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Abstract: Software testing is the main method for finding software defects at present, and symmetric
testing and other methods have been widely used, but these testing methods will cause a lot of
waste of resources. Software defect prediction methods can reasonably allocate testing resources by
predicting the defect tendency of software modules. Cross-project defect prediction methods have
huge advantages when faced with missing datasets. However, most cross-project defect prediction
methods are designed based on the settings of a single source project and a single target project. As
the number of public datasets continues to grow, the number of source projects and defect information
is increasing. Therefore, in the case of multi-source projects, this paper explores the problems existing
when using multi-source projects for defect prediction. There are two problems. First, in practice,
it is not possible to know in advance which source project is used to build the model to obtain the
best prediction performance. Second, if an inappropriate source project is used in the experiment
to build the model, it can lead to lower performance issues. According to the problems found in
the experiment, the paper proposed a multi-source-based cross-project defect prediction method
MSCPDP. Experimental results on the AEEEM dataset and PROMISE dataset show that the proposed
MSCPDP method effectively solves the above two problems and outperforms most of the current
state-of-art cross-project defect prediction methods on F1 and AUC. Compared with the six cross-
project defect prediction methods, the F1 median is improved by 3.51%, 3.92%, 36.06%, 0.49%, 17.05%,
and 9.49%, and the ACU median is improved by −3.42%, 8.78%, 0.96%, −2.21%, −7.94%, and 5.13%.

Keywords: cross-project defect prediction; multiple source projects; MSCPDP; PROMISE; AEEEM;
F1; AUC

1. Introduction

At present, the mainstream method to find code defects in software modules is still
software testing technology, for example, the symmetrical test method [1,2]. This type of
method mainly relies on automatic or semi-automatic generation of a large number of test
cases to test code blocks in the hope of finding software defects. This type of method is very
effective, but it is a waste of resources. As we all know, the cost of software testing accounts
for more than half of the investment in the entire life cycle. In other words, software
companies waste a lot of human and material resources to find defects in software.

Software defect prediction technology [3–7] is to use the characteristic data of software
projects, combined with machine learning methods, to establish a software defect prediction
model to predict the defect tendency of software modules. Thereby, those program modules
that may be defective are tested in a targeted manner according to the predicted results.
Finally, the purpose of rationally allocating testing resources and improving software
reliability is achieved. Most of the current research work focuses on the problem of within-
project defect prediction (WPDP) and has achieved remarkable results. However, the actual
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software project under development is usually a newly started software project. WPDP
does not apply in this case.

In response to this situation, researchers have proposed cross-project defect prediction
(CPDP) [8–12]. CPDP is to train the model based on the labeled data of other similar
software projects (i.e., source projects), and predict the defects of the software project
currently under development (i.e., target project). However, most of the current CPDP
research is based on the setting of a single source project and a single target project. In fact,
as the number of open source software grows, it is possible to obtain increasingly more
defect data, i.e., one can obtain data from multiple source projects to establish a defect
prediction model, and then perform defect prediction for the target project. This research
scenario is set as multiple source projects and a single target project.

We found that there are relatively few studies based on multiple source projects and
single target projects in CPDP. A common research setting is to use the data information
of one source project to build a model and predict the defects of the target project. An
example is the TCA method proposed by Pan et al. [13], which only uses the feature
information of one single source project and target project. The WNB method proposed by
Cheng et al. [14] transforms the feature information difference between one single source
project and a target project into the instance weight in the source project, and then trains
the defect prediction model. There is also a portion of CPDP research that is based on
multiple source projects. However, these methods often do not take full advantage of the
data distribution of multiple source project datasets, and rather just select training data
based on multi-source project data. For example, He et al. [15] chose the appropriate source
project for the target project from the perspective of the similarity of the feature vector of
the feature distribution. This means that, according to a certain similarity method, only one
source project among multiple source projects is selected as the training set of the model.
Herbold et al. [16] also calculated the similarity between projects based on the feature vector
of the feature distribution, and ultimately only keep the most similar source project. Turhan
et al. [17] and Peters et al. [18] each proposed an instance-based filtering method to select
the source project instance most similar to the target project instance from all available
source projects. There are many similar methods, such as indicated in [19–22]. These
methods have improved the performance of the CPDP to some extent, but they did not
make full use of the data distribution of multiple source projects. It simply takes advantage
of the number of source projects. Therefore, this study attempts to experimentally explore
the single-source single-target experimental setup and previous ways of utilizing multiple
source project data. Based on the problems identified, the paper proposed a cross-project
defect prediction method considering multiple data distribution simultaneously.

