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Abstract: For a graph G = (V, E), an independent Roman dominating function (IRDF) is a function
f : V → {0, 1, 2} having the property that: (1) every vertex assigned a value of 0 is adjacent to at least
one vertex assigned a value of 2, (2) there are no two adjacent vertices with positive assignments.
The weight of an IRDF (w( f )) is the sum of assignments for all vertices. The minimum weight of
an independent Roman dominating function on graph G is the independent Roman domination
number, denoted by iR(G). In this paper, we prove that the decision problem of minimum IRDF is
NP-complete for chordal bipartite graphs. Then, we research the difference in complexity between
the decision problem of RDF and IRDF. Finally, we propose a linear-time algorithm for computing
the minimum weight of an independent Roman dominating function in trees.

Keywords: Roman domination; independent Roman domination; NP-complete; complexity difference;
linear time algorithm

1. Introduction

In this paper, the independent Roman dominating function we have studied is a
variant of the Roman dominating function.

Let G be a simple and undirected graph with sets of vertex V(G) and edge E(G). For
every vertex v ∈ V, we denote the set {u ∈ V(G) : uv ∈ E(G)} is the open neighborhood
N(v) and the set N(v) ∪ {v} is the closed neighborhood N[v]. In graph G, the degree
of a vertex v is denoted by dG(v), the minimum degree is denoted by δ = δ(G) and the
maximum degree is denoted by ∆ = ∆(G). If dG(u) = 1, then we call the vertex u is a leaf
and its neighbor is a support vertex. If a support vertex is adjacent to at least two leaves,
we call it a strong support vertex. If V(G) can be partitioned into two disjoint independent
sets, we call the graph G a bipartite graph. If every cycle of length at least 6 has a chord in
bipartite graph G, then the bipartite graph G is called a chordal bipartite graph. A tree T is
an acyclic connected graph. For any positive integer k, we denote the set {1, 2, . . ., k} by [k].
The dihedral group Dn is the symmetry group of a regular polygon with n sides.

For a graph G = (V, E), let f : V → {0, 1, 2} be a function, Vi = {v ∈ V : f (v) = i} for
i = 0, 1, 2 be a set, and (V0, V1, V2) be the ordered partition of V induced by f . The functions
f : V → {0, 1, 2} and the ordered partitions (V0, V1, V2) of V are a 1− 1 correspondence.
So, we will write f = (V0, V1, V2).

The concept of Roman domination in graphs was introduced by Cockayne et al. in
2004 [1]. The definition of Roman dominating function is that a function f : V → {0, 1, 2}
is a Roman dominating function (RDF) if every vertex assigned a value of 0 is adjacent to at
least one vertex assigned a value of 2 [2]. The weight of an RDF is the sum of assignments
for all vertices. The minimum weight of a Roman dominating function on G is the Roman
domination number, denoted by γR(G).
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To date, many articles have been published on the topic of Roman domination. Cockayne
et al. [2] introduced the properties of Roman dominating functions. Blidia, Chambers
et al. [3–6] researched the bounds on Roman dominating functions and Bermudo et al. [7,8]
discovered the relationships with some domination parameters. In terms of algorithm and
complexity, Cockayne et al. [2] introduced a linear-time algorithm for computing Roman
domination problem on trees. McRae [2] showed the decision problem corresponding to
Roman dominating functions (DECIDE-RDF) was NP-complete for bipartite graphs, split
graphs, and planar graphs. Moreover, some linear-time algorithms for the Roman domination
problem on bounded treewidth graphs and block graphs were proposed [9]. Liedloff et al. [10]
discovered that there were linear-time algorithms for computing the Roman domination
number on cographs and interval graphs. Many variants of the Roman domination problem
have also been studied in depth by many scholars [11–14].

The concept of the independent dominating set originated from the chessboard prob-
lems. The correlation theory was formalized by Berge [15] in 1962. A set S is independent
if there are no connected edges for any two vertices in S. An independent dominating set
of G is a set that is both dominating and independent in G. The independent domination
number of G, denoted by iG, is the minimum size of an independent dominating set.

