple case of Ω = 0,

ω0 =
v
r

, Φ2 = P−1 cos(ξr), Φ3 = P−1 sin(ξr), (67)

where ξ > 0 is a constant, P(r) is a function of r. Substituting (67) into (51), we obtained a
linear differential eguation for P(r)

P′′ − 4
r

P′ + (ξ2 +
8
r2 )P = 0. (68)
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The solution is given by

P =
√

r5[C1 Jα(ξr) + C2 J−α(ξr)], α =
1
2

√
7, (69)

in which (C1, C2) are constants, (Jα, J−α) is Bessel function of imaginary parameter

Jν(x) =
( x

2

)ν ∞

∑
k=0

1
k!

1
Γ(ν + k + 1)

( x
2

)2k
, (ν = ±α).

Substituting the above relations into (45)–(49), we have

Φ = Φ0 + [Φ1 + P−1 cos γ] sin2 θ,
Vr =

1
vP2 [ξrP cos γ− (rP′ − 2P) sin γ],

rVϕ = 1
2vP2 [(rP′ − 4P) cos γ + ξrP sin γ] + v,

Σ = C3P2

ξr5

[
(rP′ − 2P) cos γ + ξrP sin γ + 2r2v2

∫ P2

r3 dr
]
,

(70)

in which γ = ξr− 2ϕ. All of these variables are characterized by the structure of a spiral
galaxy, which are closer to the Archimedes spiral rather than the logarithmic one. Since the
pitch angle of galaxy is approximately 10◦∼40◦ [25], we have estimation ξ = (2∼11)R−1

1 .

6. Discussion and Conclusions

To explain the galaxy structure and flat velocity curves, [26] declared that it is un-
necessary to introduce ‘hidden mass hypothesis’, and the following modified Newtonian
dynamics was proposed,

Mgµ(a/a0)a = F. (71)

In order to obtain the Tully–Fisher relation, in [27] the centripetal acceleration a = V2/r
and the following gravity were used,

gN = MGr−2. (72)

Since the visible mass distribution in galaxies is disc-like, if the dark matter is absent, then
the main part of the Newtonian gravitational potential of a galaxy should be similar to that
of a disc mass distribution [28]

Φd = −2GM
R1

∞

∑
n=0

Cn
1/2

(
r

R1

)2n
P2n(cos θ) +

2GMr
R2

1
| cos θ|, r ≤ R1, (73)

Φd = −2GM
R1

∞

∑
n=0

Cn+1
1/2

(
R1

r

)2n+1
P2n(cos θ), r > R1, (74)

where Cn
1/2 is defined by

√
1 + x = ∑ Cn

1/2xn. In the disc (r ≤ R1, θ = 1
2 π), we have

cos θ = 0 and

Φd = −2GM
R1

[1− 1
4

(
r

R1

)2
+ · · · ], gN =

GMr
R3

1
+ · · · . (75)

How can we obtain (72)? Equation (72) is actually a proof of the existence of dark matter,
because it is just the Newtonian gravity of the spherically symmetric distribution of mass.
The reasonable explanation for the Tully–Fisher relation L ∝ v4 should be (63)–(66).

In addition, Equation (71) is also not a good model in physics, because it obviously vi-
olates some fundamental principles of physics such as covariance and the Poisson equation
or wave equation. For problems as complex as galactic dynamics, a systematic research
based on the first principles is needed. Ref. [26] only used 5 simple algebraic formulas
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without any logical relation between them: partial assumptions, partial fitting to the ob-
served data and most of the content is stating facts, opinions and conjectures. For complex
problems, this style of research is difficult to effectively solve the problem, and is easily
disoriented. One without sharp logic can hardly check the validity of the results or find out
where a bug exists. From the review paper [29], we can find a number of studies misled by
the model, much of time and resource was wasted by the professional barriers. The simple
treatment is feasible for organizing experimental data and laws, but the galactic dynamics
and structure involve large scale space-time geometry and partial differential equations of
gravity and matter distribution, so it is impossible to obtain profound results by simple
formula and conjecture. In this case, open mind and multidisciplinary collaboration is
important, because some problems that are difficult for the experts in the subject but simple
for others.