The main contributions of this paper are as follows:

(1) We conducted an experimental exploration of two CPDP experimental setups, com-
paring the experimental results of single-source CPDP and multi-source merged CPDP.
We confirmed two shortcomings of single-source CPDP, one is that it is impossible to
know in advance which source project is used to build the model to obtain the best
prediction performance, the other is the lower limit of performance. We pointed out
that the problem that affects the performance of multi-source defect prediction is the
data distribution differences between multiple source projects and target project, and
the differences between multiple source projects.

(2) In response to the above-mentioned shortcomings and problems, this paper proposes
a cross-project defect prediction method considering multiple data distribution si-
multaneously, called MSCPDP. This method can use the data information of multiple
source pro-jects to construct a model at the same time, and conducted large-scale
experimental research on the AEEEM dataset and PROMISE dataset. Experimental
results show that MSCPDP can indeed avoid the two short-comings of single-source
CPDP and achieve performance comparable to the current advanced CPDP methods.

The rest of this paper is organized as follows. Section 2 introduces the related work
of software defect prediction in recent years. Section 3 introduces the experimental in-
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vestigation of multiple source projects. Section 4 analyzes the experimental investigation
results and summarize the shortcomings of single-source CPDP and the problems of multi-
source merging CPDP in detail. Section 5 introduces the specific implementation details
of MSCPDP method. Section 6 analyzes and summarizes the experimental comparison
results. The conclusion and future work are presented in Section 7.

2. Related Work
2.1. Cross-Project Defect Prediction

In recent years, CPDP has attracted widespread attention from software testing re-
searchers. As far as we know, Briand et al. [23] conducted the first study on CPDP and
discussed whether CPDP is worth studying. They found that CPDP research is very chal-
lenging and the experimental results are very poor. Zimmermann et al. [24] conducted
defect prediction experiments on 622 pairs of cross-projects, and most of the experimental
results were disappointing. Only 3.4% of cross-project pairs achieved satisfactory per-
formance in terms of precision, recall, and accuracy. Researchers have proposed various
methods to improve the performance of CPDP. Nam et al. [25] proposed the TCA+ method;
TCA+ first defines some standardization rules, selects the best data standardization strategy,
and then performs transfer component analysis on CPDP to make the feature distribution
of different projects similar. Ma et al. [26] proposed a novel cross-project defect prediction
method TNB, which sets weights for instances in candidate source projects by predicting
the distribution of target project data. Yu et al. [27] analyzed the importance of features
and instances in cross-project defect prediction methods, conducted a lot of empirical
research on feature selection methods [28], and proposed a feature matching and trans-
ferring cross-project defect prediction method [29]. Xia et al. [30] proposed a massively
compositional model HYDRA for cross-project defect prediction. HYDRA considers the
weights of instances in the training data and searches for the best weights on the training
data for instance selection. Wu et al. [31] first studied the semi-supervised cross-project
defect prediction (CSDP) problem, and proposed a cost-sensitive kernel semi-supervised
dictionary learning (CKSDL) method. Li et al. [32] proposed a cost-sensitive transfer ker-
nel CCA (CTKCCA) method for the linear inseparability and class imbalance problems
in CPDP.