Bound on the independent domination number was established by Berge [16]. Sub-
sequently, the upper bound was improved by Blidia et al. [17]. Moreover, the research of
independent dominating problem has also been extended to various special graph classes,
for example, claw-free graph [18], bipartite graph [19], regular graph [20]. In terms of
complexity, the independent domination problem is NP-complete even when restricted to
bipartite graphs [21], to unit disk graphs [22], or to planar cubic graphs [23]. It was straight-
forward to calculate the independent domination number of a tree in linear-time [24].
Telle and Proskurowski [25] proved a polynomial-time algorithm for graphs of bounded
treewidth and Farber [26] showed the linear-time algorithm of chordal graphs.

The independent Roman domination we studied in this paper is a variant of indepen-
dent domination and Roman domination. An independent Roman dominating function
(IRDF) is a function f : V → {0, 1, 2} having the property that: (1) every vertex assigned
a value of 0 is adjacent to at least one vertex assigned a value of 2, (2) there are no two
adjacent vertices with positive assignments. The weight of an IRDF (w( f )) is the sum of
assignments for all vertices. The minimum weight of an independent Roman dominating
function on graph G is the independent Roman domination number, denoted by iR(G).

1.1. Related Work

Cockayne et al. [2] put forward relevant concepts and conjectures, and proposed some
open questions. Adabi et al. [27] studied the relations with independent domination, Ro-
man domination and obtained some properties and bounds. Rad et al. [28] improved some
previous bounds which were proposed by Adabi et al. [27]. Chellali et al. proposed a strong
equivalence relationship between independent Roman domination numbers and Roman
domination numbers on Trees [29]. In the private communication between Cockayne et al.
and BMcRae [2], they proposed about the decision problem corresponding to independent
Roman dominating functions is NP-complete, even when restricted to bipartite graphs.
Wu et al. [30] conducted an in-depth study of independent Roman domination for stable
and vertex-critical graphs.

1.2. Our Results

In this paper, we study the complexity and algorithmic aspects of independent Ro-
man domination in graphs. Firstly, we show that the decision problem corresponding to
independent Roman dominating functions (DECIDE-IRDF) is NP-complete, even when re-
stricted to chordal bipartite graphs. Secondly, we discuss the complexity difference between
DECIDE-RDF and DECIDE-IRDF by portraying a special graph class where one problem
can be solved in polynomial time and the other is NP-complete. Finally, we present a
linear-time algorithm for computing the independent Roman domination number in trees.
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The rest of the paper is organized as follows. In Section 2, we show that the decision
problem of IRDF is NP-complete for chordal bipartite graphs. In Section 3, we give a
characterization of the difference in complexity between the decision problems of RDF and
IRDF. In Section 4, we propose a linear-time algorithm for computing the independent
Roman domination number in trees. In Section 5, we conclude the paper.

2. DECIDE-IRDF Is NP-Complete for Chordal Bipartite Graphs

In this section, we show that the decision problem of IRDF is NP-complete for chordal
bipartite graphs. Firstly, the independent Roman domination problem (IRD) is an NP
problem, since we can check whether a function f is an IRDF and the weight of f at most k
in polynomial time. Secondly, our goal is to transform any instance of X3C into an instance
G of IRD. Let X = {x1, x2, . . ., x3q} and C = {C1, C2, . . ., Ct} be an arbitrary of X3C.

Construction 1. For each corresponding cj in C, we build a circle C4 with four sides and add an
edge from any one vertex of C4 (aj) to cj. Let bj, dj, ej be the another three vertices different from
aj of C4. Let Y = {c1, c2, . . ., ct}. Now to obtain a graph G, we add edges cjxi if xi ∈ Cj (see
Figure 1). Set k = 3t + q. Clearly, G is a chordal bipartite graph.

Figure 1. Construction example.

Lemma 1. If the instance X, C of X3C has a solution C′, there exists an independent Roman
dominating function with weight f (G) = 3t + q in graph G.

