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Abstract: In this paper, generalized progressive hybrid censoring is discussed, while a scheme is
designed to provide a flexible and symmetrical scenario to collect failure information in the whole life
cycle of units. When the lifetime of units follows Kumaraswamy distribution, inference is investigated
under classical and Bayesian approaches. The maximum likelihood estimates and associated existence
and uniqueness properties are established and the confidence intervals for unknown parameters are
provided by using a large sample size based on asymptotic theory. Moreover, the Bayes estimates
along with highest probability density credible intervals are also developed through the Monte-Carlo
Markov Chain sampling technique to approximate the associated posteriors. Simulation studies and
a real-life example are presented for illustration purposes.

Keywords: Kumaraswamy distribution; generalized progressive hybrid censoring; maximum likeli-
hood estimation; approximation theory; Monte-Carlo simulation

1. Introduction

Nowadays, sample size heavily affects the accuracy of the estimation and complete
testing is impossible to conduct in practical experiments due to the progress of manufac-
turing design and technology, which yields high reliability and a long span of modern
products. In this situation, a censoring scheme (CS) has been introduced due to many
reasons such as time constraint and cost reduction. Generally, there is only a part of units
whose failure times are collected when a CS is involved under test conditions. There are
many CSs used in practice, and most common ones include conventional Type-I/-II CSs
and progressive Type-1/-II CSs, where the latter allows engineers to remove units from
testing at various stages. A lot of work has been carried out on these CSs in different
situations. See, for example, the works of Balakrishnan and Han [1], Fernandez [2], Han
and Kundu [3], Panahi and Sayyareh [4], Soliman [5], Wang et al. [6]. For more details, see
monographs of Balakrishnan and Aggarwala [7], Lawless [8], among others. In life testing
and reliability experiments, however, one major drawback of these mentioned CSs is that
there may be not enough failure data or, in the worst-case scenario, no failure at all, or the
experiments may take a long time to fail. In these situations, the inferentical accuracy or the
test efficiency may heavily affect in consequence. Therefore, the hybrid censoring scheme
was introduced in practice to overcome this drawback; this scheme can be regarded as the
mixture of Type-I and Type-II censoring in conventional and /or progressive censoring cases
and include Type-I hybrid CS by Epstein [9], Type-II hybrid CS by Childs et al. [10] and
progressive hybrid CS by Kundu and Joarder [11]. The aforementioned hybrid CSs have
received considerable attention in the literature. See, for example, the work of Balakrishnan
and Kundu [12], Lin et al. [13], Kundu [14] as well as the references therein.

In lifetime studies, there are many conventional models in practice such as exponential,
Weibull, normal, and gamma, among others. Although the survival time of units are usually

Symmetry 2022, 14, 403. https:/ /doi.org/10.3390/sym14020403

https://www.mdpi.com/journal /symmetry


https://doi.org/10.3390/sym14020403
https://doi.org/10.3390/sym14020403
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-2600-5112
https://orcid.org/0000-0002-1244-3859
https://orcid.org/0000-0003-1080-0231
https://orcid.org/0000-0002-9687-6036
https://doi.org/10.3390/sym14020403
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14020403?type=check_update&version=2

Symmetry 2022, 14, 403

2 of 20

treated being greater than zero, the lifetime cannot be infinite from practical perspective.
Then, it is proper to use bounded models to fit real-life data which may assign more weight
to failure data and provide a better inferential accuracy. Motivated by reasons such as those
mentioned above, this paper is devoted to discussing the statistical inferential problem for
a bounded lifetime distribution with range (0, 1), and classical and Bayesian approaches
are used for parameter estimation under generalized progressive hybrid censoring.

The rest of the paper is organized as follows: Section 2 presents data description
and notations. Classical estimation is provided in Section 3. Section 4 discusses Bayesian
estimation correspondingly. Simulation studies and an illustrative example are proposed
in Section 5. Finally, some conclusions are presented in Section 6.

2. Preliminaries

Recently, Cho et al. [15] introduced a flexible hybrid CS called generalized progres-
sive hybrid CS, which can be conducted as follows: There are n units in experiment,
k and m are prefixed integers given in advance with 1 < k < m < n. Furthermore,
predefined time point T and non-negative integers r1,73,...,7, are given in advance
with Y, r; +m = n. Following the procedure as noted in the progressive censoring
scheme, Xj.,,., denotes the failure of the ith testing unit, then the testing stops at point
T* = max{ X, min{ T, Xy } }, i-€.,

Xemnr T < X < Xmzmens
T"=< T, if X < T < Xopemens
Xmemn, U X < Xzmen < T

Following the Cho et al. [15] scenario, the following types of failure times are observed
under generalized progressive hybrid censoring:

Case I: Xl:m:n/ X2:m:n/ ceey Xk:m:n/ ifT < Xk;m;n < X,
Case IL: Xy, - - s Xicmns + -+ 0 Xy U Xemen < T < Xomemen, (1)
Case IIL: X1 - -+ s Xicmens r - - -0 Xewemens i Xiomen < Xomen < T,

and a plot of the generalized progressive hybrid censoring scheme is shown in Figure 1.

*

Numbers of rcmovaly 7"2 rd Vk
Case | / T / e /
X X

T X X

d+l:m:n’ :

L:m:n 2:m:n d:m:n k:m:n
Experiment Experiment
Start End
*
Numbers of removals/(]’i /7"2 /}"k /a’ /Vdﬂ
Casell . ¢ . .
. Lim:n XZ:m:n kim:n Xd:m:n T Xd+l:m:n m:m:n
Experiment Experiment
Start End
Numbers of removals I/i 7"2 I’]‘ ’/;n
Case III * ¢ '/ h < h
E . Xl:mzn XZ:m:n XA:m:n Xm:m:n T
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End

Figure 1. Sketch of generalized progressive hybrid censoring scheme.

It is seen from the scenario of the generalized progressive hybrid censoring shown
in (1) and Figure 1 that the scheme control the testing flow through the introducing variables
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kand T. Under such a mechanism, this censoring provides a flexible and symmetry testing
scheme for obtaining a pre-specified number of failures, whereas the associated testing
time is still taken into account in the experimental cycle. Therefore, the corresponding
scheme not only saves the testing time and cost, but also guarantees a certain number of
failures in the life test, which will help to improve the efficiency of inference due to the
greater amount of lifetime information collected.

Suppose that the lifetimes of the testing product follow the probability density function
(PDF) f(-) and the cumulative distribution function (CDF) F(-) with a survival function
S(-) =1 — F(-), then under generalized progressively hybrid censoring (1), the joint density
function can be expressed as

€1 Hi'(:l f(xi:m:n) [S(xi:m:n)]ri/ Case I;
L<data) = { €2 Hzg‘l:l f(xi:m:n) [S(xi:m:n)]ri [S(T)]r;“, Case II; 2)
c3 H;":l [f(xi:m:n)[s(xi:m:n)]riz Case III.

wherer) ; =n— Z‘i’l:l (ri+1),r,=n-— 21;_11(7’1' +1) —1inCaseland

o =TT S (e +1), 3 T < Xien < Xonomon;
C = H?:1 E}r(n:]‘(rk + 1)/ if Ximen < T < Xoomens
c3 = H;"Zl ka:]«(l’k +1), if X < Xopomen < T

Let X be a random variable from the Kumaraswamy distribution with parameters
« > 0and B > 0, the CDF and the PDF of X can be written as

F(x;a,B) =1—[1—x*1Pand f(x;a,B) = apx* 11— 2P L0<x <1 ©)]

The distribution (3) was introduced by Kumaraswamy [16] as a better alternative of
beta model to describe hydrological phenomenon, which is also illustrated by Nadara-
jah [17]. The Kumaraswamy distribution is a very flexible model whose failure rate function
can be unimodal(x > 1 and § > 1), uniantimodal(x < 1 and § < 1), increasing(« > 1 and
B < 1), decreasing(x < 1 and B > 1) and constant(x = B = 1) depending on its parameters.
Due to its flexibility, Kumaraswamy distribution has attracted extensive attention in the
literature and has been discussed by many authors. See, for example, the contributions of
Jones [18], Nadarajah [17], Ghosh and Nadarajah [19]), and Ponnambalam et al. [20]. In
this paper, inference of Kumaraswamy distribution under generalized progressive hybrid
censoring is studied under classical and Bayesian procedures, respectively.

Suppose the failure times (1) of size n come from Kumaraswamy population (3), the
likelihood function of « and B can be expressed as

€1 Hi‘(:l (X:Bx;'xzr:z:ln [1 o x?ﬁm:n}ﬁ_l [1 o x?ﬁm:n]ri ’ Case [;
L(w B) = eI, “ﬁx%;n [1—xt F-1[1—x& V[l — T4 anP, Casell; 4)
ea [T/ apat L1 — 8 1P1[1— 2 P, Case IIL.

3. Classical Inference

This section provides maximum likelihood estimators (MLEs) of unknown parameters,
and associated approximate confidence intervals (AClIs) are also obtained by using the
asymptotic theory of MLEs.