For the mature galaxies, in the paper three working hypotheses are introduced to
simplify the dynamic equations: 1. To research the Large-scale structure of galaxy, we
should consider the retarded potential of gravity, which takes longer time to propagate to
border of galaxy than the revolution period of the stars near the center. In this case, to use
Newtonian gravity directly is unreasonable and it should be replaced by wave equation,
i.e., the weak field and low velocity approximation of Einstein’s field Equation (5).

2. The stellar system of mature galaxies should be zero-pressure and viscosity–Free
fluid having different equations of motion from ordinary continuum mechanics. The pres-
sure of such system has no physical meaning and cannot be defined, and the introduction
of pressure will only bring errors and troubles. The star moves along geodesic and the
dynamic equation of stellar system should be (7) and (8).

3. The equation of state of dark halo is different from that of ordinary luminous
interstellar matter, so their trajectories are very different, and the dark halo is automatically
separated from ordinary matter in galaxies. The structure of galaxies is only determined by
the total mass density, which can be assumed beforehand based on observations. Then, the
total mass density can be determined by comparing the solution of structural equations
with the observed data.

By these processes, we find that the variables in the dynamical equations of galaxies
are separated from each other. The equations are well-posed and can be solved according
to a fixed procedure. Traditional equations include unreasonable assumptions and are
too complicated to be studied in depth. In fact, the basic objects of Nature are designed
elaborately, and the corresponding equations are simple and symmetrical. If our research
is trapped in complex computation and incomprehensible dilemma, this situation reflects
that the model used has gone wrong with big probability.

The dynamic equation system derived above provides a more reasonable and practical
framework for simulating the structure of galaxies and is closely linked to the study of dark
matter halo. The physical significance of the above framework is as follows: 1. A system of
highly accurate and convenient galactic dynamic Equations (11)–(13) is established, but
the previously used equations such as (1)–(4) is not suitable for galactic structure. 2. For a
mature galaxy, its structure is stable, and (29)–(32) gives the structure equations for a stable
non-warped galaxy. 3. Equations (11)–(13) is the foundation to analyze and explain other
properties of galaxies, on which other problems can be easily solved, such as the Tully–
Fisher relation derived by (66). It is clear that the discreteness of the Tully–Fisher relation
between different types of galaxies can also be derived by calculating the errors of (66)
for various galaxies. 4. By calculating the fine structure of the total density distribution ρ
in (11), we can study the dynamic properties of dark matter halo, such as the state function
W(ρ) and so on. In conclusion, galactic dynamics is the theoretical foundation for the study
of galactic structure and properties, and a prerequisite for solving other problems. The
previous dynamic equations included unreasonable assumptions, while the framework in
the paper provides a reasonable dynamic model of higher accuracy and more convenience.
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Appendix A. Linearization of Einstein Field Equation

In this section, by weak-field and low-speed approximation of Einstein field equation,
we will establish the dynamic equations describing the galactic system. Some fundamental
contents can be found in [30], but here we make a more systematic and detailed derivation
for galactic dynamics.

In the context of general relativity, the whole system of the dynamic equations for
galactic evolution should be Einstein field equation

Gµν ≡ Rµν − 1
2

gµνR = −κ̄Tµν, (κ̄ ≡ 8πG
c4 ), (A1)

combined with the law of energy-momentum conservation and the equation of state of
the gravitating source. In most cases, the classical approximation for the total energy-
momentum tensor takes the following form [16]

Tµν = (ρ + P)UµU ν + (W − P)gµν, (A2)

where W corresponds to the nonlinear potentials, which acts as negative pressure and leads
to the deviation from geodesic. According to the law of energy-momentum conservation
or the Bianchi identity Tµν

;ν = 0, we can derive the continuity equation UµTµν
;ν = 0 and the

equation of motion for the source as follows

Uµ∂µ(ρ + W) = −(ρ + P)Uµ
;µ, (A3)

(ρ + P)U νUµ
;ν = (gµν −UµU ν)∂ν(P−W). (A4)

In the case of W∼ρ � P, such as for the nonlinear spinor, we find that the stream lines are
quite different from the geodesics U νUµ

;ν = 0. Therefore, a fully relativistic simulation of
the galactic evolution should include such terms. However, in the following non-relativistic
approximation, the effects of (P, W) are merged into an effective mass-energy density ρ,
which becomes much simpler.