2.2. Multi-Source Cross-Project Defect Prediction Method

Currently, there are researchers in the field of cross-project defect prediction to
study problems under the setting of multiple source projects and a single target project.
Zhang et al. [33] evaluated 7 composite algorithms on 10 open source projects in the
PROMISE datasets. When predicting a target project, a collection of labeled instances of
other projects is used to iteratively train the composite algorithm. Experimental results
show that the use of bagging and boosting algorithms combined with appropriate classifi-
cation models can improve the performance of CPDP. Chen et al. [34] proposed a collective
transfer learning for defect prediction (CTDP), which includes two stages: the source data
expansion stage and the adaptive weighting stage. CTDP expands the source project dataset
by using the TCA method, and then builds multiple base classifiers for multiple source
projects, and finally uses the PSO algorithm to adaptively weight multiple base classifiers
to build a collective classifier to obtain better prediction results. Yu et al. [35] proposed an
effective CCDP solution to the problems of irrelevant CPDP data and negative transfer that
occur when CPDP uses multiple source projects. Specifically, a new data filtering method
based on semi-supervised clustering [36] is first proposed to filter out irrelevant CPDP
data and use the weighting technique of data gravity [37] to weight CPDP instances. On
this basis, the TrAdaBoost [38] algorithm was introduced into CCDP for the first time, and
the risk of negative transfer was reduced by acquiring knowledge from multiple CC data.
Sun et al. [39] conducted research on how to develop an automatic source project selection
method in the context of a given target project. They learned from the idea of a user-based



Symmetry 2022, 14, 401 4 of 18

collaborative filtering recommendation algorithm [40] and proposed a method based on
the source project selection method for collaborative filtering (CFPS).

The above four currently more advanced methods have explored cross-project defect
prediction methods based on multiple source projects and achieved better performance.
However, Zhang et al. used a large amount of labeled source project data to train the
ensemble learning model, and indeed achieved good results. However, they did not
consider the distribution characteristics of multiple source project data. The method of
Chen and Yu et al. requires a certain percentage of marked instances in the target project.
The method of Sun et al. remains essentially a source project selection method based on
similarity, and our research background is to use the data of multiple source projects at the
same time to construct a defect prediction model for unmarked target projects. At present,
there are relatively few studies on this aspect.

There are two main ways for the existing CPDP method when multiple source projects
are available: one is to find the source project most similar to the target project in multiple
source projects to train the defect prediction model. In fact, this method does not make
full use of the data information of all source projects. In essence, it still belongs to the
CPDP method of selecting source projects based on similarity. The other is to simply
merge all available source projects data, and then use the merged data to train the defect
prediction model. This method expands the number of training datasets. Theoretically, the
performance of defect prediction should be improved, but in fact, it is not. The combined
training model is still lower than the average level of the corresponding single source CPDP
in most cases.

3. Experimental Investigation

Through the research of the current CPDP method when faced with multiple source
projects, it can be found that when multiple source projects exist, the common way is to
merge the data of multiple source projects and then use the CPDP method. When multiple
source project data is available, theoretically speaking, compared with using only a single
source project to build a model, a model trained with multiple source projects has more data,
and the corresponding performance should be improved. However, this is not the case.
In most cases, the trained model is still lower than the average level of the corresponding
single-source CPDP. This phenomenon is worth exploring, so we experiment with this
method of using multiple source projects to explore the problem.

3.1. Experimental Setup

Since the above phenomenon is a common problem in many CPDP methods, it shows
that the problem has nothing to do with the CPDP method and model used. Therefore,
in order to explore the problems of multi-source CPDP, extremely simple experimental
settings were used, with the simplest KNN classifier for exploratory experiments, because
the simple classifier will not be affected by other parameters.

When multiple source projects are available, most of the existing advanced CPDP
methods are to merge all available projects and conduct CPDP experiments. During the
experiment, our operation process is the same, we simply merge the available source
projects, and then directly use the classifier to train the model, and finally compare the
experimental results with the single-source CPDP.