Proof. Suppose that the instance X, C of X3C has a solution C′. We construct an indepen-
dent Roman dominating function f on G of weight k. For every Cj, assign the 2 to cj if
Cj ∈ C′ and 0 to cj if Cj /∈ C′. If we assign the 2 to cj, let f (aj) = 0 and f (dj) = 2. If we
assign the 0 to cj , let f (aj) = 2 and f (dj) = 1. Finally, assign 0 to the remaining vertices of
G. Since C′ exists, its cardinality is precisely q, the number of cj’s with value 2 is q, having
disjoint neighborhoods in {x1, x2, . . ., x3q}, where every xi has one neighbor be assigned 2.
Hence, it is straightforward to see that f is an independent Roman dominating function
with weight f (G) = 3t + q = k.

Claim 1. Let Hj be the subgraph of G induced by the vertices of {aj, bj, cj, dj, ej}, and let
f : V → {0, 1, 2} be an IRDF on Hj with minimum weight, then:

f (Hj) =

{
3 i f f (cj) = 0

4 i f f (cj) 6= 0

We give all the assignment possibilities of the subgraph Hj on independent Roman
dominating function f and show them in Figure 2 with symmetrical Figures 2 and 3.
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Figure 2. Hj assignment possibilities.

Figure 3. A construction example of GIR graph.

Claim 2. For a graph G which has an independent Roman function f with weight at most k, the cj
will not be assigned a value of 1.

Proof. We suppose that there exists a t satisfies f (ct) = 1. By Claim 1, this implies that
f (Ht) = 4. Now, we can define a new IRDF g : V → {0, 1, 2} as g(ct) = g(dt) = 2,
g(at) = g(bt) = 0 and g(u) = f (u) otherwise. It is clear that g is an IRDF on graph G and
w(g) = w( f ). Therefore, we can replace all cases where cj is assigned 1.

Claim 3. For a graph G which has an independent Roman domination function f with weight at
most k, f (xi) = 0.

Proof. Conversely, we suppose that f (xa) 6= 0 for some xa ∈ X. We have f (xa) ≥ 1, thus
for each ca ∈ C which exists the edge with the xa, let f (ca) = 0. By Claims 1 and 2, we
know that if f (ca) = 0, we have f (Ha) = 3 and if f (ca) = 2, we have f (Ha) = 4. Then, we
discuss the rest of the vertices in X except xa.

Case 1. No vertex can be dominated by cj assigned to 2.
According the assumption, we know ∑u∈N(xi)

f (u) = 0 for each xi ∈ X.
It implying that f (xi) > 0 for each xi ∈ X and f (cj) = 0 for each cj ∈ Y.
Since | X |= 3q, a contradiction we have f (G) ≥ 3q + 3t > k.

Case 2. There exist some vertices be dominated by cj assigned to 2. Considering the
following subcases.
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Subcase 2.1.Except for vertex xa, the other vertices can be fully dominated by cj assigned to
2.
Hence, f (xi) = 0 for each {xi : xi ∈ X, xi 6= xa}.
The number of f (cj) = 2 equals d 3q−1

3 e.
When other vertices in Y are assigned a value of 0, the sum of the weights of
graph G is the smallest.
We have f (G) ≥ d 3q−1

3 e ∗ 4 + 1 + (t− d 3q−1
3 e) ∗ 3 > 3t + q, this contradicts

our known.
Subcase 2.2.There exist some vertices not be dominated by cj assigned to 2.

We assume m equals the number of vertices which f (cj) = 2 and we have
m < q.
We let n = 3q− 3m represent vertices in set X whose assignments are greater
than 0.
Hence, f (G) ≥ n + 4m + (t−m) ∗ 3.
Combining these three formulas, we have a contradiction f (G) > 3t + q.

Combining the above two situations, we prove that f (xi) = 0 for each xi ∈ X.

Lemma 2. If there exists an independent Roman dominating function with weight f (G) = 3t + q
in graph G, the instance X, C of X3C has a solution C′.

Proof. Suppose that G has an independent Roman function with weight at most k. Among
all such functions let f = (V0, V1, V2). Clearly, by Claims 2 and 3, we have f (cj) = 2 or 0
for each j ∈ [t] and f (xi) = 0 for each i ∈ [3q].

