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Abstract: We will introduce four new geometric constants closely related to the James constant J(X),
which have symmetric structure, along with a discussion on the relationships among them and some
other well-known geometric constants via several inequalities, together with the calculation of several
values on some specific spaces. In addition, we will characterize geometric properties of J1(X), such
as uniform non-squareness and uniformly normal structure.
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1. Introduction and Preliminaries

Recently a number of geometric constants, which play a significant role in the theory of
Banach space geometry, have been widely investigated. One of the well-known geometric
constants is the James constant J(X) proposed by Gao and Lau [1,2], which is defined
as follows:

J(X) = sup{min{‖x + y‖, ‖x− y‖} : x, y ∈ SX}
= sup{min{‖x + y‖, ‖x− y‖} : x, y ∈ BX}.

The relationship between it and other geometric constants, and its significant geometric
properties such as normal structure in the context of fixed point property have been
extensively discussed in [1–7].

It is noteworthy that a Banach space X has the fixed point property for nonexpansive
mappings if each nonexpansive self-mapping of each non-empty bounded closed convex
subset of X has a fixed point. When it comes to the non-empty weakly compact convex
subset of X with normal structure, it is found that X has the weak fixed point property for
nonexpansive mappings. It has been shown that further studies of uniform non-squareness
are very useful in the description of a fixed point property. Particularly, García-Falset et
al. obtained an important generalization of Browder–Göhde and Kirk theorems for the
existence of fixed points of a nonexpansive mapping, i.e., every uniformly non-square
Banach space has the fixed point property [8]. For more details of applications of the fixed
point property, we recommand the references [9–12].

Recall that a classical constant A2(X) of a Banach space X, which is defined by

A2(X) = sup
{
‖x + y‖+ ‖x− y‖

2
: x, y ∈ X, ‖x‖ = ‖y‖ = 1

}
,

has been intensively investigated by Baronti et al. [13]. By extension of the domain from
‖x‖ = ‖y‖ = 1 to ‖x‖2 + ‖y‖2 = 2, Takahashi and Kato have discussed a new constant
A(X) in relation with A2(X) and other geometric constants such as the James constant
J(X) and von Neumann–Jordan constant CNJ(X). From this germ of the idea emerged a
sequence of the strengthened and improved relationships among the geometric constants.
Furthermore, the characterization of uniform non-squareness has also been shown by
means of the aforementioned discussion. For readers who are interested in pursuing more
introduction and theoretical results of this constant, we recommend reference [14].

Symmetry 2022, 14, 405. https://doi.org/10.3390/sym14020405 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14020405
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-2641-3773
https://orcid.org/0000-0002-6049-5282
https://orcid.org/0000-0003-4322-308X
https://doi.org/10.3390/sym14020405
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14020405?type=check_update&version=1


Symmetry 2022, 14, 405 2 of 16

Motivated by the characterizations of the James constant J(X) with its prominent
properties due to its symmetric structure, we will introduce four new James type constants
J1(X), J2(X), J3(X), and J4(X), which are also endowed with symmetric structure. In
Section 2, we mainly focus on a new James type constant J1(X), which is derived from
the original James constant J(X) combined with the notion of metric. We then bring out
several relationships between it and some other well-known geometric constants such as
the James constant J(X), which will be subsequently employed to explore the connection
between it and its dual, together with the estimation of the upper and lower bounds of
it. Moreover, a few connections between its value and some geometrical properties of the
space, such as uniform non-squareness and uniformly normal structure, will be shown
by inequalities. In Section 3, we will introduce another new James type constant J2(X)
combined with the notion of isosceles orthogonality, whereby the relationship between it
and the James constant J(X) and the connection between it and its dual will be different.
By considering the extension of its domain from the unit sphere to the whole Banach space,
we define a new constant J3(X) and therefore illustrate the difference between J2(X) and
J3(X) by giving an example on an inner product space in terms of their values. Inspired
by the characterizations of the constant A(X), we will discuss the last James type constant
J4(X) in Section 4, and obtain several results mainly by conducting a comparison between
it and James constant J(X), which will show their similarities and differences on some
specific Banach spaces.