3.1. Maximum Likelihood Estimation

From (4), the likelihood function can be re-expressed as

L(a, B) = c*ocd*,Bd* exp{w(rx,ﬁ) +(a—1) ilr\ Xismen }, (5)

i=1



Symmetry 2022, 14, 403 4 0of 20
where ¢* = Hj»l; Z,’(”:j(rk +1),
k, Casel;
d*=1<¢ d, Casell;
m, Caselll,
and
Z?:l[(1+ri):8_1]l [1 _xzmn] Case[;
(a, B) Y [(1+7)p—1]In[l —x%, ]+75 BIn[l — T%, Casell;
YA +r)B—1]In[l —xf, 1, Case III.
From (5), the corresponding log-likelihood function can be written as
d*
(o, B) =Inc* +d*Ina+d*Inp+w(a, f) + (« — 1) Y In Xy (6)

i=1

The MLEs of Kumaraswamy parameters « and j3 are shown as follows:

Theorem 1. Suppose that the generalized progressively hybrid censored sample (1) is from Ku-
maraswany distribution (3) with parameters o and B. The MLE f of B is

* d*wy (w)
— +wo(a) + — - =0, 7
0( ) ZUZ(QC) ( )
with wo() = Ly {2,
Z{‘: (1+r) ”””inx”"”, Casel;
ll:m:n
wi(a) =< YL, (1+ r,)%.x’m” + ”d+17i IIT‘J, Case II;
Y (1+71) ””"chnxlm", Case II1.
and
Efle(l +r;)In[1 — xf‘m P Case I;
wy(a) =< Y4 (1+7)In[1— xl pien) T 704 In[1 = T%], CaseIl;
i +r)In[l —x%, ], Case I1L.

Proof. Taking derivatives of (6) with respect to « and B and equating them to zero, one
directly has that the MLE of  is given by f = —_ (a) , and the associated MLE of « can
be obtained from (7). In the following, we will show the existence and uniqueness of the
consequent MLEs.

Denote wgo(a) = Y% I and

1= 1 1 xl mmn
Inx%
Zf: (14 71)7’ "’jxr;xl-"’-” , Case ;

l'?”l‘l{’
Inx

wio(a) = Z_ (1+r)7”””x A d+1TllnT7"; , Casell;
lnl&l
Inx

iy (1+ 7’1)7’ Bt Case I1],

mmn
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the likelihood function (7) can be rewritten as

1+

PO RO} PR

“ dr - wa(w)
Since
}‘%% = +oo, }g% deoitX) — 1 }g% 3:()1;((:‘)) — oo,
then lim,_,0 W(a) = +o0. Meanwhile, from
* *
Jim oo i 00 Zlnxzmn,
d* wip(a) —k1In Xpe.p:, Case I;

Iim ———2% = —dInT, Case II;
—mIn Xy, Case III,

one has lim,_, 1o W(a) < 0, which further implies that the root of likelihood Equation (7)
exists.
Moreover, since

T =~ { W) - watw

Wila) =1 g ) R,

i=1 [1_x1mn

Wo(a) = [wﬁ (“)wz(vc;%—(azsl (uc)wé(a)rz

€2yl &g\ 2
(a0 ) (2 1) 1) (e 07 o
immin im:n .
T () Wi, P , Casel,
n

<Z;1 1(1+7) ln1“1xa2.7:]m”+ Tat1 [Tlal;lvch) (S () In[l=ad,, 475 In[1-T%)
B o () Il ¥ Ty, In[1-T9)?

<):'i1:1(1+7i) xﬁ"fi" lgmlnm L1y I?AT>2

0, () In[l—x2, 475 In[1-T<]”

rm:n

e In? Inx% 2
(Z,"n:1(l+ri) 1:{;11;711)(4’ xz]gm ) ():1 1 (1""”1) ln[ 1 - n])+ (Zl 1 (1+r ) z ;{, n,Cfx Yiimin ) C -
i:m:n L , ase .
D:,' 1(147;) In[1- zmn”z

Case II;

tIn?

(1- f)2 ’
implies that function Wj(a) > 0 for « > 0. Moreover, using inequality In(1 —t) < —t
for 0 < t < 1 and Cauchy-Schwarz inequality, one has W,(a) < 0. Then function W(«)
decreases in « from positive to negative, which implies that the MLE of « obtained from (7)

exists and is unique. Therefore, the assertion is completed. O

Denote g(t) = it is seen that g(t) increases in t € (0, 1) with range (0,1), which

It is seen from (7) that, the MLE of a cannot obtained in closed form, some iterative
algorithm can be used to approximate its estimate. Once the MLE of « is obtained, the MLE
of B is derived directly.
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3.2. Approximate Confidence Intervals

From (6), the second derivatives of /(«, B) can be written as

Pllw,p) & N Qw(w,B) P, ) Pw(a,B) 0%(a,B) d*

da a2 92 ' owdp  owdp ' opr  p¥
where
- 2 imn
— X[ +r)B - 1]7}(1'['1"1;; sz / Case [;
Pw(a, B) i 210 X oy
a2~ Ll Ar)p- 1]W - 72+1,B[T1_1%/ Case II;
xl’%m:n I Xi:yen
L[ 4r)p - 1]W, Case 111,
-y + ri)ixﬁ""” 1" o Case;
1= 1—x% 4 7
82 , « IZVHI‘TI ) "
WOE) {0 Tl T Case
— Y (1 4 py) Mg I X Case IIL.

itm:n

Under some mild regularity conditions, the asymptotic distribution of the MLE (&, )’

can be constructed as
(5) =((5)rep)

where I! (&, ,B) is the inverse of the observed information matrix shown as

20(w,B) 02((,B) . oA
@B = alep  ses ' - ( nh) () >
4 ar «, » :

— it 5 0p Cov(&q,B)  Var(p)

For arbitrary 0 < 7 < 1, the 100(1 — v)% AClISs of « and  can be expressed as

&+ 2,51/ Var(&) and B+ Zy 24/ Var(B),

where z is the upper 7-th quantile of the standard normal distribution.

Sometimes, above ACIs may have negative bounds. In order to solve this problem,
asymptotic normal distributions of In & and In B are approximated by using delta technique
as follows

(In& —Ina) — N(O, Var(&)/&z) and (Inf—1Inp) — N(O, Var(ﬁ)/,32).
Therefore, 100(1 — )% ACIs of In& and In 3 is

In& +2z) 51/ Var(&)/& = (A1, Az) and InB + 2z, 51/ Var(B)/B = (By, By),

which further implies that the 100(1 — )% ACIs of « and 8 can be constructed as (e41,e42)
and (eP1,eB2), respectively.
4. Bayesian Inference

In this section, Bayes estimates and the associated highest posterior density (HPD)
credible intervals are constructed for unknown Kumaraswamy parameters.
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Following the idea of Ghosh and Nadarajah [19], parameters « and § are assumed to
follow independent gamma priors with densities

i
m(a;a1,by) = ﬁzx“l_le_hl“,al >0,b; >0,a >0,
and
bs2
7'(2(,3;(12, bz) = Tzz)ﬁaz_le_bzﬁ, a, >0,bp > O,ﬁ > 0.

Therefore, the joint prior density of (a, B) is given by

(e, B) = mi(a; a1,b1)m2(B; az, b2), ®)
and the posterior density of « and B can be obtained from (5) and (8) as

o P
@ PY) = o, B)L (s, p)dadp ®)

Under squared error loss, for arbitrary function #(«, B) of & and B, the Bayes estimator
of 17(a, B) is the expectation of posterior distribution given by

N _ fooo fooo (e, B)re(a, B)L(a, B)dadp
1) = e 1 (o, )L, p)dudp

It is evident that there is no closed form for Bayesian estimator 7(a, ,B) ; thus, the numerical
technique should be employed to approximate the associated estimate.

Ignoring the additive constant terms, the posterior density of («, ) from (9) can be
expressed as

d*
m(a, Blx) o oc”ﬁd**lﬁ”ﬁd**l exp{ —bia — b+ w(a, B) + (a — 1) Z In X0 } (10)
i=1

Therefore, it is conducted from (10) directly that

t(Bla, x) o g2 exp{—Blby — w(a)]}, (11)
with
i (L4r)In[1—x%, 1, Case[;
ww) =< Y4 (1+r)In[l—x% T+ i, In[l1 = T%], Casell;
s (T47;) In[l —x%, . ], Case I1I.
and that
* d
m(a|B, x) o a4 1 exp{—bw +w(a, )+ (x —1) Y In iy } (12)
i=1

Itis observed that the posterior distribution (11) of parameter § is conditionally gamma
distributed for generating p random data. However, the conditional posterior distribution
of « cannot be reduced analytically to some common familiar models. Following De-
vroye [21] and Kizilaslan and Nadar [22], one could use the normal proposal distribution
method to generate « random samples from (12).

Note that when a1 = b; = ap = by = 0, the prior (8) is not proper, but the conditional
posterior densities 7r(a|B, x) and 7(B|a, x) are still proper. Hence, the proposed MCMC
(Algorithm 1) method can still be used to find the corresponding Bayes estimate.
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Algorithm 1 MCMC sampling algorithm.