Therefore, there are two experimental settings. First, for a single target project, we
simply merge the remaining four source projects into one source project, and then build
a defect prediction model to predict the defects of the target project. This method was
called multi-source merge CPDP. Second, for the target project, we built a defect prediction
model of the remaining projects as the source project in turn, which it called single-source
CPDP. By comparing the experimental performance of multi-source merge CPDP and
single-source CPDP, we can see the shortcomings of single-source CPDP and the problems
of multi-source merge CPDP more clearly and intuitively.
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During the experiment, logarithmic transformation was performed on all the data,
and we used the KNN classifier for classification. All the operations of the experiment
are based on the python-based machine learning data processing package. The following
describes the datasets and evaluation indicators involved in the experiment.

3.2. Experimental Datasets

In the experiment, the datasets that are widely used by researchers in the field of
software defect prediction (i.e., AEEEM dataset and PROMISE dataset are used) [41–43].
PROMISE is a dataset with different versions of multiple projects. Multi-source defect
prediction is to use the data of multiple source projects to predict the defects of the target
project, but these source projects and target project cannot be different versions of the same
project, so we selected one version of each project in the PROMISE dataset as experimental
datasets. Tables 1 and 2 list the relevant information of these two datasets.

Table 1. The AEEEM dataset.

Projects Modules Features Defects Defect Ratio

EQ 325 61 129 40%
JDT 997 61 206 21%
LC 399 61 64 9%
ML 1862 61 245 13%
PDE 1492 61 209 14%

Table 2. The PROMISE dataset.

Projects Version Modules Features Defects Defect Ratio

ant 1.7 745 20 166 22%
camel 1.6 965 20 188 19%

ivy 2.0 352 20 40 11%
jedit 4.1 312 20 79 25%

lucene 2.4 340 20 203 60%
poi 3.0 442 20 281 64%

synapse 1.2 256 20 86 34%
velocity 1.6 229 20 78 34%

xalan 2.6 885 20 411 46%
xerces 1.3 453 20 69 15%

3.3. Evaluation Indicators

There are many commonly used indicators in the field of software defect prediction,
such as accuracy, precision, recall, and so on. We In this study, we chose F1, the most
frequently used indicators by researchers, which is calculated by the harmonic average of
precision and recall. It comprehensively considers the overall performance of each method
on recall and precision, and can fully reflect the actual performance of the method.

F1 =
2 ∗ precision ∗ recall

precision + recall
(1)

AUC is another important evaluation indicator, which comprehensively measures
the effects of all possible classification thresholds. The calculation method of AUC also
considers the classifier’s ability to classify positive and negative instances. In the case of
unbalanced samples, it can still make a reasonable evaluation of the classifier. Thus, we
also chose the AUC value as a reference.

4. Experimental Investigation

The experimental investigation results of single-source CPDP and multi-source merge
CPDP are shown in Table 3. As can be seen from Table 3, for the five projects on the AEEEM
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dataset, for the same target project, there are 1 group of experiments for multi-source
merged CPDP and 4 groups of experiments for single source CPDP. There are 5 groups of
experiments for multi-source merged CPDP and 20 groups of experiments for single source
CPDP. For the experiments with EQ, ML and LC as target projects, the best F1 value and
AUC value are obtained by single source CPDP. For the experiments with JDT and PDE
as target projects, the best F1 value and AUC value are obtained by multi-source merged
CPDP. However, in these five projects, single source CPDP has obtained the worst F1 value
and AUC value. At this time, we can preliminarily find that if the selected source project
is appropriate, single source CPDP can indeed obtain the best performance, and if the
selected project is not appropriate, it will obtain the worst performance. However, the worst
performance of multi-source merged CPDP experiment is not obtained. This shows that
multi-source merged CPDP can indeed avoid the two disadvantages of single source CPDP
described above. We can also find that the multi-source merged CPDP experiment only
obtains the best F1 value and AUC value on two target projects. However, theoretically,
because the multi-source CPDP uses the data from multiple source projects, it can make full
use of the data information related to the target project, so as to obtain better performance.
However, this is not the case in practice. Taking EQ as an example, in the single source
CPDP experiment, the F1 value of PDE→EQ is 0.2338, the AUC value is 0.5518, the F1
value of JDT→EQ is 0.2667, the AUC value is 0.5750, the F1 value of LC→EQ is 0.3077,
the AUC value is 0.5853, the F1 value of ML→EQ is 0.1622, and the AUC value is 0.5286.
Combining PDE, JDT, ML and LC as source projects, only F1 value of 0.2716 and AUC
value of 0.5571 are obtained for EQ prediction. The combined performance of these projects
cannot reach the performance of only using LC as source project, or even the average level
of four groups of single source CPDP experiments. This shows that the way of combining
multiple source projects does not make full use of the information of each project.