Throughout the paper, we consider the real Banach space X with dim X ≥ 2 and the
infinite-dimensional Banach space X, and use SX and BX to symbolize the unit sphere and
closed unit ball of X, respectively.

We recall several geometric properties closely related to the geometric structure of
Banach space as follows.

Definition 1. A Banach space X is called uniformly non-square if there exists δ ∈ (0, 1) such that
for any x, y ∈ SX , we have either ‖x+y‖

2 ≤ 1− δ or ‖x−y‖
2 ≤ 1− δ.

Definition 2 ([15]). We define diamA = sup{‖x− y‖ : x, y ∈ A} to represent diameter of A
and r(A) = inf{sup{‖x− y‖} : y ∈ A} is called Chebyshev radius of A. A Banach space X has
normal structure provided

r(A) < diamA

for every bounded closed convex subset A of X with diamA > 0. A Banach space X is said to have
uniform normal structure if

inf
{

diamA
r(A)

}
> 1,

with diamA > 0.

In order to study the property of James type constants that appear in the paper, we
also recall the following modulus of smoothness of X [16].

Definition 3. Let X be a Banach space, then the modulus of smoothness ρX(t) is defined by

ρX(t) = sup
{
‖x + ty‖+ ‖x− ty‖

2
− 1 : x, y ∈ SX

}
, t ≥ 0.

The applications of aforementioned constants J(X), A2(X), A(X), and ρX(t) can be
presented as simply and plainly as possible in the following terms [5,13,14].

(i) For any Banach space,
√

2 ≤ J(X) ≤ A2(X) ≤ A(X) ≤ 2.
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(ii) For any Banach space,

ρX(1) ≤ 2
(

1− 1
J(X)

)
,

and

A(X) = max
0≤t≤1

√
2(1 + ρX(t))√

1 + t2

≤
√

2
√

1 + (A2(X)− 1)2

≤
√

2

√
1 + 4

(
1− 1

J(X)

)2

≤ (1 +
√

J(X)− 1)2

.

(iii) If X is a Hilbert space, then J(X) =
√

2, resp. A2(X) =
√

2, resp. A(X) =
√

2,
resp. ρX(t) =

√
1 + t2 − 1.

(iv) X is uniformly non-square if and only if one of the following conditions is true: (a)
J(X) < 2, (b) A2(X) < 2, (c) A(X) < 2, (d) ρX(1) < 1.

(v) Let X be a Banach space. Then

2J(X)− 2 ≤ J(X∗) ≤ 1
2

J(X) + 1,

resp.
A2(X) = A2(X∗),

resp. √
A(X)2

2
− 1 + 1 ≤ A(X∗) ≤

√
2
√

1 + (A(X)− 1)2,

resp.
ρX(1) = ρX∗(1).

The following lemma will be employed in the proofs of this paper.

Lemma 1. f (t) = t
1+t is continuously increasing on (0,+∞).

2. James Type Constant Related to Metric

For the sake of revealing the origin of J1(X) , we first bring up the following notion of
metric. It is easy to see d(x, y) = ‖x− y‖ is a metric on X, and then we can easily transform
J(X) into following term.

J(X) = sup{min{d(x, y), d(x,−y)} : x, y ∈ SX}.

Let ρ(x, y) = ‖x−y‖
1+‖x−y‖ . Then ρ(x, y) is a metric on X. Thus we consider the following

symmetric James type constant:

J1(X) = sup
{

min
{
‖x + y‖

1 + ‖x + y‖ ,
‖x− y‖

1 + ‖x− y‖

}
: for all x, y ∈ SX

}
.

Theorem 1. Let X be a Banach space. Then

1
3

J(X) ≤ J1(X) ≤ J(X).
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Proof. Since x, y ∈ SX ,

‖x + y‖
1 + ‖x + y‖ ≥

‖x + y‖
1 + ‖x‖+ ‖y‖ =

‖x + y‖
3

.