Step 1 Use the method of MLEs or any other methods to estimate « and f as starting point
of iteration, denote these estimates as a(?) and g(©)

Step 2 In kth iterative, let #6) and B(¥) be the estimates of « and B, then generate (k1)
and B**1) from 7r(a|B%), x) and 7r(B|ak), x), respectively.
Step 3 Proceeding the iterative procedure in this way and repeat Step 2 K times.
Step 4 Compute Bayes estimate of 77(«, B) by
1 K

(a,p) = n(a®,g0),
K—=Ko kz%—&-l

where Kj is burn-in period.

Step 5 To construct the HPD credible interval of #(«a,p), arrange all estimates
ﬁk = n(a(k) ,B(k)), k = Ko+ 1,Ky+2,...,K in an ascending order, as
Alll, a2, ..., 4lK=Kol Then for arbitrary 0 < ¢ < 1, a100(1 — 1) credible interval of
(&, B) can be obtained as

(,7[1],,7[1+K*Ko*[7(K*K0)+1]]), 1=1,2,...,[(K=Ko)yl,

where [y] denotes the greatest integer less than or equal to y. Therefore, the
100(1 — 7)% HPD credible interval can be constructed as the [*th one satisfying

. (K—=Kp)
_ gl = i (gl K Ko~ bY(K—Ko)+1]] _ gl

[I* +K—Ko—[y(K—Ko)+1]]
8 =1

5. Numerical Analysis
5.1. Simulation Studies

In this subsection, simulation studies are conducted to evaluate the performance of
point and interval estimates based on different choices of n,m, k, T,R = {r; : j = 1,2,...,m}
and «, § values. The performance of classical and Bayes estimates are compared by the
following criteria:

(a) Mean square error (MSE) for any point estimate ¥ of parameter « or 8, which is calcu-
lated by & Z(? —v)2;
(b) Average bias (AB) for a point estimate ¥ of v, which is computed by % Y|o—v

(c) Coverage probability (CP) of a 100(1 — y) % interval estimates of v, which is evaluated as
the relative frequency of the estimated intervals containing v among all 100(1 — )%
interval estimates;

(d) Average width (AW) of 100(1 — )% interval estimates of v.

In addition, the following censoring schemes are considered in the simulation:

CSLri=rn=---=ry_1=0andr, =n—m;
CSI: n=n—mandr,=---=1r, =0

. rn=--=thrm=Lry_pmy1=--=r,m=0, ifn <2m;
CSIII'{rlz =ty =Lrm=n-2m+1, if n > 2m.

In this simulation, the algorithm proposed by Balakrishnan and Sandhu [23] can be
used to generate a progressively Type II-censored sample, and then the relevant generalized
progressively hybrid censored samples can be obtained by comparing the prefixed T and K
with the generated progressively Type II-censored data. The simulation was conducted
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based on 10,000 repetitions, and the results are presented in Tables 1-8, where the sig-
nificance level for interval estimates is 1 — y = 0.95. Since there is no prior information,
0.001(instead of 0) is chosen as the hyper-parameters (all hyper-parameters) of the Bayesian
estimation, these priors are proper but almost non-informative.

Table 1. ABs and MSEs (within bracket) for model parameters at (¢, 8) = (1.5,1.2).

T=04 T =0.7
n m k CS MLE Bayes MLE Bayes
« B « B & B w B
30 15 10 I 1.0462 0.7441 0.9846 0.7257 0.8519 0.6158 0.8436 0.5777
[1.0945] [0.5537] [0.9938] [0.4893] [0.7321] [0.4273] [0.7216] [0.3543]
II 1.1258 0.7275 1.0123 0.7310 0.8762 0.5972 0.8379 0.5640

[1.3224] [0.5293] [0.9857] [0.5065] [0.7493] [0.3962] [0.7185] [0.3768]
I 12199 07184  1.0079 07149 09134 06103 08510  0.5581
[1.1526] [0.5210] [1.0101] [0.4936] [0.8022] [0.4159] [0.7561] [0.3624]

12 I 0.9789 0.7112 0.9635 0.6859 0.8331 0.5833 0.8219 0.5329
[0.9546] [0.4953] [0.9642] [0.4672] [0.6657] [0.3627] [0.6379] [0.3131]
I 0.9967 0.6997 0.9714 0.6934 0.8360 0.5740 0.8230 0.5367

[1.0034] [0.4673] [0.9581] [0.4710] [0.6513] [0.3518] [0.6204] [0.2967]
I 09823 07086 09658  0.6812 08459 05779  0.8184  0.5285
[0.9989] [0.4654] [0.9648] [0.4559] [0.6439] [0.3610] [0.6235] [0.2875]

20 12 I 0.9213 0.6730 0.9142 0.6645 0.7781 0.5411 0.7546 0.4834
[0.8431] [0.4122] [0.8237] [0.3768] [0.6181] [0.3345] [0.5891] [0.2453]
II 0.9152 0.6711 0.9069 0.6528 0.7642 0.5326 0.7498 0.4760

[0.8520] [0.4089] [0.8181] [0.3529] [0.5925] [0.3241] [0.5640] [0.2510]
I 09478  0.6658 09320  0.6561 07753 05463 07522 04816
[0.8763] [0.4105] [0.8492] [0.3811] [0.6034] [0.3279] [0.5812] [0.2498]

18 I 0.8824 0.6476 0.8534 0.6354 0.7419 0.4982 0.7163 0.4434
[0.6948] [0.4003] [0.6312] [0.3534] [0.5354] [0.2762] [0.5258] [0.2043]
I 0.8617 0.6528 0.8610 0.6531 0.7520 0.5017 0.7241 0.4395

[0.6635] [0.3929] [0.6297] [0.3331] [0.5718] [0.2840] [0.5527] [0.1965]
I 0.8729  0.6490  0.8639  0.6446 07463 05026 07192  0.4320
[0.6980] [0.3817] [0.6540] [0.3583] [0.5463] [0.2811] [0.5319] [0.2123]

60 25 18 I 06543 05879 06347 05596 05837  0.4009 05584  0.3184
[0.4879] [0.3624] [0.4511] [0.3290] [0.4210] [0.1638] [0.3251] [0.1192]
I 06394 05713 06581 05687 05942 04117 05637  0.3249

[0.4738] [0.3495] [0.4493] [0.3156] [0.3961] [0.1852] [0.3349] [0.1064]
I 0.6567 0.5842 0.6412 0.5642 0.5881 0.4036 0.5611 0.3210
[0.4902] [0.3547] [0.4265] [0.3215] [0.4132] [0.1796] [0.3278] [0.1042]

20 I 0.6120 0.5465 0.5746 0.5209 0.5624 0.3824 0.5324 0.3030
[0.4538] [0.3408] [0.4029] [0.3118] [0.3538] [0.1833] [0.2992] [0.1045]
II 0.5923 0.5511 0.5869 0.5318 0.5711 0.3865 0.5400 0.3101

[0.4387] [0.3526] [0.4273] [0.3132] [0.3649] [0.1920] [0.3104] [0.0989]
I 0.6081 0.5382 0.5656 0.5404 0.5802 0.3798 0.5369 0.3017
[0.4145] [0.3270] [0.4308] [0.3079] [0.3788] [0.1875] [0.3162] [0.0921]

45 20 I 0.5469 0.4795 0.5337 0.4520 0.5085 0.3364 0.4928 0.2584
[0.3871] [0.2531] [0.3426] [0.1983] [0.2860] [0.1362] [0.2539] [0.0743]
II 0.5611 0.4826 0.5268 0.4461 0.5236 0.3152 0.4963 0.2645

[0.4074] [0.2438] [0.3554] [0.2024] [0.2536] [0.1123] [0.2571] [0.0821]
I 0.5246 0.4913 0.5311 0.4317 0.5118 0.3298 0.5005 0.2631
[0.3963] [0.2769] [0.3701] [0.2080] [0.2801] [0.1248] [0.2617] [0.0769]

40 I 0.4372 0.3941 0.4214 0.3482 0.4121 0.2441 0.3852 0.1990
[0.2674] [0.2155] [0.2376] [0.1643] [0.1918] [0.0831] [0.1633] [0.0512]
II 0.4115 0.3674 0.4230 0.3259 0.4036 0.2530 0.3761 0.1983

[0.2461] [0.1865] [0.2512] [0.1499] [0.1838] [0.0762] [0.1520] [0.0600]
11T 0.3998 0.3728 0.4010 0.3648 0.3956 0.2479 0.3712 0.2011
[0.2573] [0.2042] [0.2004] [0.1832] [0.2011] [0.0713] [0.1550] [0.0548]
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Table 2. AWs and CPs (within bracket) for model parameters at («, ) = (1.5,1.2).