Moreover, each xi is dominated by its adjacent cj, so the number of vertices which

f (cj) = 2 equals p and p ≥ 3q
3 = q. Since f (G) = 4p + (t− p) ∗ 3 ≤ 3t + q, combining the

above two inequalities, we have p = q. Consequently, C′ = {Cj : g(cj) = 2} is an exact
cover for C.

By Lemmas 1 and 2, we have reached the final conclusion.

Theorem 1. The decision problem of IRDF is NP-complete for chordal bipartite graphs.

3. Complexity Difference between Roman Domination and Independent Roman
Domination

Before that, many scholars have conducted in-depth research on the complexity of
decision problems for different graph classes. However, from the overall perspective, we
hope that through the research on the complexity differences, we can make more effective
decisions when constructing models for practical problems in life.

Therefore, we want to find some special graph classes in which one problem is solvable
in polynomial time, whereas the other one is NP-complete. Next, we describe the differ-
ence in complexity between Roman domination and independent Roman domination by
defining two special graph classes GR and GIR. On any GR graph, the Roman domination
problem is solvable in polynomial time and the independent Roman domination problem is
NP-complete. However, on any GIR graph, the independent Roman domination problem
is solvable in polynomial time and the Roman domination problem is NP-complete.

Firstly, we define that G′ is constructed from G, which means that the original vertices
and edges on graph G are not changed, but only changed into G′ by adding a specific
structure.

Construction 2. Let graph G have n vertices. For any vertex vi in graph G, we define some
corresponding vertex sets and edge sets.

• Ai = {a1
i , a2

i }.
• Bi = {b1

i , b2
i , b3

i }.
• Ci = {c1

i , c2
i , c3

i , c4
i , c5

i }.
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• EA
i = {a1

i a2
i }

• EB
i = {b1

i b2
i , b2

i b3
i , b3

i b1
i }

• EC
i = {c1

i c2
i , c1

i c3
i , c1

i c4
i , c1

i c5
i }

(a) For any vertex vi in the graph G, add the set of vertices Ai
⋃

Bi
⋃

Ci.
(b) For any vertex vi in the graph G, add the set of edges {via1

i }
⋃

EA
i
⋃{a1

i b1
i }

⋃
EB

i
⋃{b1

i c1
i }

⋃
EC

i .

On the basis of graph G, the new graph formed according to the above construction methods is
called GIR graph. See Figure 3.

Lemma 3. Let G′ = (V′, E′) be a GIR graph which is constructed from graph G = (V, E), we
have iR(G′) = 6n.

Proof. For any vertex vi ∈ V, let Hi be a subgraph of G′ which is induced by the set of
vertices ({vi}∪Ai ∪ Bi ∪Ci). It is clear that for any IRDF f of G′, we have ∑u∈V(Hi)

f (u) ≥ 6.
Therefore we can infer that iR(G′) ≥ 6n. Let a function g : V′ → {0, 1, 2} with the property
that for each i 6 n, g(a1

i ) = g(b2
i ) = g(c1

i ) = 2 and g(u) = 0 otherwise. It is clear that g is
an IRDF on G′ and w(g) = 6n. So we have iR(G′) ≤ 6n. This implies that iR(G′) = 6n.

Lemma 4. Let G′ = (V′, E′) be a GIR graph which is constructed from graph G = (V, E). Then,
graph G has a Roman domination function where the weight at most k if and only if GIR graph G′

has a Roman domination function where the weight at most k + 5n.

Proof. (Necessity:) Since G has a Roman domination function f : V(G) → {0, 1, 2} with
weight at most k, we can define f ′ : V′(G′)→ {0, 1, 2} as follows: for each i 6 n,

• f ′(a2
i ) = 1, f ′(b1

i ) = f ′(c1
i ) = 2 .

• f ′(vi) = f (vi).
• f ′(u) = 0 otherwise.

It is clear that f ′ is a Roman domination function on G′, and the weight of f ′ at most
k + 5n.
(Sufficiency:) We assume that function g′ : V′(G′) → {0, 1, 2} is a Roman domination
function on G′ with minimum weight and w(g′) 6 k + 5n.

Claim 4. g′(c1
i ) = 2 for each i 6 n.