Similarly, we can deduce that

‖x− y‖
1 + ‖x− y‖ ≥

‖x− y‖
1 + ‖x‖+ ‖y‖ =

‖x− y‖
3

.

Therefore,

min
{
‖x + y‖

1 + ‖x + y‖ ,
‖x− y‖

1 + ‖x− y‖

}
≥ 1

3
min{‖x + y‖, ‖x− y‖},

which implies that

J1(X) ≥ 1
3

J(X).

On the other hand, since

‖x + y‖
1 + ‖x + y‖ ≤ ‖x + y‖,

and
‖x− y‖

1 + ‖x− y‖ ≤ ‖x− y‖,

therefore,

min
{
‖x + y‖

1 + ‖x + y‖ ,
‖x− y‖

1 + ‖x− y‖

}
≤ min{‖x + y‖, ‖x− y‖},

i.e., J1(X) ≤ J(X).

Proposition 1. Let X be a Banach space. Then

J1(X) ≤ J(X)

1 + J(X)
.

Proof. For any x, y ∈ SX , since

‖x + y‖
1 + ‖x + y‖ = 1− 1

1 + ‖x + y‖ ≥ min
{

1− 1
1 + ‖x + y‖ , 1− 1

1 + ‖x− y‖

}
,

and

‖x− y‖
1 + ‖x− y‖ = 1− 1

1 + ‖x− y‖ ≥ min
{

1− 1
1 + ‖x + y‖ , 1− 1

1 + ‖x− y‖

}
,

therefore,

1− 1
1 + min{‖x + y‖, ‖x− y‖} ≥ min

{
1− 1

1 + ‖x + y‖ , 1− 1
1 + ‖x− y‖

}
,
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which implies that

J(X)

1 + J(X)
= 1− 1

1 + J(X)

= 1− 1
1 + sup{min{‖x + y‖, ‖x− y‖} : x, y ∈ SX}

= 1− inf
{

1
1 + min{‖x + y‖, ‖x− y‖} : x, y ∈ SX

}
= sup

{
1− 1

1 + min{‖x + y‖, ‖x− y‖} : x, y ∈ SX

}
≥ sup

{
min

{
1− 1

1 + ‖x + y‖ , 1− 1
1 + ‖x− y‖

}
: x, y ∈ SX

}
= J1(X),

namely, J(X)
1+J(X)

≥ J1(X).

Example 1. Let X be the space `p.

By utilizing Proposition 1 and results from [17],

J(X) =

{
2

1
p if 1 ≤ p ≤ 2,

21− 1
p if p ≥ 2.

we can easily obtain

J1(X) ≤


2

1
p

1+2
1
p

if 1 ≤ p ≤ 2,
2

2+2
1
p

if p ≥ 2.

If p ≥ 2, let x = 2−
1
p (1, 1, 0, . . .), y = 2−

1
p (1,−1, 0, . . .) ∈ S`p . Then

‖x + y‖ = 21− 1
p , ‖x− y‖ = 21− 1

p ,

J1(X) ≥ min
{
‖x + y‖

1 + ‖x + y‖ ,
‖x− y‖

1 + ‖x− y‖

}
=

2

2 + 2
1
p

.

If 1 ≤ p ≤ 2, let x = (1, 0, 0, . . .), y = (0, 1, 0, . . .) ∈ S`p . Then

‖x + y‖ = 2
1
p , ‖x− y‖ = 2

1
p ,

J1(X) ≥ min
{
‖x + y‖

1 + ‖x + y‖ ,
‖x− y‖

1 + ‖x− y‖

}
=

2
1
p

1 + 2
1
p

.

Therefore,

J1(X) =


2

1
p

1+2
1
p

if 1 ≤ p ≤ 2,
2

2+2
1
p

if p ≥ 2.

Proposition 2. Let X be a non-trivial Banach space. Then

2−
√

2 ≤ J1(X) ≤ 2
3

.
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Proof. By utilizing result from James constant J(X) [1],
√

2 ≤ J(X) ≤ 2.