Table 3. F1 and AUC value of single source single target and simple merged multiple source single
target. (bold is the best, italic is the worst).

Single-Source F1 AUC Multi-Source F1 AUC

PDE→EQ 0.2338 0.5518

{PDE, JDT, LC, ML}→EQ 0.2716 0.5571
JDT→EQ 0.2667 0.5750
LC→EQ 0.3077 0.5853
ML→EQ 0.1622 0.5286

PDE→ML 0.2197 0.5581

{PDE, JDT, LC, EQ}→ML 0.2781 0.5823
LC→ML 0.2989 0.5904
JDT→ML 0.2598 0.5745
EQ→ML 0.2445 0.5578

ML→PDE 0.2278 0.5586

{EQ, JDT, LC, ML}→PDE 0.303 0.5953
JDT→PDE 0.2838 0.5830
EQ→PDE 0.2591 0.5574
LC→PDE 0.2699 0.5769

PDE→JDT 0.3918 0.6207

{PDE, EQ, LC, ML}→JDT 0.4929 0.6732
LC→JDT 0.4863 0.6670
ML→JDT 0.3125 0.5858
EQ→JDT 0.4116 0.6282

EQ→LC 0.2609 0.6409

{PDE, JDT, EQ, ML}→LC 0.1684 0.5442
PDE→LC 0.16 0.5429
ML→LC 0.1235 0.5295
JDT→LC 0.2564 0.5749
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Table 3. Cont.

Single-Source F1 AUC Multi-Source F1 AUC

synapse→ant 0.4619 0.6562

{other projects}→ant 0.4423 0.6407

poi→ant 0.4907 0.6950
lucene→ant 0.4516 0.6512
jedit→ant 0.5151 0.6836
ivy→ant 0.2292 0.5628

camel→ant 0.323 0.5742
velocity→ant 0.2627 0.5246

xalan→ant 0.4635 0.6595
xerces→ant 0.1778 0.5032

xerces→camel 0.1754 0.5202

{other projects}→camel 0.2577 0.5432

xalan→camel 0.3282 0.5746
velocity→camel 0.3139 0.5652
synapse→camel 0.2485 0.5422
lucene→camel 0.3616 0.5843

poi→camel 0.3465 0.5778
jedit→camel 0.2603 0.5586
ivy→camel 0.0796 0.5181
ant→camel 0.1712 0.5283

xerces→ivy 0.1846 0.5446

{other projects}→ivy 0.3478 0.6814

ant→ivy 0.4634 0.7006
camel→ivy 0.2526 0.5811
jedit→ivy 0.4421 0.7080

lucene→ivy 0.2759 0.6535
poi→ivy 0.2973 0.6737

synapse→ivy 0.4138 0.7167
velocity→ivy 0.2879 0.6205

xalan→ivy 0.3333 0.6897

xalan→jedit 0.5541 0.7162

{other projects}→jedit 0.4891 0.6561

xerces→jedit 0.2121 0.5049
synapse→jedit 0.4537 0.6213
velocity→jedit 0.2805 0.5125