Proof. We suppose that there exists a t satisfying g′(c1
t ) < 2. We have g′(c2

t ) + g′(c3
t ) +

g′(c4
t ) + g′(c5

t ) ≥ 4. Now, we can define a new RDF g′′ : V′(G′)→ {0, 1, 2} as g′′(c1
t ) = 2,

g′′(c2
t ) = g′′(c3

t ) = g′′(c4
t ) = g′′(c5

t ) = 0, and g′′(u) = g′(u) otherwise. It is clear that g′′ is a
Roman domination function on GIR graph G′ and w(g′′) < w(g′). There is a contradiction
with our assumption that the weight of g′ is minimum. The conclusion is proved.

Claim 5. Let Hi be the subgraph of G′ induced by the vertex set (Ai ∪ Bi), then g′(Hi) ≥ 3 for
each i 6 n.

Proof. Without loss of generality, we assume that g′(Hi) ≤ 2. There is no vertex that
connects all the other vertices on Hi, so g′(Hi) ≤ 2 does not make all the vertices on Hi
under dominated, this is a contradiction. Therefore, g′(Hi) ≥ 3 for each i 6 n.

Now, we proceed to prove Lemma 4. Firstly, we define a function g : V(G)→ {0, 1, 2}
satisfying that for each i 6 n, if g′(a1

i ) = 2 and g′(vi) = 0, let g(vi) = 1; g(vi) = g′(vi)
otherwise.

Since function g′ is a Roman domination function on GIR graph G′, it implies that g is
a Roman domination function on graph G. By Claims 4 and 5, we have w(g) ≤ w(g′)− 5n.
By the known condition w(g′) ≤ k + 5n, we come to conclusion w(g) ≤ k. The conclusion
of Lemma 4 is proved.
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For general graphs, the decision problem of RDF is NP-complete, by Lemma 4, we
know that for GIR graphs the decision problem of RDF is NP-complete.

By Lemmas 3 and 4, we came to the final conclusion.

Theorem 2. In GIR graphs, the independent Roman domination problem is solvable in polynomial
time and the Roman domination problem is NP-complete.

Below, we introduce another special graph, the GR graph.

Construction 3. Let graph G have n vertices. For any vertex vi in graph G, we define some
corresponding vertex sets and edge sets.

• Ai = {a
j
i : j ∈ [7]}.

• Bi = {b
j
i : j ∈ [7n + 1]}.

• EA
i = {a1

i a2
i , a2

i a3
i , a3

i a4
i , a4

i a5
i , a5

i a6
i , a6

i a1
i , a2

i a4
i , a1

i a7
i , a3

i a7
i , a6

i a7
i }.

(a) For any vertex vi in the graph G, add the set of vertices {si}
⋃

Ai
⋃

Bi.

(b) For any vertex vi in the graph G, add the set of edges {via1
i }

⋃
EA

i
⋃{a1

i si}
⋃{sib

j
i : j ∈

[7n + 1]}.
On the basis of graph G, the new graph formed according to the above construction methods is

called GR graph. See Figure 4.

Figure 4. A construction example of GR graph.

Lemma 5. Let G′ = (V′, E′) be a GR graph which is constructed from graph G = (V, E), we
have γR(G′) = 6n.

Proof. Now, we define a function f : V′ → {0, 1, 2} satisfying that for each i 6 n,

• f (a1
i ) = f (a4

i ) = 2, f (p) = 0 p ∈ Ai \ {a1
i , a4

i }.
• f (si) = 2.
• f (p) = 0 otherwise.

It is clear that function f is a Roman domination function on GR graph G′, and the
weight of f is 6n. So we have γR(G′) ≤ 6n.