By employing Lemma 1 and Proposition 1, we obtain

J1(X) ≤ 2
3

.

On the other hand, by utilizing Theorem 10 in [18], we can deduce that there exist
x0, y0 ∈ SX such that

‖x0 + y0‖ = ‖x0 − y0‖ =
√

2,

which shows

J1(X) ≥
√

2
1 +
√

2
= 2−

√
2.

This completes the proof.

Theorem 2. Let X be Hilbert space. Then J1(X) = 2−
√

2.

Proof. Assume that X is Hilbert space, then

‖x + y‖2 + ‖x− y‖2 = 4.

For any x, y ∈ SX , let ‖x + y‖ ≥ ‖x− y‖. By utilizing Lemma 1, we have

‖x + y‖
1 + ‖x + y‖ ≥

‖x− y‖
1 + ‖x− y‖ .

In addition, since ‖x + y‖ ≥ ‖x − y‖, then 4 = ‖x + y‖2 + ‖x − y‖2 ≥ 2‖x − y‖2,
which implies that ‖x− y‖ ≤

√
2.

Thus

J1(X) = sup
{
‖x− y‖

1 + ‖x− y‖ : x, y ∈ SX

}
≤

√
2

1 +
√

2
= 2−

√
2,

i.e., J1(X) = 2−
√

2.

In order to reveal the relationship between J1(X) and the uniform smoothness, the
aforementioned constant ρX(t) will be employed in the following theorems
and corollaries.

Theorem 3. Let X be a Banach space. Then

ρX(t) ≤
[2− J1(X)]max{1, t} − 1 + J1(X)

2− 2J1(X)
.

Proof. Let x, y ∈ SX . Then

‖x + ty‖ =
∥∥∥∥1 + t

2
· (x + y) +

1− t
2
· (x− y)

∥∥∥∥ ≤ 1 + t
2
‖x + y‖+ |1− t|

2
‖x− y‖,

and

‖x− ty‖ =
∥∥∥∥1 + t

2
· (x− y) +

1− t
2
· (x + y)

∥∥∥∥ ≤ 1 + t
2
‖x− y‖+ |1− t|

2
‖x + y‖.
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Thus

‖x + ty‖+ ‖x− ty‖ ≤ 1 + t + |1− t|
2

· (‖x + y‖+ ‖x− y‖)

= max{1, t}(‖x + y‖+ ‖x− y‖)
≤ max{1, t}(2 + min{‖x + y‖, ‖x− y‖}),

which implies that

‖x + ty‖+ ‖x− ty‖
max{1, t} − 2 ≤ min{‖x + y‖, ‖x− y‖}.

Note that

J1(X) ≥ min{‖x + y‖, ‖x− y‖}
1 + min{‖x + y‖, ‖x− y‖} = 1− 1

1 + min{‖x + y‖, ‖x− y‖} ,

we have

min{‖x + y‖, ‖x− y‖} ≤ J1(X)

1− J1(X)
.

Therefore,
‖x + ty‖+ ‖x− ty‖

max{1, t} − 2 ≤ J1(X)

1− J1(X)
,

i.e., 2ρX(t)+1
max{1,t} − 2 ≤ J1(X)

1−J1(X)
.

Hence

2ρX(t) ≤ max{1, t}
(

J1(X)

1− J1(X)
+ 2
)
− 1

=
[2− J1(X)]max{1, t} − 1 + J1(X)

1− J1(X)
.

This completes the proof.

Corollary 1. Let X be a Banach space. Then

J1(X) ≤ ρX(1) + 1
2 + ρX(1)

.

Proof. For any x, y ∈ SX , we can deduce that

J(X) ≤ ρX(1) + 1.

By utilizing Lemma 1 and Proposition 1, we obtain

J1(X) ≤ ρX(1) + 1
2 + ρX(1)

.

This completes the proof.

Corollary 2. Let X be a Banach space. Then

ρX(1) ≤ 2
{

1− 3
J1(X)

}
.