T=04 T=0.7
n m k CS ACI HPD ACI HPD
o« B ® B o« B ® B
30 15 10 I 0.7495 0.7386 0.7239 0.7049 0.6853 0.6611 0.6712 0.6471
[0.9124] [0.8946] [0.9069] [0.8910] [0.9190] [0.9015] [0.9113] [0.8953]
I 0.7368 0.7247 0.7186 0.7101 0.6910 0.6597 0.6658 0.6520

[0.9110] [0.8913] [0.9043] [0.8911] [0.9204] [0.8967] [0.9105] [0.8942]
I 07612 07355 07257 07132 06867 06573 06739  0.6513
[09153] [0.8927] [0.9105] [0.8926] [0.9173] [0.8942] [0.9126] [0.8931]

12 I 0.7146 0.6958 0.6843 0.6758 0.6642 0.6427 0.6540 0.6248
[0.9131] [0.8972] [0.9121] [0.8937] [0.9211] [0.9020] [0.9156] [0.8992]
II 0.7014 0.6549 0.6950 0.6810 0.6710 0.6358 0.6437 0.6312

[0.9132] [0.8951] [0.9096] [0.8942] [0.9213] [0.9012] [0.9134] [0.9004]
i 0.7093 0.6658 0.6862 0.6743 0.6689 0.6349 0.6522 0.6259
[0.9169] [0.8968] [0.9112] [0.8928] [0.9209] [0.9009] [0.9173] [0.9000]

25 12 I 0.6545 0.6381 0.6338 0.6214 0.6341 0.6124 0.6291 0.5984
[0.9247] [0.9047] [0.9230] [0.8982] [0.9258] [0.9103] [0.9242] [0.9023]
II 0.6610 0.6402 0.6267 0.6193 0.6397 0.6139 0.6143 0.6006

[0.9249] [0.9102] [0.9147] [0.9013] [0.9264] [0.9114] [0.9251] [0.9075]
I 0.6627 0.6434 0.6291 0.6258 0.6412 0.6056 0.6255 0.5872
[0.9238] [0.9021] [0.9208] [0.8997] [0.9275] [0.9089] [0.9263] [0.9044]

18 I 0.6223 0.6137 0.5910 0.5790 0.5981 0.5821 0.5742 0.5743
[0.9263] [0.9113] [0.9242] [0.9056] [0.9279] [0.9120] [0.9255] [0.9106]
II 0.6154 0.6211 0.5876 0.5852 0.6023 0.5784 0.5831 0.5728

[0.9255] [0.9124] [0.9210] [0.9104] [0.9281] [0.9119] [0.9276] [0.9083]
11T 0.6198 0.6213 0.5963 0.5843 0.6014 0.5809 0.5774 0.5685
[0.9261] [0.9125] [0.9235] [0.9067] [0.9294] [0.9132] [0.9288] [0.9071]

60 25 18 I 0.5497 0.5134 0.5117 0.4931 0.5231 0.5043 0.4896 0.4987
[0.9332] [0.9273] [0.9312] [0.9143] [0.9315] [0.9301] [0.9314] [0.9210]
II 0.5338 0.5315 0.5079 0.4865 0.5282 0.5125 0.4832 0.4864

[0.9327] [0.9284] [0.9286] [0.9122] [0.9320] [0.9295] [0.9300] [0.9189]
I 05296 05219 05112 04916 05111 05101 04795  0.4933
[0.9316] [0.9259] [0.9291] [0.9136] [0.9312] [0.9278] [0.9307] [0.9243]

20 I 0.5012 0.4676 0.4736 0.4571 0.4824 0.4432 0.4524 0.4321
[0.9338] [0.9291] [0.9324] [0.9169] [0.9340] [0.9321] [0.9335] [0.9276]
II 0.5125 0.4827 0.4819 0.4529 0.4765 0.4470 0.4479 0.4250

[0.9341] [0.9296] [0.9315] [0.9147] [0.9329] [0.9342] [0.9326] [0.9269]
I 05056 04769 04786 04638 04801 04528 04513  0.4302
[0.9334] [0.9289] [0.9311] [0.9184] [0.9332] [0.9357] [0.9329] [0.9295]

45 20 I 0.4679 0.4682 0.4242 0.4230 0.4321 0.4196 0.4160 0.3825
[0.9512] [0.9466] [0.9345] [0.9356] [0.9437] [0.9465] [0.9412] [0.9428]
II 0.4344 0.4293 0.4235 0.4158 0.4236 0.4035 0.4217 0.3761

[0.9479] [0.9482] [0.9396] [0.9328] [0.9421] [0.9506] [0.9431] [0.9396]
11T 0.4475 0.4312 0.4287 0.4249 0.4270 0.4057 0.4176 0.3724
[0.9463] [0.9449] [0.9401] [0.9381] [0.9426] [0.9487] [0.9419] [0.9362]

40 I 0.3341 0.3215 0.3122 0.2964 0.2987 0.2768 0.2653 0.2525
[0.9517] [0.9478] [0.9467] [0.9420] [0.9503] [0.9511] [0.9483] [0.9470]
II 0.3189 0.3137 0.3076 0.3071 0.2946 0.2791 0.2542 0.2510

[0.9504] [0.9510] [0.9423] [0.9475] [0.9472] [0.9523] [0.9456] [0.9456]
I 03217 03184 03104 03102 02871 02689 02469  0.2602
[0.9550] [0.9493] [0.9458] [0.9481] [0.9500] [0.9500] [0.9482] [0.9483]
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Table 3. ABs and MSEs (within bracket) for model parameters at (¢, 8) = (0.6,0.7).
T=04 T =0.7
n m k CSs MLE Bayes MLE Bayes
u B a B « B « B
30 15 10 I 0.4557 0.6199 0.4540 0.5617 0.4193 0.5323 0.3826 0.4733
[0.2671] [0.3843] [0.2218] [0.3471] [0.1808] [0.2937] [0.1521] [0.2312]
1I 0.4710 0.5728 0.4368 0.5822 0.4211 0.5014 0.3905 0.4562
[02523] [0.3571] [0.2117] [0.3504] [0.1871] [0.2651] [0.1607]  [0.2191]
I 0.4683 0.5931 0.4441 0.5645 0.4164 0.5112 0.3857 0.4580
[02331] [0.3772] [0.2253] [0.3423] [0.1900] [0.2840] [0.1564]  [0.2210]
12 I 0.4235 0.5473 0.4126 0.5220 0.3927 0.4837 0.3674 0.4271
[0.1942] [0.3129] [0.1738] [0.2835] [0.1723] [0.2572] [0.1436] [0.1816]
I 0.4158  0.5238  0.4203  0.5304 0.3758  0.4921 0.3540 0.4356
[0.1758] [0.2991] [0.1801] [0.2673] [0.1542] [0.2614] [0.1349] [0.1943]
I 04269 05339 04159  0.5247 03786  0.4851 0.3569 0.4323
[0.2010] [0.3110] [0.1766] [0.2958] [0.1643] [0.2537] [0.1452] [0.1857]
20 12 I 0.3746 0.4681 0.3542 0.4432 0.3479 0.4206 0.3347 0.3940
[0.1231] [0.2439] [0.1111] [0.2206] [0.1254] [0.1892] [0.1210] [0.1612]
I 0.3852  0.4445 03558 04290  0.3512  0.4281 0.3326 0.4011
[0.1400] [0.2254] [0.1203] [0.2301] [0.1316] [0.1931] [0.1193] [0.1638]
I 0.3661 0.4562 03617 04356  0.3568  0.4239 0.3298 0.3962
[0.1374] [0.2367] [0.1165] [0.2121] [0.1389] [0.1905] [0.1176] [0.1655]
18 I 0.3424 0.4163 0.3281 0.3961 0.3210 0.3903 0.3010 0.3728
[0.1167] [0.1983] [0.1002] [0.1674] [0.1021] [0.1611] [0.0818]  [0.1475]
1I 0.3348 0.4292 0.3125 0.3879 0.3244 0.3852 0.2953 0.3810
[0.1003] [0.2080] [0.0852] [0.1852] [0.0967] [0.1532] [0.0753] [0.1549]
I 0.3507 04235 03099  0.4065 0.3302  0.3819 0.3122 0.3774
[0.1169] [0.1796] [0.0973] [0.1800] [0.1075] [0.1567] [0.0811]  [0.1523]
60 25 18 I 0.2514 0.3537 0.2246 0.3251 0.2259 0.3140 0.1875 0.2912
[0.0711] [0.1391] [0.0634] [0.1196] [0.0628] [0.1050] [0.0412]  [0.0984]
1I 0.2623 0.3284 0.2189 0.3303 0.2346 0.3097 0.1924 0.2849
[0.0734] [0.1112] [0.0515] [0.1205] [0.0596] [0.1104] [0.0437] [0.0867]
I 0.2469 0.3369 0.2374 0.3114 0.2357 0.3114 0.2013 0.2838
[0.0665] [0.1245] [0.0559] [0.1013] [0.0711] [0.1113] [0.0400]  [0.0851]
20 I 0.2231 0.3072 0.2100 0.2862 0.2069 0.2723 0.1634 0.2546
[0.0515] [0.1006] [0.0469] [0.0869] [0.0455] [0.0821] [0.0326]  [0.0696]
1I 0.2153 0.3125 0.2208 0.2980 0.2038 0.2795 0.1565 0.2497
[0.0498] [0.1068] [0.0386] [0.0935] [0.0424] [0.0903] [0.0251] [0.0620]
I 0.2349 0.2987 0.2135 0.2769 0.2129 0.2811 0.1610 0.2453
[0.0537] [0.0983] [0.0505] [0.0928] [0.0482] [0.0916] [0.0313]  [0.0663]
45 20 I 0.1536 0.2425 0.1234 0.2134 0.1215 0.2214 0.0834 0.2112
[0.0299] [0.0653] [0.0210] [0.0498] [0.0176] [0.0540] [0.0142]  [0.0515]
1I 0.1313 0.2367 0.1402 0.1989 0.1146 0.2179 0.0911 0.2086
[0.0337] [0.0584] [0.0236] [0.0512] [0.0210] [0.0429] [0.0151] [0.0408]
I 0.1369 0.2391 0.1216 0.2006 0.1117 0.2200 0.0825 0.2105
[0.0369] [0.0712] [0.0300] [0.0556] [0.0195] [0.0513] [0.0136]  [0.0472]
40 I 0.1111 0.1639 0.0748 0.1435 0.0786 0.1445 0.0502 0.1121
[0.0178] [0.0312] [0.098]  [0.0318] [0.0120] [0.0321] [0.00102] [0.0160]
1I 0.0987 0.1548 0.0872 0.1290 0.0663 0.1368 0.0438 0.1009
[0.0201] [0.0278] [0.0146] [0.0220] [0.0118] [0.0330] [0.0111] [0.0139]
I 0.1024 0.1423 0.0833 0.1451 0.0713 0.1401 0.0496 0.1048
[0.0196] [0.0301] [0.0109] [0.0246] [0.0122] [0.0232] [0.0098]  [0.0147]
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Table 4. AWs and CPs (within bracket) for model parameters at («, ) = (0.6,0.7).