Claim 6. Let G′ = (V′, E′) be a GR graph which is constructed from graph G = (V, E). We have
γR(G′) ≥ 6n.
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Proof. Let Hi be the subgraph of GR graph G′ which is induced by the vertex set
({si}

⋃
Ai

⋃
Bi) for each i 6 n. We assume that there exists a Roman domination function

f ′ on graph G′ and w( f ′) < 6n. It can infer that there exists a t satisfying w( f ′) < 6
for subgraph Ht. It is obvious that ∑v∈At f ′(v) ≥ 4 and ∑v∈{st}

⋃
Bt

f ′(v) ≥ 2; oth-
erwise it contradicts that f ′ is a Roman domination function. So we can infer that
∑v∈V(Ht) f ′(v) ≥ ∑v∈At f ′(v) + ∑v∈{st}

⋃
Bt

f ′(v) ≥ 4 + 2 = 6.
This contradicts the assumption ∑v∈V(Ht) f ′(v) < 6. So we have w( f ′) ≥ 6n Therefore,

Claim 6 is proved.
By Claim 6, we have γR(G′) ≥ 6n. This implies that γR(G′) = 6n. Therefore, the

Lemma 5 is proved.

Lemma 6. Let G′ = (V′, E′) be a GR graph which is constructed from graph G = (V, E). Then,
graph G has an independent Roman domination function where the weight at most k if and only if
GR graph G′ has an independent Roman domination function where the weight at most k + 6n.

Proof. Let Hi be the subgraph of GR graph G′which is induced by the vertex set ({si}
⋃

Ai
⋃

Bi)
for each i 6 n.

(Necessity:) We assume that graph G has an independent Roman domination function
g and w(g) 6 k. Next, we define a function g′ : V′(G′) → {0, 1, 2} that satisfies the
following conditions:

• (1): if g(vi) = 0, let g′(vi) = 0, g′(a1
i ) = g′(a4

i ) = g′(si) = 2, and g′(p) = 0 for
p ∈ V(Hi) \ {a1

i , a4
i , si}.

• (2): if g(vi) = 1, let g′(vi) = 1, g′(a4
i ) = g′(a7

i ) = g′(si) = 2, and g′(p) = 0 for
p ∈ V(Hi) \ {a4

i , a7
i , si}.

• (3): if g(vi) = 2, let g′(vi) = 2, g′(a4
i ) = g′(a7

i ) = g′(si) = 2, and g′(p) = 0 for
p ∈ V(Hi) \ {a4

i , a7
i , si}.

It is obvious that g′ is an independent Roman domination function on GR graph G′.
Since we know that w(g) ≤ k, by (1)–(3), we have w(g′) ≤ k + 6n. Therefore, function g′

is an independent Roman domination function on GR graph G′ and w(g′) ≤ k + 6n. We
have completed the proof of the necessity.

(Sufficiency:) We assume that G′ has an independent Roman domination function
and the weight at most k + 6n. Now, we define a function f ′ : V′(G′) → {0, 1, 2} is an
independent Roman domination function which has the minimum weight. It is clear that
w( f ′) ≤ k + 6n.

Lemma 7 ([27]). For any graph G of order n, iR(G) ≤ n.

Claim 7. w( f ′) ≤ 7n

Proof. Through the proof of necessity, we know that given an independent Roman domi-
nation function which the weight at most k on graph G, we can find an independent Roman
domination function on GR graph G′ which the weight at most k + 6n. By Lemma 7, we
know that for any graph G of order n, iR(G) ≤ n. Therefore, we can get an independent Ro-
man domination function on G′ which the weight at most 7n. We have the fact that f ′ is the
independent Roman domination function with the minimum weight, so w( f ′) ≤ 7n.

Claim 8. f ′(si) = 2 for each i 6 n.

Proof. Conversely, we assume that there exists a t satisfying that f ′(st) 6= 2.
If f ′(st) = 1, for each bj

t ∈ Bt, f ′(bj
t) = 0, it is easy to prove that there is a contradiction

with f ′ is an IRDF.



Symmetry 2022, 14, 404 9 of 13

If f ′(st) = 0, this implies that f ′(bj
t) > 0 for each bj

t ∈ Bt. Since | Bt |= 7n + 1, we
can infer that w( f ′) > 7n. It contradicts the conclusion of Claim 7. Hence, the conclusion is
proven.

Claim 9. f ′(a1
i ) = 0 for each i 6 n.

Proof. Conversely, we assume that there exists a t satisfying that f ′(a1
t ) > 0. We can know

that the neighbor of a1
t must be assigned 0 for which f ′(st) = 0. This is a contradiction by

Claim 8. Hence, the conclusion is proven.