Proof. Since X is a Banach space, and by [6], we have

ρX(1) ≤ 2
{

1− 1
J(X)

}
.
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By employing Theorem 1, we obtain

ρX(1) ≤ 2
{

1− 1
J(X)

}
≤ 2

{
1− 3

J1(X)

}
.

This completes the proof.

Next, we will consider the dual space X∗, and manage to bring out the relationship
between J1(X) and J1(X∗) by utilizing the aforementioned theorem.

Theorem 4. Let X be a Banach space. Then

1
3
(2J1(X)− 2) ≤ J1(X∗) ≤ 3

2
J1(X) + 1.

Proof. By [5], we have

2J(X)− 2 ≤ J(X∗) ≤ 1
2

J(X) + 1.

By utilizing Theorem 1, we have

1
3

J(X) ≤ J1(X) ≤ J(X).

By employing Lemma 1, we have

J1(X∗) ≥ 1
3

J(X∗)

≥ 1
3
(2J(X)− 2)

≥1
3
(2J1(X)− 2),

and
J1(X∗) ≤ J(X∗)

≤ 1
2

J(X) + 1

≤ 3
2

J1(X) + 1.

Therefore,
1
3
(2J1(X)− 2) ≤ J1(X∗) ≤ 3

2
J1(X) + 1.

This completes the proof.

Theorem 5. Let X be a non-trivial Banach space. Then J1(X) < 2
3 if and only if X is uniformly

non-square.

Proof. According to the definition of uniformly non-square, there exists a δ ∈ (0, 1) such
that for any x, y ∈ SX, either

∥∥∥ x+y
2

∥∥∥ ≤ 1− δ or
∥∥∥ x−y

2

∥∥∥ ≤ 1− δ. We first consider the case∥∥∥ x+y
2

∥∥∥ ≤ 1− δ. Then we have

‖x + y‖
1 + ‖x + y‖ = 1− 1

1 + ‖x + y‖ ≤ 1− 1
3− 2δ

<
2
3

.
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In the case
∥∥∥ x−y

2

∥∥∥ ≤ 1− δ, by utilizing the same method above, we can obtain that

‖x− y‖
1 + ‖x− y‖ ≤ 1− 1

3− 2δ
<

2
3

.

Furthermore, if J1(X) < 2
3 , by applying Theorem 1, J(X) < 2, then X is uniformly

non-square. This completes the proof.

Next, we consider the uniform normal structure of J1(X). The concept of normal
structure plays an important role in Banach space geometry and fixed point theory. It was
proved by Kirk [19] that every reflexive Banach space with normal structure has the fixed
point property. We recall a lemma from Dhompongsa et al. [3] as follows.

Lemma 2. Let X be a Banach space with J(X) < 1+
√

5
2 . Then X has uniformly normal structure.

Theorem 6. Let X be a Banach space. If J1(X) <
√

5+1
6 , then X has uniformly normal structure.

Proof. Since J1(X) <
√

5+1
6 , by employing Theorem 1, we have

J(X) ≤ 3J1(X),

hence

J(X) <
1 +
√

5
2

.

By utilizing Lemma 2, we obtain that X has uniformly normal structure.

3. Several Inequalities Related to New Constant J2(X)

In this section, we continue to discuss the James type constant J2(X), which is different
from the aforesaid constant J1(X) when it comes to the conditions of vectors x and y. It is
defined as follows.

J2(X) = sup
{
‖x + y‖

1 + ‖x + y‖ : x, y ∈ SX , x ⊥I y
}

.

Theorem 7. If X is an inner product space, then

J2(X) = 2−
√

2.

Proof. For any x, y ∈ SX satisfying x ⊥I y, by parallelogram law, we have

2‖x + y‖2 = ‖x + y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2 = 4,

thus
‖x + y‖ = ‖x− y‖ =

√
2.

Therefore,
‖x + y‖

1 + ‖x + y‖ = 2−
√

2,

that is, J2(X) = 2−
√

2.