poi→jedit 0.4604 0.6154
lucene→jedit 0.4778 0.6340

ivy→jedit 0.3137 0.5862
camel→jedit 0.3651 0.5941

ant→jedit 0.4242 0.6236

xalan→lucene 0.5576 0.5989

{other projects}→lucene 0.3233 0.5329

xerces→lucene 0.1826 0.4958
velocity→lucene 0.4625 0.5544
synapse→lucene 0.4983 0.6008

poi→lucene 0.6915 0.6633
jedit→lucene 0.251 0.5520
ivy→lucene 0.0478 0.5087

camel→lucene 0.3101 0.5438
ant→lucene 0.2241 0.5531

xalan→poi 0.4398 0.4951

{other projects}→poi 0.2849 0.5269

xerces→poi 0.0984 0.4987
synapse→poi 0.4643 0.5998
lucene→poi 0.7993 0.6830
jedit→poi 0.3027 0.5752
ivy→poi 0.0816 0.5182

camel→poi 0.2462 0.5388
ant→poi 0.225 0.5547

velocity→poi 0.2913 0.5180
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Table 3. Cont.

Single-Source F1 AUC Multi-Source F1 AUC

ant→synapse 0.3817 0.5865

{other projects}→synapse 0.4966 0.6417

camel→synapse 0.3226 0.5633
ivy→synapse 0.0444 0.5057

xalan→synapse 0.5521 0.6523
velocity→synaps 0.358 0.5155

jedit→synapse 0.3594 0.5778
xerces→synapse 0.2655 0.5519

poi→synapse 0.5774 0.6541
lucene→synapse 0.5635 0.6334

ant→velocity 0.2626 0.5568

{other projects}→velocity 0.4167 0.6040

camel→velocity 0.3019 0.5628
ivy→velocity 0.0952 0.5190

jedit→velocity 0.2857 0.5699
lucene→velocity 0.4434 0.5132

poi→velocity 0.5155 0.6020
xalan→velocity 0.5217 0.6335

synapse→velocity 0.393 0.5876
xerces→velocity 0.2 0.5478

ant→xalan 0.2941 0.5659

{other projects}→xalan 0.4505 0.5717

camel→xalan 0.2644 0.5396
ivy→xalan 0.1685 0.5337

velocity→xalan 0.4349 0.5673
synapse→xalan 0.5493 0.6275

poi→xalan 0.5531 0.5602
xerces→xalan 0.3477 0.5197
lucene→xalan 0.5907 0.5527
jedit→xalan 0.3599 0.5853

ivy→xerces 0.2588 0.5732

{other projects}→xerces 0.3051 0.5902

lucene→xerces 0.2509 0.5239
poi→xerces 0.275 0.5594

synapse→xerces 0.4156 0.6629
xalan→xerces 0.3286 0.6117

velocity→xerces 0.3885 0.6397
jedit→xerces 0.3238 0.5984
ant→xerces 0.2712 0.5730

camel→xerces 0.1942 0.5412

Then, expand the experiment to PROMISE dataset. At this time, more source projects
and more data can be obtained. Observing the experimental results, we can find that the
multi-source merged CPDP does not get the best F1 value and AUC value at one time, and
all the best F1 value and AUC value are in the single source CPDP. The multi-source merged
CPDP does not get the worst F1 value and AUC value at one time, the worst F1 value and
AUC value are also in the single source CPDP experiment. The performance of multi-source
merged CPDP is only between the best performance and the worst performance, which
completely does not reflect the advantage of multi-source data volume. Sometimes, the
performance of multi-source merged CPDP experiment is close to the worst performance
of single source CPDP experiment.