T=04 T=0.7
n m k CS ACI HPD ACI HPD
o« B ® B o« B ® B
30 15 10 I 0.2925 0.3289 0.2565 0.2813 0.2673 0.3115 0.2493 0.2611
[0.8862] [0.8969] [0.8824] [0.8932] [0.8881] [0.9013] [0.8856] [0.8976]
I 0.2647 0.3345 0.2611 0.2864 0.2594 0.2998 0.2510 0.2549

[0.8793] [0.9021] [0.8791] [0.8967] [0.8824] [0.9042] [0.8818] [0.9023]
I 02738 03126 02674 02911 02651 03026 02545  0.2581
[0.8831] [0.8951] [0.8819] [0.8943] [0.8875] [0.9027] [0.8842] [0.8997]

12 I 0.2540 0.3064 0.2381 0.2546 0.2512 0.2857 0.2221 0.2341
[0.8891] [0.9011] [0.8852] [0.8982] [0.8905] [0.9031] [0.8879] [0.9024]
II 0.2611 0.2975 0.2425 0.2687 0.2463 0.2760 0.2185 0.2412

[0.8910] [0.9024] [0.8870] [0.9005] [0.8916] [0.9029] [0.8902] [0.9019]
i 0.2579 0.2969 0.2376 0.2596 0.2520 0.2824 0.2204 0.2396
[0.8873] [0.9017] [0.8849] [0.8998] [0.8923] [0.9033] [0.8895] [0.9019]

25 12 I 0.2253 0.2637 0.2034 0.2435 0.2017 0.2536 0.1828 0.2213
[0.8958] [0.9134] [0.8910] [0.9120] [0.8968] [0.9145] [0.8951] [0.9132]
II 0.2114 0.2856 0.1965 0.2472 0.1968 0.2611 0.1765 0.2074

[0.8934] [0.9179] [0.8906] [0.9125] [0.8942] [0.9154] [0.8936] [0.9128]
I 0.2168 0.2749 0.2007 0.2509 0.2022 0.2542 0.1752 0.2145
[0.8947] [0.9146] [0.8911] [0.9136] [0.8991] [0.9151] [0.8928] [0.9136]

18 I 0.1980 0.2464 0.1853 0.2311 0.1845 0.2239 0.1546 0.1939
[0.9012] [0.9162] [0.8948] [0.9127] [0.9034] [0.9179] [0.9011] [0.9140]
II 0.2014 0.2398 0.1746 0.2296 0.1752 0.2217 0.1610 0.2004

[0.9045] [0.9150] [0.8921] [0.9139] [0.9061] [0.9168] [0.9027] [0.9158]
11T 0.2025 0.2511 0.1811 0.2437 0.1763 0.2164 0.1582 0.1968
[0.9032] [0.9158] [0.8933] [0.9142] [0.9066] [0.9182] [0.9019] [0.9149]

60 25 18 I 0.1642 0.1865 0.1324 0.1672 0.1414 0.1453 0.1264 0.1356
[0.9231] [0.9301] [0.9146] [0.9248] [0.9240] [0.9324] [0.9216] [0.9302]
II 0.1729 0.1643 0.1527 0.1681 0.1495 0.1510 0.1331 0.1421

[0.9276] [0.9284] [0.9179] [0.9261] [0.9287] [0.9357] [0.9235] [0.9345]
11T 0.1693 0.1660 0.1462 0.1593 0.1382 0.1469 0.1257 0.1382
[0.9250] [0.9300] [0.9160] [0.9256] [0.9249] [0.9338] [0.9224] [0.9331]

20 I 0.1436 0.1524 0.1291 0.1471 0.1227 0.1321 0.1011 0.1221
[0.9298] [0.9335] [0.9264] [0.9314] [0.9315] [0.9343] [0.9262] [0.9329]
II 0.1347 0.1613 0.1255 0.1524 0.1164 0.1279 0.1120 0.1178

[0.9245] [0.9346] [0.9235] [0.9349] [0.9279] [0.9361] [0.9274] [0.9351]
11T 0.1421 0.1499 0.1217 0.1506 0.1253 0.1305 0.1059 0.1216
[0.9280] [0.9322] [0.9251] [0.9345] [0.9323] [0.9355] [0.9283] [0.9349]

45 20 I 0.1010 0.1332 0.0823 0.1231 0.0896 0.1111 0.0715 0.0896
[0.9350] [0.9417] [0.9337] [0.9379] [0.9382] [0.9446] [0.9365] [0.9421]
II 0.0987 0.1221 0.0796 0.1224 0.0754 0.1062 0.0684 0.0908

[0.9379] [0.9425] [0.9326] [0.9410] [0.9409] [0.9430] [0.9378] [0.9424]
I 01102  0.1362  0.0908  0.1168  0.0835  0.1048  0.0691  0.0905
[0.9384] [0.9431] [0.9355] [0.9385] [0.9401] [0.9439] [0.9389] [0.9418]

40 I 0.0653 0.1010 0.0372 0.0758 0.0367 0.0756 0.0212 0.0511
[0.9463] [0.9462] [0.9420] [0.9421] [0.9471] [0.9471] [0.9444] [0.9456]
II 0.0429 0.0923 0.0411 0.0846 0.0411 0.0598 0.0199 0.0437

[0.9412] [0.9451] [0.9419] [0.9436] [0.9486] [0.9463] [0.9457] [0.9441]
I 0.0547  0.1105  0.0420 0.0912  0.0406  0.0562  0.0230  0.0492
[0.9455] [0.9479] [0.9448] [0.9435] [0.9469] [0.9491] [0.9451] [0.9455]
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Table 5. ABs and MSEs (within bracket) for model parameters at (¢, 8) = (1.4,0.8).

T=04 T =0.7
n m k CS MLE Bayes MLE Bayes
« B « B & B w B
30 15 10 I 1.1357 0.6243 0.9745 0.5824 0.9172 0.5683 0.8337 0.4785
[1.2898] [0.3897] [0.9649] [0.3612] [0.8497] [0.3355] [0.7145] [0.2448]
I 0.9823 0.5984 1.0032 0.5885 0.8954 0.5324 0.8416 0.4836

[1.1153] [0.3539] [1.0043] [0.3645] [0.8132] [0.3102] [0.7276] [0.2527]
I 1.0268  0.6023 09918 05736 09081 05417  0.8324  0.4811
[1.2064] [0.3658] [1.0106] [0.3552] [0.8278] [0.3178] [0.7083] [0.2462]

12 I 0.9736 0.5742 0.9512 0.5629 0.8826 0.5191 0.8210 0.4612
[1.0101] [0.3518] [0.9479] [0.3437] [0.7924] [0.2723] [0.6958] [0.2211]
II 0.9549 0.5633 0.9567 0.5713 0.8804 0.5260 0.8173 0.4537

[0.9678] [0.3611] [0.9521] [0.3620] [0.7865] [0.2832] [0.6780] [0.2186]
i 0.9628 0.5898 0.9439 0.5647 0.8739 0.5189 0.8142 0.4558
[0.9832] [0.3632] [0.9555] [0.3425] [0.7904] [0.2786] [0.6812] [0.2130]

20 12 I 0.9431 0.5213 0.9278 0.5234 0.8568 0.4876 0.7878 0.4119
[0.9511] [0.3121] [0.8965] [0.3220] [0.7655] [0.2453] [0.6372] [0.1310]
II 0.9210 0.5472 0.9324 0.5162 0.8661 0.4911 0.7900 0.4036