For convenience, we take c = 1 as the unit of velocity. Noting the facts that collisions
between stars rarely occur, the trajectories of the ordinary matter, such as atoms, are
almost geodesics, so for stars, the following zero-pressure and inviscid energy-momentum
tensor holds

Tµν
s = ρsUµUν,

in which ρs is the comoving mass density of stars, and Uµ is the 4-vector speed of the
stellar flow. For energy-momentum tensor of a compound system, we have the following
useful theorem [31], which means the energy-momentum of any independent subsystem is
conserved, respectively.

Theorem A1. Assume matter consists of two subsystems I and II, namely Lm = LI(φ) +LI I(ψ),
then we have

Tµν = Tµν
I + Tµν

I I . (A5)
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If the subsystems I and II have not interaction with each other, namely,

δ

δψ
LI(φ) =

δ

δφ
LI I(ψ) = 0, (A6)

then the two subsystems have independent energy-momentum conservation laws, respectively,

Tµν
I;ν = 0, Tµν

I I;ν = 0. (A7)

According to Theorem A1, ordinary matter satisfies the law of energy-momentum
conservation independent of that of the dark halo, so we have Tµν

s;ν = 0. Expressing it in the
form of equations of continuity and motion, we obtain the dynamic equations for the stars

Uµ∂µρs + ρsU
µ
;µ = 0, UνUµ

;ν = 0. (A8)

The total energy-momentum tensor of the galaxy is still given by (A2), and satisfies
the dynamic Equations (A3) and (A4). Using (A1) and (A2), we obtain

R = κ̄(ρ + 4W − 3P), (A9)

where R = gµνRµν is the scalar curvature. Substituting (A9) into (A1), we obtain

Rµν = −κ̄(ρ + P)UµU ν +
1
2

κ̄(ρ + 2W − P)gµν, (A10)

where Uµ is the average 4-vector speed of all gravitating source.
In order to make a weak-field approximation, we choose the harmonic coordinate

system, which leads to the usual Cartesian coordinate system when linearizing of metric.
Then we have the de Donder coordinate condition

Γµ ≡ gαβΓµ
αβ = − 1

√
g

∂ν(
√

ggµν) = 0,

where g = |det(g)|. Denote the Minkowski metric by ηµν = ηµν = diag(1,−1,−1,−1).
For the weak-field approximation, we have the linearization for the metric

gµν ≡ ηµν + hµν, gµν=̇ηµν − hµν,

hµν = ηµαηνβhαβ, h = hµ
µ = ηµνhµν,

g =̇ 1 + h,
√

g=̇1 +
1
2

h.

In the above approximation we have a precision O(|hµν|2)∼Φ2 + V2/c2 ∼ 10−6, which
is sufficient for calculations of galactic dynamics. Next, we directly use = to replace =̇
for convenience. By straightforward calculation, we obtain the linearization for other
parameters

Γµ
αβ =

1
2

ηµν(∂αhνβ + ∂βhαν − ∂νhαβ),

Γµ = ∂ν(hµν − 1
2

ηµνh),

Rµν =
1
2

∂α∂αhµν −
1
2
(ηµα∂νΓα + ηνα∂µΓα),

Rµν =
1
2

∂α∂αhµν − 1
2
(ηµα∂αΓν + ηνα∂αΓµ),

R =
1
2

∂α∂αh− ∂αΓα.

In which ∂α∂α = ∂2
t −∇2 is the d’Alembert operator.
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In the harmonic coordinate system, we have

Γµ = ∂ν(hµν − 1
2

ηµνh) = 0, (A11)

Rµν =
1
2

∂α∂αhµν, Rµν =
1
2

∂α∂αhµν, (A12)

R =
1
2

∂α∂αh, Gµν =
1
2

∂α∂α(hµν − 1
2

ηµνh). (A13)

From (A11) and (A13), we find that if Γµ = 0, ∂tΓµ = 0 at any given time t = t0, it will
always hold due to the Bianchi identity Gµν

;ν = 0.
To compare with electromagnetism and to understand the physical meaning of the

parameters, denote

Φ =
1
2

htt =
1
2

htt, ~A = (htx, hty, htz) = −(htx, hty, htz), (A14)

H = (hab) = (hab), ({a, b} ∈ {1, 2, 3}), ~B = ∇× ~A. (A15)

In the International System of Units, we have the order of magnitude of the metric
components

c2|hab| ∼ c|Ak| ∼ |Φ| � 1, (a 6= b), (A16)

which means |hab| � |Ak| � |Φ| � 1 if we take c = 1 as the unit.
For the present purpose, we define the stellar speed ~V by