Theorem 8. Let X be a Banach space. Then

1
3

J(X) ≤ J2(X) ≤ 1
2

J(X).
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Proof. Since x, y ∈ SX , x ⊥I y,

‖x + y‖
1 + ‖x + y‖ ≥

‖x + y‖
1 + ‖x‖+ ‖y‖ =

‖x + y‖
3

.

Therefore,

J2(X) ≥ 1
3

J(X).

However, since x ⊥I y, thus

2‖x + y‖ = ‖x + y‖+ ‖x− y‖ ≥ ‖2x‖ = 2,

that is, ‖x + y‖ ≥ 1.
Hence

1 + ‖x + y‖ = 1 + ‖x− y‖ ≥ 2,

and then
‖x + y‖

1 + ‖x + y‖ ≤
‖x + y‖

2
.

Therefore,

J2(X) ≤ 1
2

J(X).

This completes the proof.

For dual space X∗, we will bring out the relationship between J2(X) and J2(X∗) by
utilizing the aforementioned theorem.

Theorem 9. Let X be a Banach space. Then

4
3

J2(X)− 2
3
≤ J2(X∗) ≤ 3

4
J2(X) +

1
2

.

Proof. By [5], we have

2J(X)− 2 ≤ J(X∗) ≤ 1
2

J(X) + 1.

For any x, y ∈ SX , x ⊥I y, by utilizing Theorem 8, we have

J2(X∗) ≤ 1
2

J(X∗)

≤ 1
4

J(X) +
1
2

≤ 3
4

J2(X) +
1
2

,

and
J2(X∗) ≥ 1

3
J(X∗)

≥1
3
(2(J(X)− 1))

=
2
3

J(X)− 2
3

≥ 4
3

J2(X∗)− 2
3

.

This completes the proof.
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Note: We consider the following case:

J3(X) = sup
{
‖x + y‖

1 + ‖x + y‖ : x, y ∈ X, x ⊥I y
}

.

It is easy to prove that for any Banach space X, we have J3(X) = 1.
In fact, for any x ∈ SX , y ∈ BX satisfying x ⊥I y, by [20], we have

‖x + y‖ ≥ 2(
√

2− 1)‖x‖ = 2(
√

2− 1).

Now take nx ∈ nSX, ny ∈ nBX, of course they satisfy nSX, nBX ⊂ X and nx ⊥I ny,
then we have

‖nx + ny‖ ≥ 2(
√

2− 1)‖nx‖ = 2(
√

2− 1)n.

Therefore,

J3(X) ≥ ‖nx + ny‖
1 + ‖nx + ny‖ =

2(
√

2− 1)n
1 + 2(

√
2− 1)n

.

Since n can be arbitrarily large, then

J3(X) ≥ lim
n→+∞

‖nx + ny‖
1 + ‖nx + ny‖ = 1,

and J3(X) ≤ 1.
Therefore,

J3(X) = 1.

Example 2. Let H be any inner product space. By utilizing Theorem 7, we have

J2(H) = 2−
√

2.

However, by employing the aforementioned Note, J3(X) = 1 holds for any Banach space, hence

J3(H) = 1.

Therefore,
J3(H) 6= J2(H).

4. James Type Constant J4(X)

In this section, we will discuss the last James type constant J4(X) by utilizing several
heuristic ideas from the investigation of the constant A(X) proposed by Takahashi and
Kato [14]. By considering the extension of the domain of the James constant from ‖x‖ = ‖y‖
= 1 to ‖x‖2 + ‖y‖2 = 2, we can define the symmetric constant J4(X) as follows.

J4(X) = sup{min{‖x + y‖, ‖x− y‖} : ‖x‖2 + ‖y‖2 = 2}.

Obviously, for all Banach space X,
√

2 ≤ J(X) ≤ J4(X) ≤ A(X) ≤ 2.

Theorem 10. Let X be a Banach space. Then

2A(X)− 2 ≤ J4(X) ≤ A(X).