[0.9230] [0.3346] [0.9007] [0.3224] [0.7692] [0.2550] [0.6549] [0.1163]
I 0.9279 0.5269 0.9215 0.5211 0.8590 0.4835 0.7714 0.4092
[0.9314] [0.3267] [0.8972] [0.3014] [0.7671] [0.2521] [0.6142] [0.1278]

18 I 0.8954 0.5114 0.8654 0.4963 0.8372 0.4545 0.7532 0.3746
[0.8537] [0.2728] [0.8217] [0.2695] [0.7173] [0.2162] [0.5925] [0.1512]
II 0.9036 0.5026 0.8827 0.5028 0.8359 0.4473 0.7659 0.3831

[0.8812] [0.2491] [0.8453] [0.2501] [0.7119] [0.2054] [0.0000] [0.1586]
11T 0.8998 0.5079 0.8546 0.4858 0.8421 0.4602 0.7631 0.3792
[0.8641] [0.2500] [0.8269] [0.2460] [0.8320] [0.2259] [0.6027] [0.1464]

60 25 18 I 0.7346 0.4368 0.7090 0.4124 0.7143 0.3810 0.6812 0.3004
[0.7031] [0.2135] [0.6584] [0.2213] [0.5253] [0.1557] [0.4869] [0.0979]
II 0.7538 0.4279 0.7314 0.4006 0.7120 0.3900 0.6658 0.3102

[0.6954] [0.2054] [0.6613] [0.1984] [0.5310] [0.1768] [0.4592] [0.1010]
11T 0.7410 0.4351 0.7115 0.4081 0.7254 0.3881 0.6940 0.2987
[0.7028] [0.2269] [0.6328] [0.2100] [0.5278] [0.1649] [0.5007] [0.0917]

20 I 0.7219 0.4016 0.6948 0.3674 0.6738 0.3526 0.6431 0.2762
[0.6357] [0.1863] [0.5935] [0.1658] [0.4619] [0.1319] [0.4264] [0.0856]
II 0.7162 0.3968 0.7073 0.3852 0.6702 0.3379 0.6283 0.2725

[0.6001] [0.1910] [0.6021] [0.1732] [0.4538] [0.1270] [0.3969] [0.0810]
11T 0.7294 0.4123 0.6825 0.3691 0.6661 0.3451 0.6401 0.2779
[0.6214] [0.2000] [0.5847] [0.1669] [0.4443] [0.1236] [0.4307] [0.0798]

45 20 I 0.6354 0.3446 0.6281 0.3500 0.5954 0.3003 0.5526 0.2453
[0.5345] [0.1332] [0.4723] [0.1125] [0.3711] [0.1001] [0.3199] [0.0659]
II 0.6213 0.3527 0.6224 0.3372 0.6012 0.2948 0.5417 0.2538

[0.5221] [0.1671] [0.4489] [0.1347] [0.3825] [0.0948] [0.3098] [0.0714]
11T 0.6190 0.3658 0.6017 0.3228 0.5937 0.3014 0.5468 0.2610
[0.5268] [0.1549] [0.4540] [0.1442] [0.3693] [0.1032] [0.3124] [0.0739]

40 I 04545 03123 04444 02891 03948 02435 03279  0.2011
[0.2542] [0.1218] [0.2227] [0.0923] [0.1675] [0.0654] [0.1126] [0.0481]
I 04739 03154 04385 02984 03862 02477 03245  0.1864

[0.2336] [0.1309] [0.2341] [0.1000] [0.1452] [0.0731] [0.2107] [0.0370]
1T 0.4352 0.3230 0.4406 0.2959 0.3925 0.2362 0.3310 0.1890
[0.2410] [0.1346] [0.2011] [0.0961] [0.1704] [0.0638] [0.1179] [0.0374]
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Table 6. AWs and CPs (within bracket) for model parameters at («, ) = (1.4,0.8).

T=04 T=0.7
n m k CS ACI HPD ACI HPD
o« B ® B o« B ® B
30 15 10 I 0.5128 0.4351 0.4921 0.3974 0.5006 0.4051 0.4832 0.3744
[0.9215] [0.9162] [0.9164] [0.9119] [0.9230] [0.9176] [0.9198] [0.9142]
I 0.5241 0.4282 0.4963 0.4012 0.4912 0.3862 0.4763 0.3681

[0.9220] [0.9121] [0.9183] [0.9120] [0.9229] [0.9145] [0.9200] [0.9129]
I 05328 04315 05011 04110 05034 03940 04752  0.3705
[09236] [0.9133] [0.9212] [0.9107] [0.9246] [0.9162] [0.9213] [0.9236]

12 I 0.4981 0.3978 0.4834 0.3762 0.4813 0.3843 0.4615 0.3542
[0.9233] [0.9180] [0.9217] [0.9134] [0.9265] [0.9194] [0.9231] [0.9156]
II 0.5012 0.4012 0.4762 0.3849 0.4769 0.3826 0.4653 0.3601

[0.9227] [0.9175] [0.9200] [0.9152] [0.9242] [0.9188] [0.9225] [0.9171]
i 0.4863 0.4110 0.4819 0.3851 0.4753 0.3772 0.4581 0.3569
[0.9241] [0.9183] [0.9224] [0.9149] [0.9258] [0.9200] [0.9237] [0.9169]

25 12 I 0.4637 0.3765 0.4495 0.3623 0.4435 0.3543 0.4220 0.3259
[0.9351] [0.9234] [0.9311] [0.9211] [0.9362] [0.9283] [0.9326] [0.9244]
II 0.4520 0.3862 0.4362 0.3759 0.4412 0.3491 0.4263 0.3310

[0.9338] [0.9251] [0.9296] [0.9230] [0.9370] [0.9269] [0.9331] [0.9256]
I 0.4519 0.3659 0.4387 0.3631 0.4369 0.3515 0.4175 0.3274
[0.9314] [0.9267] [0.9302] [0.9228] [0.9345] [0.9271] [0.9319] [0.9239]

18 I 0.4332 0.3521 0.4253 0.3415 0.4217 0.3342 0.4051 0.2964
[0.9362] [0.9301] [0.9345] [0.9257] [0.9383] [0.9316] [0.9362] [0.9297]
II 0.4309 0.3457 0.4182 0.3398 0.4158 0.3310 0.3964 0.3011

[0.9370] [0.9289] [0.9328] [0.9263] [0.9392] [0.9327] [0.9345] [0.9304]
11T 0.4411 0.3461 0.4160 0.3502 0.4207 0.3259 0.4102 0.3057
[0.9379] [0.9296] [0.9334] [0.9274] [0.9374] [0.9320] [0.9341] [0.9310]

60 25 18 I 0.2648 0.2846 0.2573 0.2627 0.2432 0.2673 0.2337 0.2521
[0.9432] [0.9325] [0.9390] [0.9290] [0.9451] [0.9351] [0.9427] [0.9345]
II 0.2753 0.2900 0.2614 0.2711 0.2511 0.2710 0.2412 0.2500

[0.9424] [0.9340] [0.9408] [0.9315] [0.9468] [0.9389] [0.9458] [0.9328]
11T 0.2869 0.2753 0.2643 0.2645 0.2468 0.2618 0.2369 0.2483
[0.9431] [0.9318] [0.9412] [0.9308] [0.9455] [0.9348] [0.9432] [0.9331]

20 I 0.2434 0.2632 0.2231 0.2424 0.2252 0.2457 0.2054 0.2231
[0.9463] [0.9376] [0.9435] [0.9331] [0.9472] [0.9390] [0.9464] [0.9371]
II 0.2517 0.2469 0.2314 0.2360 0.2143 0.2315 0.2126 0.2169

[0.9459] [0.9354] [0.9451] [0.9342] [0.9480] [0.9401] [0.9459] [0.9368]
11T 0.2456 0.2483 0.2286 0.2371 0.2172 0.2336 0.2100 0.2210
[0.9447] [0.9338] [0.9437] [0.9318] [0.9469] [0.9382] [0.9457] [0.9380]

45 20 I 0.1859 0.2091 0.1765 0.1879 0.1663 0.1912 0.1603 0.1632
[0.9489] [0.9437] [0.9462] [0.9410] [0.9504] [0.9461] [0.9492] [0.9442]
II 0.1941 0.1948 0.1870 0.1913 0.1547 0.1863 0.1548 0.1597

[0.9501] [0.9458] [0.9485] [0.9415] [0.9521] [0.9459] [0.9490] [0.9427]
I 0.1882  0.1962  0.1834  0.1900  0.1631  0.1852  0.1592  0.1650
[0.9473] [0.9429] [0.9449] [0.9406] [0.9499] [0.9480] [0.9506] [0.9451]

40 I 0.1231 0.1434 0.1121 0.1224 0.1059 0.1141 0.0942 0.0756
[0.9531] [0.9495] [0.9510] [0.9456] [0.9554] [0.9512] [0.9532] [0.9492]
I 0.1047 0.1211 0.1015 0.1179 0.1211 0.1082 0.1007 0.0843

[0.9524] [0.9501] [0.9498] [0.9432] [0.9583] [0.9534] [0.9554] [0.9511]
I 01105  0.1285  0.0928  0.1248  0.1145  0.1113  0.0879  0.0721
[0.9519] [0.9468] [0.9502] [0.9463] [0.9549] [0.9512] [0.9527] [0.9503]
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Table 7. ABs and MSEs (within bracket) for model parameters at (¢, 8) = (0.6,0.7).