~V ≡ 1
U0 (U

1, U2, U3), (A17)

which is approximately equivalent to the usual definition. For galaxies, we have the
following order of magnitude

|~V| ∼ 300 km/s = 10−3c, ~A ∼ κ̄~V, hab ∼ κ̄|~V|2, (a 6= b),

in which the coefficient κ̄ is also a number of small value. Then, according to

1 =
√

gµνUµUν = (1 + 2Φ− 2~A · ~V + gabVaVb)
1
2 U0,

by omitting the O(V2) terms, the low-speed assumption gives

U0 = 1−Φ + ~A · ~V. (A18)

Substituting (A17) and (A18) into (A8) and omitting the higher-order terms, we obtain the
continuity equation and motion equation for the stars

(∂t + ~V · ∇)ρs = −ρs[∇ · ~V + (∂tΦ +∇ · ~A)], (A19)

(∂t + ~V · ∇)~V = −∇Φ + (−∂t ~A + ~V∂tΦ) + ~V × ~B + ~V · ∂tH. (A20)

In (A19), we used the de Donder condition Γ0 = 0 in the form

1
2

∂t(hxx + hyy + hzz) = −(∂tΦ +∇ · ~A). (A21)

The equation of motion (A20) is similar to electrodynamics. From it we learn that, Φ gives
the Newtonian gravitational potential, and ~A leads to the gravimagnetic field ~B.

By (A9) and (A13), we have

∂α∂αh = 2κ̄(ρ + 4W − 3P). (A22)
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By (A10), (A12) and (A22), we obtain the dynamic equations for hµν

∂α∂αhµν = −2κ̄(ρ + P)UµU ν + κ̄(ρ + 2W − P)ηµν, (A23)

∂α∂αχµν = −2κ̄[(ρ + P)UµU ν + (W − P)ηµν], (A24)

where χµν = hµν − 1
2 ηµνh. If the average speed of the dark halo is also small, omitting

O(~U 2) from (A23), we obtain hxx = hyy = hzz ≡ 2Ψ, hab = 0, (a 6= b) and

∂α∂αΦ =
1
2

∂α∂αh00 = −4πGρ, (A25)

∂α∂αΨ =
1
2

∂α∂αhkk = −4πGρ̃, (A26)

where ρ and ρ̃ are the effective mass densities with little difference. Their zeroth-order
approximation gives

ρ = ρ[2(U 0)2 − 1]− 2W + P[2(U 0)2 + 1]

=̇ ρ − 2W + 3P. (A27)

ρ̃ =̇ ρ + 2W − P. (A28)

In the following discussion, only the zeroth-order approximation of (A19), (A20) and (A25)
are involved. The precision of these equations is sufficient for calculations of galactic
dynamics in the effective domain r ∈ [R0, R1].

In order to obtain the the Hamiltonian formalism of Dirac equation in curved soace-
time, we need the natural coordinate system(NCS) [32]

ds2 = gttdt2 − ḡkldxkdxl , dτ =
√

gttdt, dV =
√

ḡd3x. (A29)

In which ds is the 4-d length of line element, dτ is the Newton’s absolute cosmic time
element and dV is the absolute volume element of space at time t. The NCS generally
exists and the global simultaneity is unique. Only in NCS can we clearly establish the
Hamiltonian formalism and calculate the Noether charges.

The NCS is a wonderful coordinate system different from the Gaussian coordinate
system that is valid only in the neighborhood of the initial Cauchy hypersurface. The isodis-
tant translating hypersurface will deform soon, so that the metric ds2 = dt2 + gkldxkdxl

becomes invalid. The NCS is also different from the Einstein’s lift moving along a geodesic,
namely the co-moving coordinate system, as this requires the lift to be an infinitesimal
volume in curved space-time. While NCS holds unconditionally and globally, and its
time is objective cosmic time. gtt represents gravity and cannot be merged into the time
coordinate t.

However, the NCS is not suitable for the linearization of the Einstein’s field equations,
because for a rotating galaxy the coordinate transformation from harmonic coordinate
system to NCS is similar to

r′ = r, θ′ = θ, ϕ′ = ω(r, θ)t + ϕ, (A30)

and such transformation with rotation cannot be linearized.
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