Proof. For any x, y ∈ X satisfying ‖x‖2 + ‖y‖2 = 2, we have

‖x + y‖2 ≤ 2(‖x‖2 + ‖y‖2) = 4,
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and
‖x− y‖2 ≤ 2(‖x‖2 + ‖y‖2) = 4,

hence
‖x + y‖ ≤ 2, ‖x− y‖ ≤ 2.

Therefore,

‖x + y‖+ ‖x− y‖
2

≤ 1
2
(min{‖x + y‖, ‖x− y‖}+ 2)

=
1
2

min{‖x + y‖, ‖x− y‖}+ 1,

which implies that A(X) ≤ 1
2 J4(X) + 1.

To prove the right-hand side of the inequalities, we use the following fact that

min{‖x + y‖, ‖x− y‖} ≤ ‖x + y‖, min{‖x + y‖, ‖x− y‖} ≤ ‖x− y‖,

hence

min{‖x + y‖, ‖x− y‖} ≤ ‖x + y‖+ ‖x− y‖
2

,

which implies that
J4(X) ≤ A(X).

This completes the proof.

Proposition 3. Let X be a Banach space. Then

J4(X) = sup

{
min

{√
2‖x + ty‖√

1 + t2
,

√
2‖x− ty‖√

1 + t2

}
: x, y ∈ SX , 0 ≤ t ≤ 1

}
.

Proof. Let ‖u‖2 + ‖v‖2 = 2 and ‖u‖ ≥ ‖v‖ > 0, u, v ∈ X. Then, since 1 ≤ ‖u‖ <
√

2, we
have

√
1 + t2‖u‖ =

√
2 with some t ∈ (0, 1]. Now let x =

√
1+t2u√

2
and y =

√
1+t2v√

2t
. Then

x, y ∈ SX and we have

‖u + v‖ =
√

2‖x + ty‖√
1 + t2

,

and

‖u− v‖ =
√

2‖x− ty‖√
1 + t2

.

Therefore,

J4(X) ≤ sup

{
min

{√
2‖x + ty‖√

1 + t2
,

√
2‖x− ty‖√

1 + t2

}
: x, y ∈ SX , 0 ≤ t ≤ 1

}
.

Conversely, let x, y ∈ SX and t ∈ [0, 1]. Let u =
√

2x√
1+t2 and v =

√
2ty√

1+t2 . Then

‖u‖2 + ‖v‖2 = 2, and then the opposite inequality holds.

Proposition 4. Let X be a Banach space. Then

J4(X) ≤ max
0≤τ≤1

√
2(1 + ρX(τ))√

1 + τ2
.

Proof. Since

A(X) = max
0≤τ≤1

√
2(1 + ρX(τ))√

1 + τ2
,
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we have

J4(X) ≤ A(X) = max
0≤τ≤1

√
2(1 + ρX(τ))√

1 + τ2
.

This completes the proof.

Theorem 11. Let X be a Banach space. Then

J(X) ≤ J4(X) ≤
√

2
√

J(X).

Proof. For any x, y ∈ X satisfying ‖x‖ = ‖y‖ = 1, of course we have‖x‖2 + ‖y‖2 = 2.
Then we get J4(X) ≥ J(X) for Banach space X.

However, it is well-known that

ρX(τ)

τ
≤ ρX(1) for all τ ∈ (0, 1].

By employing Proposition 4, we have

J4(X) ≤
√

2(1 + ρX(τ0))√
1 + τ2

0

≤
√

2(1 + ρX(1)τ0)√
1 + τ2

0

≤
√

2
√

1 + ρX(1)2,

for some τ0 ∈ (0, 1]. Since ρX(1) ≤
√

J(X)− 1 from [6], then we have

J4(X) ≤
√

2
√

J(X).

This completes the proof.

Corollary 3. Let X be a Banach space. Then

J4(X)− J(X) ≤ 2
3
4 −
√

2,

and the equality holds only if J4(X) = 2
3
4 and J(X) =

√
2.