From our experimental results, we can see that the number of times for multi-source
merged CPDP to obtain the best F1 value and the best AUC value is very small. Two
best F1 values and two best AUC values are obtained on AEEEM dataset, and there are
no best F1 values and AUC values on PROMISE dataset. In most cases, the performance
values obtained by multi-source merged CPDP are between the worst and the best, the data
information of multiple source projects is not fully utilized to achieve the best performance.
Sometimes, the performance of multi-source merged CPDP is lower than the average value
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of single source CPDP, or even close to the worst performance value. At present, many
advanced CPDP methods are the same. They have indeed achieved better performance in
single source CPDP experiments, and the average performance is also very high, However,
if the source project used to build the model is not appropriate, it will get very poor
prediction performance. When facing multiple source projects, the performance effect
obtained by merging multiple source projects into one source project after building the
model prediction is not very ideal. This situation shows that the method of multi-source
merging may not give full play to the advantages of multi-source CPDP.

For a long time, CPDP research has been committed to solving the problem of data
distribution differences between source projects and target projects. Therefore, under the
setting of multi-source defect prediction, we believe that the combination of multiple source
projects introduces more distribution differences. Each source project has its own data
distribution, and the combination of multiple source projects leads to the combination of
different data distribution. There is a big difference between the data distribution of the
merged source project and the data distribution of the target project, resulting in that only
a few of the final performance reach the best, and most of them are between the best and
the worst.

5. Cross-Project Defect Prediction Method Based on Multiple Sources

At present, the method of defect prediction using multiple source projects is mostly
to combine multiple source projects into one source project. In the case of such complex
distribution, the method of multi-source combination may not get the desired results. In
addition, in practice, nobody can know in advance which source project is used to train the
CPDP model to obtain the desired performance on the target project. Additionally, if the
source project data used to build the model is inappropriate, it will lead to extremely poor
performance. Zhou et al. [44] pointed out that the existing cross-project defect prediction
methods can indeed benefit from the appropriate source project, but they lack a method to
automatically select the corresponding source project for a given target project. Therefore,
when there is a need to predict the defect of the target project in practice and there are
multiple source projects available, we can learn the knowledge related to the target project
from multiple source projects to build a CPDP model.

In the field of computer vision, there are also the problems of multiple source projects
and a single target project. Researchers have proposed a multi-source adaptive method
for this problem [45,46]. Zhu et al. [47] proposed a MUDA framework MFSAN with two
alignment stages. This framework cannot only respectively align the distributions of each
pair of source and target domains in multiple specific feature spaces, but also aligns the
outputs of classifiers by utilizing the domain-specific decision boundaries. Their methods
have greatly improved the accuracy of image classification. Recently, Zeng et al. [48]
proposed the MSSAN method based on the method of Zhu et al. [47] and used it for
sentiment classification. Their method obtained a higher accuracy rate on a given dataset.

Therefore, we believe that a more reasonable method should be designed according to
the distribution differences between each source project and the target project, so as to make
full use of the data information of multiple source projects and improve the performance of
CPDP while avoiding the disadvantages of current single source CPDP.

In this regard, this paper proposes a multi-source cross project defect prediction
method MSCPDP. Different from the current CPDP method, MSCPDP does not select
similar source projects or merge multiple source projects, but uses the data information of
multiple source projects at the same time, and considers the data distribution difference
between each source project and the target project. Next, we introduce the details and
experimental results of MSCPDP method in detail. We first introduce the relevant symbol
definitions involved in the method.
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5.1. Symbol Definition

Xs represents a source project data, Ys indicates the known label information of Xs,
Xt represents a target project data, the corresponding label information Yt is unknown;
when multiple source project data is involved, we identify Xsj as the j-th source project,

at this time, a source project data with label information can be expressed as
{

Xsj, Ysj
}N

j=1,

Xsj =
{

xsj
i , ysj

i

}n

i=1
indicates that the j-th source project has n instances of known labels,

Xt =
{

xt
i
}m

i=1 indicates that the target project Xt has m instances of unknown labels. The
cross-project defect prediction method is to use the data from Xs and the corresponding
label information Ys to train the CPDP model, and then to predict the label of the Xt. The

multi-source cross-project defect prediction method uses the data in
{

Xsj, Ysj

}N

j=1
to train

the CPDP model, and then predicts the label of the data in Xt.