Claim 10. ∑v∈V(Hi)
f ′(v) ≥ 6 for each i 6 n.

Proof. It can be verified that ∑v∈Ai
f ′(v) ≥ 4 for each i 6 n; otherwise it would contradict

the known fact that f ′ is an independent Roman domination function on GR graph G′.
Futher, by Claim 8, we know that f ′(si) = 2. Therefore, we have

∑v∈V(Hi)
f ′(v) ≥ ∑v∈Ai

f ′(v) + f ′(si) ≥ 4 + 2 = 6.
We now return to prove the sufficiency part of Lemma 6. Define f : V(G)→ {0, 1, 2}

as f (vi) = f ′(vi) for each i 6 n. We want to show that f is an independent Roman
domination function on graph G. We know that NG′(vt) = NG(vt) ∪ {a1

t }. From Claim 9,
we have that f ′(a1

t ) = 0. Hence, vt does not dominated by a1
t . So we can infer that f is an

independent Roman domination function on graph G. According to the known condition
w( f ′) ≤ k + 6n and Claim 10, we deduce that w( f ) ≤ w( f ′)− 6n ≤ k.

For general graphs, the decision problem of IRDF is NP-complete [2], by Lemma 6,
we know that for GR graphs the decision problem of IRDF is NP-complete.

By Lemmas 5 and 6, we have reached the final conclusion.

Theorem 3. In GR graphs, the Roman domination problem is solvable in polynomial time and the
independent Roman domination problem is NP-complete.

4. A Linear Algorithm for Independent Roman Domination in Trees

In this section, we propose a linear-time algorithm for computing the independent
Roman dominating number iR(G) in trees. Let γIRD(G) similarly represent the independent
Roman domination number of graph G.

Let u be a special vertex of graph G, and an independent Roman domination function
with minimum weight on graph G satisfy that f (u) ∈ {0, 1, 2}. So it is useful to consider
the following three domination problems.

γ0
IRD(G, u) = min{ω( f ) : f is an IRDF of G and f (u) = 0}

γ1
IRD(G, u) = min{ω( f ) : f is an IRDF of G and f (u) = 1}

γ2
IRD(G, u) = min{ω( f ) : f is an IRDF of G and f (u) = 2}

Lemma 8. For any graph G with a specific vertex u, we have
γIRD(G, u) = min{γ0

IRD(G, u), γ1
IRD(G, u), γ2

IRD(G, u)}
γ00

IRD(G, u) = min{ω( f ) : f is an IRDF of G− u}.

Note that γ00
IRD(G, u) ≤ γ0

IRD(G, u), since an IRDF f of G and f (u) = 0 is also an IRDF
of G− u.

Theorem 4. Suppose that graph G contains special vertices u and graph H contains special vertices
v, and graph I is obtained by adding a new uv edge to the disjoint union of graph G and H. Therefore,
the following equations are true.

(1) γ0
IRD(I, u) = min{γ0

IRD(G, u) + γ0
IRD(H, v), γ0

IRD(G, u) + γ1
IRD(H, v), γ00

IRD(G, u) +
γ2

IRD(H, v)}
(2) γ1

IRD(I, u) = γ1
IRD(G, u) + γ0

IRD(H, v)
(3) γ2

IRD(I, u) = γ2
IRD(G, u) + γ00

IRD(H, v)
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(4) γ00
IRD(I, u) = γ00

IRD(G, u) + γIRD(H, v)
= γ00

IRD(G, u) + min{γ0
IRD(H, v), γ1

IRD(H, v), γ2
IRD(H, v)}

Proof. (1) We can conclude from the fact that f is an IRDF of I with f (u) = 0 if and only if
f = g

⋃
h, where g is an IRDF of G with g(u) = 0 and h is an IRDF of H with h(v) = 0, g is

an IRDF of G with g(u) = 0 and h is an IRDF of H with h(v) = 1, or g is an IRDF of G− u
and h is an IRDF of H with h(v) = 2.