Proof. Let f (t) =
√

2
√

t− t. Then f (t) is strictly increasing on t ∈
[
0, 1

2

]
, and decreasing

on t ∈
(

1
2 , 2
]
. Since

√
2 ≤ J(X) ≤ 2, it follows from the aforementioned inequality that

J4(X)− J(X) ≤ f (J(X)) ≤ f (
√

2) = 2
3
4 −
√

2.

The latter assertion is easily deduced.

Corollary 4. Let X be a Banach space. Then

1 +
(

J4(X)2

2
− 1
)2

≤ J4(X∗) ≤
√

2

√
1 +

√
J4(X)− 1.

Proof. By [7], we have 1 + (J(X)− 1)2 ≤ J(X∗) ≤ 1 +
√

J(X)− 1. Then

J4(X∗) ≤
√

2
√

J(X∗)

≤
√

2

√
1 +

√
J(X)− 1

≤
√

2

√
1 +

√
J4(X)− 1,
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and
J4(X∗) ≥ J(X∗)

≥ 1 + (J(X)− 1)2

≥ 1 +
(

J4(X)2

2
− 1
)2

.

Therefore we complete the proof.

Example 3. Let X be Lp, 1 ≤ p < ∞. Then J4(Lp) = 2
1

min{p,p′} , where 1
p + 1

p′ = 1.

By [14], J(Lp) = A(Lp) = 2
1

min{p,p′} , along with Theorems 10 and 11, we get

J(Lp) ≤ J4(Lp) ≤ A(Lp),

which implies that

J4(Lp) = 2
1

min{p,p′} .

Example 4. Let X be R2 endowed with `∞ − `1 norm

‖x‖ =
{
‖x‖∞ if x1x2 ≥ 0,
‖x‖1 if x1x2 ≤ 0.

for x = (x1, x2) ∈ R2.

By [14], we know that J4(`∞ − `1) ≤ A(`∞ − `1) =
√

10
2 .

Furthermore, let t = 1
2 , x = (1, 1), y =

(
− 1

2 , 1
2

)
. Obviously, x, y ∈ S`∞−`1 . Then

‖x + ty‖ = ‖x− ty‖ = 5
4

.

Therefore,

J4(`∞ − `1) ≥ min

{√
2‖x + ty‖√

1 + t2
,

√
2‖x + ty‖√

1 + t2

}

=

√
2 · 5

4√
1 +

(
1
2

)2

=

√
10
2

,

which implies that J4(`∞ − `1) =
√

10
2 . We know that J(`∞ − `1) = 3

2 from [5]. Then
J4(`∞ − `1) > J(`∞ − `1).

Theorem 12. Let X be a Banach space. Then X is a Hilbert space if and only if J4(X) =
√

2.

Proof. By [14], X is a Hilbert space if and only if A(X) =
√

2, and J(X) =
√

2 by [1]; we
can easily obtain J4(X) =

√
2 by the inequality J(X) ≤ J4(X) ≤ A(X).

Theorem 13. Let X be a Banach space. Then J4(X) < 2 if and only if X is uniformly non-square.

Proof. If X is uniformly non-square, by [14], we have A(X) < 2, then J4(X) ≤ A(X) < 2.
Conversely, if J4(X) < 2, then J(X) < 2, which implies that X is uniformly non-square.
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5. Conclusions

In this paper, we introduced a new James type constant J1(X), which combines with
the notion of metric. It is of interest to characterize its relationships with a diversity of
well-known geometric constants and investigate its geometric properties, such as uniform
non-squareness and uniform normal structure. Moreover, we provide a study of its derived
forms J2(X) and J3(X) with different conditions, thus making a comparison between them
in terms of their values of the specific Banach space. Finally, we bring up the last James
type constant J4(X) with the condition ‖x‖2 + ‖y‖2 = 2, which can be very intriguing, by
conducting a contrast between it and James constant J(X). However, there are still plenty
of interesting problems that await discussion. How can all four James type constants be
utilized to characterize more geometric properties? Henceforth, more results about James
type constants will be presented in future research for the readers who are interested in the
theory of geometric constants of Banach space.
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