T=04 T =0.7
n m k CS MLE Bayes MLE Bayes
« B « B & B w B
30 15 10 I 0.3657 0.4116 0.3485 0.3794 0.3251 0.3547 0.2914 0.3176
[0.1437] [0.1694] [0.1293] [0.1513] [0.1166] [0.1361] [0.1017] [0.1103]
I 0.3728 0.4208 0.3561 0.3921 0.3349 0.3602 0.3005 0.3048

[0.1524] [0.1712] [0.1339] [0.1719] [0.2109] [0.1279] [0.0985] [0.0967]
I 03649  0.3956 03534 03885 03286 03581 02967  0.3125
[0.1610] [0.1649] [0.1375] [0.1648] [0.1150] [0.1304] [0.0964] [0.1011]

12 I 0.3426 0.3742 0.3362 0.3476 0.3030 0.3324 0.2738 0.2867
[0.1334] [0.1534] [0.1265] [0.1327] [0.981] [0.1203] [0.0821] [0.0860]
II 0.3518 0.3648 0.3391 0.3581 0.2972 0.3376 0.2712 0.2814

[0.1420] [0.1611] [0.1321] [0.1509] [0.0908] [0.1198] [0.0769  [0.0794]
i 0.3418 0.3597 0.3420 0.3613 0.3103 0.3419 0.2659 0.2763
[0.1411] [0.1549] [0.1420] [0.1568] [0.0973] [0.1325] [0.0753] [0.0813]

20 12 I 0.3123 0.3364 0.2879 0.3146 0.2734 0.3172 0.2346 0.2331
[0.1125] [0.1363] [0.0923] [0.1134] [0.0859] [0.1054] [0.0617] [0.0622]
II 0.3111 0.3279 0.2952 0.3125 0.2698 0.3204 0.2418 0.2365

[0.1102] [0.1421] [0.0987] [0.1210] [0.0780] [0.1211] [0.0742] [0.0710]
I 03209 03418 03003 03221 02715 03210 02462  0.2410
[0.1054] [0.1397] [0.1102] [0.1276] [0.0829] [0.1178] [0.0780] [0.0739]

18 I 0.2876 0.3214 0.2671 0.3031 0.2581 0.2943 0.2103 0.2119
[0.0927] [0.1245] [0.0814] [0.1049] [0.0725] [0.0952] [0.0492] [0.0489]
II 0.2742 0.3240 0.2498 0.2958 0.2462 0.3021 0.2168 0.2108

[0.1001] [0.1196] [0.0796] [0.0976] [0.0657] [0.0943] [0.0535] [0.0446]
11T 0.2695 0.3185 0.2702 0.2884 0.2527 0.2956 0.2241 0.2074
[0.0855] [0.1220] [0.0901] [0.0952] [0.0713] [0.0899] [0.0549] [0.0462]

60 25 18 I 0.2239 0.2537 0.2321 0.2472 0.1991 0.2248 0.1547 0.1643
[0.0673] [0.0934] [0.0615] [0.0713] [0.0452] [0.0530] [0.0287] [0.0296]
II 0.2304 0.2469 0.2257 0.2511 0.1983 0.2315 0.1462 0.1659

[0.0759] [0.0896] [0.0539] [0.0684] [0.0461] [0.0611] [0.0246] [0.0313]
11T 0.2251 0.2614 0.2364 0.2392 0.2057 0.2302 0.1589 0.1582
[0.0811] [0.1010] [0.0610] [0.0711] [0.0521] [0.0582] [0.0312] [0.0314]

20 I 0.2134 0.2458 0.2114 0.2222 0.1821 0.1978 0.1331 0.1328
[0.0598] [0.0746] [0.0505] [0.0557] [0.0385] [0.0414] [0.0226] [0.0200]
II 0.2213 0.2366 0.2230 0.2163 0.1763 0.2009 0.1257 0.1400

[0.0634] [0.0813] [0.0641] [0.0613] [0.0359] [0.0503] [0.0198] [0.0238]
11T 0.2357 0.2529 0.2169 0.2282 0.1795 0.1895 0.1279 0.1362
[0.0621] [0.0711] [0.0562] [0.0724] [0.0420] [0.0468] [0.0212] [0.0245]

45 20 I 0.1968 0.2104 0.1863 0.1846 0.1452 0.1637 0.1042 0.1010
[0.0563] [0.0612] [0.0397] [0.0496] [0.0256] [0.0296] [0.0132] [0.0148]
II 0.2012 0.1968 0.1892 0.1672 0.1561 0.1742 0.0968 0.1121

[0.0662] [0.0498] [0.0425] [0.0512] [0.0311] [0.0257] [0.0111] [0.0175]
11T 0.2086 0.2077 0.1745 0.1831 0.1550 0.1810 0.1103 0.0894
[0.0599] [0.0535] [0.0434] [0.0550] [0.0324] [0.0312] [0.0125] [0.0094]

40 I 0.1463 0.1653 0.1236 0.1459 0.1101 0.1365 0.0645 0.0721
[0.0326] [0.0461] [0.0213] [0.0286] [0.0193] [0.0261] [0.0067] [0.0074]
II 0.1211 0.1342 0.1270 0.1421 0.0938 0.1279 0.0509 0.0768

[0.0288] [0.0332] [0.0302] [0.0341] [0.0101] [0.0224] [0.0053] [0.0076]
I 01397  0.1431 01111 01260  0.1010  0.1342  0.0598  0.0805
[0.0411] [0.0409] [0.0258] [0.0225] [0.0106] [0.0219] [0.0059] [0.0081]
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Table 8. AWs and CPs (within bracket) for model parameters at («, ) = (0.6,0.7).
T=04 T =0.7
n m k CS ACI HPD ACI HPD
« B « B & B w B
30 15 10 I 0.4784 0.5351 0.4536 0.4920 0.4569 0.4916 0.4332 0.4759
[0.9044] [0.9152] [0.8964] [0.9117] [0.9101] [0.9156] [0.9040] [0.9123]
I 0.4635 0.5129 0.4478 0.4865 0.4437 0.4868 0.4297 0.4711
[09038] [0.9121] [0.8932] [0.9104] [0.9086] [0.9144] [0.9031] [0.9116]
I 0.4927 0.5247 0.4521 0.4991 0.4528 0.4900 0.4315 0.4650
[0.9076] [0.9143] [0.8947] [0.9125] [0.9093] [0.9155] [0.9052] [0.9120]
12 I 0.4611 0.4723 0.4371 0.4632 0.4451 0.4539 0.4136 0.4364
[0.9082] [0.9175] [0.9051] [0.9135] [0.9118] [0.9181] [0.9097] [0.9150]
II 0.4593 0.4668 0.4260 0.4561 0.4326 0.4547 0.4200 0.4431
[0.9069] [0.9158] [0.9063] [0.9136] [0.9122] [0.9164] [0.9104] [0.9158]
I 0.4619 0.4515 0.4279 0.4410 0.4493 0.4561 0.4242 0.4385
[0.9091] [0.9142] [0.9042] [0.9142] [0.9129] [0.9157] [0.9110] [0.9149]
25 12 I 0.4234 0.4438 0.3926 0.4267 0.3968 0.4312 0.3831 0.4140
[0.9155] [0.9221] [0.9126] [0.9200] [0.9175] [0.9249] [0.9163] [0.9226]
I 0.4179 0.4502 0.3877 0.4300 0.4010 0.4240 0.3691 0.4209
[0.9239] [0.9230] [0.9119] [0.9213] [0.9183] [0.9231] [0.9149] [0.9231]
III 0.4320 0.4497 0.4025 0.4314 0.4041 0.4237 0.3726 0.4156
[0.9168] [0.9219] [0.9107] [0.9218] [0.9188] [0.9236] [0.9158] [0.9230]
18 I 0.4034 0.4321 0.3714 0.4159 0.3811 0.3896 0.3526 0.3754
[0.9183] [0.9257] [0.9146] [0.9231] [0.9204] [0.9258] [0.9183] [0.9245]
I 0.3938 04135 03755 04082  0.3679 03924 03397  0.3803
[0.9162] [0.9238] [0.9155] [0.9219] [0.9194] [0.9273] [0.9162] [0.9253]
I 04106 04248 03803 04223 03765 03955  0.3418  0.3821
[0.9184] [0.9246] [0.9162] [0.9224] [0.9200] [0.9280] [0.9174] [0.9260]
60 25 18 I 0.2763 0.3352 0.2710 0.3030 0.2562 0.3020 0.2325 0.2750
[0.9326] [0.9310] [0.9297] [0.9267] [0.9329] [0.9323] [0.9322] [0.9289]
I 0.2918 0.3198 0.2658 0.3216 0.2613 0.2943 0.2267 0.2832
[0.9357] [0.9291] [0.9311] [0.9280] [0.9341] [0.9312] [0.9310] [0.9304]
III 0.3013 0.3426 0.2841 0.3108 0.2667 0.3112 0.2314 0.2814
[0.9315] [0.9325] [0.9305] [0.9274] [0.9339] [0.9349] [0.9308] [0.9297]
20 I 0.2666 0.2748 0.2436 0.2546 0.2438 0.2659 0.2110 0.2371
[0.9364] [0.9329] [0.9338] [0.9312] [0.9385] [0.9361] [0.9361] [0.9338]
II 0.2709 0.2930 0.2518 0.2711 0.2491 0.2714 0.2039 0.2400
[0.9382] [0.9342] [0.9345] [0.9329] [0.9392] [0.9382] [0.9347] [0.9345]
III 0.2598 0.2911 0.2492 0.2673 0.2420 0.2686 0.2084 0.2346
[0.9379] [0.9331] [0.9330] [0.9318] [0.9350] [0.9374] [0.9340] [0.9330]
45 20 I 0.1374 0.1642 0.1111 0.1463 0.1103 0.1325 0.0812 0.1121
[0.9428] [0.9376] [0.9410] [0.9342] [0.9421] [0.9408] [0.9415] [0.9371]
I 0.1285 0.1455 0.1069 0.1485 0.1054 0.1211 0.0745 0.1078
[0.9412] [0.9359] [0.9398] [0.9326] [0.9431] [0.9390] [0.9406] [0.9359]
III 0.1419 0.1638 0.1203 0.1357 0.1236 0.1236 0.0796 0.1200
[0.9431] [0.9362] [0.9412] [0.9319] [0.9416] [0.9400] [0.9413] [0.9382]
40 I 0.0754 0.1221 0.0635 0.1103 0.0649 0.0789 0.0520 0.0659
[0.9465] [0.9456] [0.9438] [0.9414] [0.9486] [0.9471] [0.9451] [0.9438]
I 0.1002 0.1095 0.0742 0.0894 0.0731 0.0813 0.0469 0.0712