(2) We can conclude from the fact that f is an IRDF of I with f (u) = 1 if and only if
f = g

⋃
h, where g is an IRDF of G with g(u) = 1 and h is an IRDF of H with h(v) = 0.

(3) We can conclude from the fact that f is an IRDF of I with f (u) = 2 if and only if
f = g

⋃
h, where g is an IRDF of G with g(u) = 2 and h is an IRDF of H − v.

(4) We can conclude from the fact that f is an IRDF of I − u if and only if f = g
⋃

h,
where g is an IRDF of G− u and h is an IRDF of H.

Lemma 8 and Theorem 4 give the following dynamic programming algorithm for the
independent Roman domination problem in trees (See Algorithm 1). The tree ordering
in the algorithm refers to any traversal order of the tree, and pre-order, in-order, and
post-order traversal are possible.

Algorithm 1 Independent Roman Domination
Input: A tree T with a tree ordering {v1, v2, . . ., vn}.
Output: the Independent Roman domination number γIRD(T) of T.
1: for i = 1 to n do
2: γ00(vi) = 0
3: γ0(vi) = ∞
4: γ1(vi) = 1
5: γ2(vi) = 2
6: for i = 1 to n− 1 do
7: let vj be the parent of vi

8: γ0(vj) = min{γ0(vj) + γ0(vi), γ0(vj) + γ1(vi), γ00(vj) + γ2(vi)}
9: γ1(vj) = γ1(vj) + γ0(vi)

10: γ2(vj) = γ2(vj) + γ00(vi)

11: γ00(vj) = γ00(vj) + min{γ0(vi), γ1(vi), γ2(vi)}
12: return min {γ0(vn), γ1(vn), γ2(vn)}

Below, we take Figure 5 as an example to show the changes in the values of interme-
diate parameters during the execution of each step of the algorithm in the form of a table
(See Tables 1–6). We take the result of the post-order traversal as the tree order.

Figure 5. example.
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Table 1. Initial state.

v1 v2 v3 v4 v5 v6

γ0 ∞ ∞ ∞ ∞ ∞ ∞

γ1 1 1 1 1 1 1

γ2 2 2 2 2 2 2

γ00 0 0 0 0 0 0

Table 2. i = 1.

v1 v2 v3 v4 v5 v6

γ0 ∞ ∞ ∞ 2 ∞ ∞

γ1 1 1 1 ∞ 1 1

γ2 2 2 2 2 2 2

γ00 0 0 0 1 0 0

Table 3. i = 2.

v1 v2 v3 v4 v5 v6

γ0 ∞ ∞ ∞ 3 ∞ ∞

γ1 1 1 1 ∞ 1 1

γ2 2 2 2 2 2 2

γ00 0 0 0 2 0 0

Table 4. i = 3.

v1 v2 v3 v4 v5 v6

γ0 ∞ ∞ ∞ 4 ∞ ∞

γ1 1 1 1 ∞ 1 1

γ2 2 2 2 2 2 2

γ00 0 0 0 3 0 0

Table 5. i = 4.

v1 v2 v3 v4 v5 v6

γ0 ∞ ∞ ∞ 4 ∞ 2

γ1 1 1 1 ∞ 1 5

γ2 2 2 2 2 2 5

γ00 0 0 0 3 0 2

Table 6. i = 5.

v1 v2 v3 v4 v5 v6

γ0 ∞ ∞ ∞ 4 ∞ 3

γ1 1 1 1 ∞ 1 ∞

γ2 2 2 2 2 2 5

γ00 0 0 0 3 0 3
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It can be seen from Table 6, min{γ0(v6), γ1(v6), γ2(v6)} = 3. Therefore, the indepen-
dent Roman domination number of this tree is 3.

5. Conclusions

In this paper, we research the decision problem IRDF corresponding to independent
Roman dominating functions is NP-complete, even when restricted to chordal bipartite
graphs. We prove the complexity difference between DECIDE-RDF and DECIDE-IRDF. At
the same time, we also propose a linear-time algorithm for computing the independent
Roman domination number in trees. We believe that linear-time algorithms on block graphs
and interval graphs are also possible, and we will continue to study this aspect in the future.
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