[09501] [0.9461] [0.9446] [0.9423] [0.9473] [0.9492] [0.9470] [0.9457]
I 0.0896  0.1154 00713  0.0952  0.0682  0.0800  0.0511  0.0683
[0.9488] [0.9448] [0.9451] [0.9426] [0.9490] [0.9483] [0.9473] [0.9445]

Tables 1, 3, 5 and 7 show that with an increase in n, m, k, T or any combination of all
those cases, the ABs and MSEs of both MLEs and Bayes estimates decrease for parameters
« and B; for the given n,m, k and T, ABs and MSEs of MLEs for each parameter, these are
similar under three CSs I, I and III. A similar phenomenon also appears for Bayes estimates.
Furthermore, the performance of Bayes estimates with respect to noninformative prior
are slightly better than those of MLEs in terms of ABs and MSEs in general. Meanwhile,
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for the simulated results of interval estimates shown in Tables 2, 4, 6 and 8, one can
observe that CPs increase when n,m, k, T or any combination increases, the AWs decrease
correspondingly under same change and both AClIs and HPDs have similar CPs and AWs
under CSs I, IT and III. Moreover, it is noted that, in most of the cases, the CPs of both ACIs
and HPD credible intervals are close to the nominal values. Under the same sample setting,
the AWs of HPDs obtained under noninformative prior are slightly shorter than the ACIs
for each parameter.

Overall, it can be seen from the simulation results that the performance of MLEs
and Bayes estimates are satisfactory; whereas the Bayes estimates are obtained under
almost non-informative priors, they are slightly superior to MLEs in terms of ABs and
MSEs. Meanwhile, according to AWs and CPs of interval estimates, if one wishes to find
confidence intervals which feature slightly shorter AWs, HPD-credible intervals may be an
appropriate choice; otherwise, if one wishes to have the confidence interval of which CP is
closer to the nominal level and the width of the interval is not a major concern, ACls can be
used to provide a balance between CPs and AWs.

5.2. lllustrated Examples

From Nadar et al. [24], the monthly water capacity data of Shasta reservoir in Califor-
nia, USA, from 1991 to 2010 in February, are used for illustration. Since the maximum ca-
pacity of the reservoir is 4,552,000 atrial fibrillation, the expression t = (X — Xmin)/ (Xmax —
Xmin) 1S used to convert the origin data into [0, 1] data; Xmin and xmax represent the lower
and upper bounds of the original variable x, respectively, and ¢ is the corresponding trans-
formed data. The origin and the transformed monthly capacity data are listed in Table 9,
where the first numbers in brackets are the real values of monthly capacity and the second
ones are the associated proportion in total capacity.

Table 9. Monthly capacity for August and proportion of total capacity for Shasta reservoir.

(1542838,0.338936) (1960458,0.430681) (1966077,0.431915) (2641041,0.580194)
(3168056,0.695970) (3298496,0.724626) (3380147,0.742563) (3448519,0.757583)
(3459209,0.759932) (3495969,0.768007) (3567220,0.783660) (3574861,0.785339)
(3584283,0.787408) (3694201,0.811556) (3712733,0.815627) (3772193,0.828689)
(3834224,0.842316) (3839544,0.843485) (3857423,0.847413) (3868600,0.849868)

Before further investigation, we first check whether the Kumaraswamy distribution
can provide a proper fit for the real data. By computation, it is seen that the Kolmogorov—
Smirnov distance is 0.1709 and the corresponding p-value is 0.4816, respectively. Therefore,
Kumaraswamy distribution is a proper model for these data sets. In addition, based on the
complete capacity proportion data, the MLEs of & and f are 6.3474 and 4.4892, respectively.
The empirical cumulative distribution and the fitting Kumaraswamy distribution plot
shown in the left of Figure 2 and the probability-probability (P-P) plot shown in the right
of Figure 2 are provided as well, which also suggests that the Kumaraswamy distribution
provides a suitable fitting model.

Empirical CDF
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Figure 2. Empirical cumulative distribution plot and P-P plot for the water capacity data.
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Based on Table 9, three groups of generalized progressively hybrid censored sample
are generated and shown in Table 10. Using the proposed methods, the various point and
interval estimates are obtained given in Table 11 where, since we do not have any prior
information about the unknown parameters, the Bayes estimates are also obtained under
almost non-informative prior with all hyper-parameters being 0.001; the interval estimates
are obtained under a significance level of 0.05 and the interval lengths are also provided in
square brackets.

Table 10. Generalized progressively hybrid censored samples from proportion data.

data (i): R = (0'%,4),k = 12, T = 0.75 with d = 12

0.338936 0.430681 0.431915 0.580194 0.695970 0.724626
0.742563 0.757583 0.759932 0.768007 0.783660 0.785339
data (ii): R = (4,0'%),k = 12, T = 0.83 withd = 13
0.338936 0.430681 0.431915 0.580194 0.695970 0.724626
0.757583 0.759932 0.768007 0.785339 0.787408 0.815627
0.828689
data (iii): R = (1,0%,1,0%,1,0%,1,0%),k = 12, T = 0.85 with d = 16
0.338936 0.430681 0.580194 0.695970 0.724626 0.742563
0.757583 0.768007 0.783660 0.785339 0.787408 0.815627
0.828689 0.842316 0.843485 0.847413
Table 11. Point and interval estimates of « and p for applications data.
data (i) o B
MLE 5.1386 5.3379
Bayes 5.0985 4.1581
ACI (2.0714,8.2057)[6.1343] (1.6563,17.2028)[15.5465]
HPD (2.3425,7.8596)[5.5171] (2.1248,11.5369)[9.4121]
data (ii) o B
MLE 4.5023 2.4529
Bayes 5.3427 3.2136
ACI (1.8753,7.1292)[5.2539] (0.0872,4.8186)[4.7314]
HPD (3.1215,7.8346)[4.7131] (1.7953,6.1325)[4.3372]
data (iii) w B
MLE 6.8227 4.2530
Bayes 5.8916 4.6154
ACI (3.1948,10.4506)[7.2558] (1.5006,12.0530)[10.5524]
HPD (3.5341,9.4278)[5.8937] (1.8399,9.1721)[7.3322]

From Table 11, it is observed that both MLEs and Bayes estimates are close to each
other under different data sets, which indicate that the classical and Bayes results have
similiar performance in general. In addition, the corresponding estimated CDFs via MLEs
and Bayes estimates are provided in Figure 3, and the plots also appear similar performance
under each data sets. Moreover, one can also noted that the Bayesian credible intervals of

unknown parameters are superior to ACIs in terms of AClIs as well.
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Figure 3. Fitted CDFs based on MLEs and Bayes estimates under three data sets.

6. Conclusions

In this paper, inference is considered for Kumaraswamy distribution based on the
generalized hybrid progressive censoring. Under classical and Bayesian procedures, the
existence and uniqueness of MLEs for unknown parameters are established, and the
Monte-Carlo sampling method is used to approximate the Bayes estimates and HPD
intervals. Simulation studies and real-life instances show that the estimation results of
classical and Bayesian methods work satisfactorily, and the Bayesian approach is superior to
conventional classical estimation. For further study, the optimization design and sampling
scheme of generalized progressive hybrid censoring also seem interesting, and will be
discussed in future research.
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