5.2. Method Framework and Implementation Details

The method framework of MSCPDP is shown in Figure 1. As the figure shows,
MSCPDP first receives N source projects Xsj and one target project Xt as input. The symbol
ψ is a layer of network, which map the data of all projects from the original feature space to
the common feature space. In order to use the data information of multiple source projects
at the same time, we pair all input source projects and target project. Then, we construct
N feature extractors

{
ϕj
}N

j=1 and map each pair of source and target projects to a specific
feature space. Moreover, we want to extract unique feature distribution for each pair of
source and target projects. These N feature extractors work in parallel and do not share the
same weight.
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In order to map each pair of source project data and target project data to a specific
feature space, we need to compare the data distribution of

{
ϕj(ψ(xsj))

}
and

{
ϕj(ψ(xt))

}
.

In the field of domain adaptation, several methods have been proposed to achieve this,
such as adversarial loss [49], coral loss [50] and mmd loss [51]. In our method, choosing
mmd loss as the loss function to reduce the difference in data distribution between the
source project and the target project.

The Maximum Mean Discrepancy (MMD) is a kernel two-sample test which rejects or
accepts the null hypothesis p = q based on the observed samples. The basic idea behind
MMD is that if the generating distributions are identical, all the statistics are the same.
MMD defines the following formal difference measures:

DH(p, q) ,
∣∣∣∣∣∣Ep[Φ(xs)]− Eq[Φ(xt)]

∣∣∣∣∣∣2H (2)
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where H is the reproducing kernel Hillbert space (RKHS) endowed with a characteristic
kernel k. Here, Φ denotes some feature map to map the original samples to RKHS and the
kernel k means k(xs, xt) =

〈
Φ(xs), Φ(xt)

〉
, where 〈〉 represents inner product of vectors.

The main theoretical result is that p = q if and only if DH(p, q) = 0. In practice, an estimate of
the MMD compares the square distance between the empirical kernel mean embeddings as:

D̂H(p, q) = ‖ 1
ns

∑
xi∈DS

Φ(xi)−
1
nt

∑
xj∈DT

Φ(xj)‖
2

H

(3)

where D̂H(p, q) is an unbiased estimator of DH(p, q). Using (3) as the estimate of the
discrepancy between each source domain and target domain, then, the mmd loss in our
experiment is reformulated as:

Γmmd =
1
N

N

∑
j=1

D̂(ϕj(ψ(Xsj)), ϕj(ψ(Xt))) (4)

Next, building a softmax predictor for each pair of source and target projects, denoted
by the symbol P. In this way, we have established a total of N predictors. For each predictor,
using cross entropy to add classification loss:

Γcls =
N

∑
j=1

Ex∼Xsj J(Pj(ϕj(ψ(xsj
i ))), ysj

i ) (5)

Finally, for each target project instance, we may generate a set of corresponding
prediction results. These predictors are trained on different source projects, thus they
may have different predictions on target instances, especially target instances near the
classification boundary. Voting is a simple solution, but it sometimes performs poorly.
Intuitively, the same target instance predicted by different classifiers should get the same
prediction result. Therefore, using an alignment operation to minimize the difference
between the predictions of all the predictors. We utilize the absolute values of the difference
between all pairs of classifiers’ probabilistic outputs of target project data as alignment loss:

Γals =
2

N ∗ (N − 1)

N−1

∑
j=1

N

∑
i=j+1

Ex∼Xt

[∣∣Pi(ϕi(ψ(xk)))− Pj(ϕj(ψ(xk)))
∣∣] (6)

By minimizing (6), the probability outputs of all classifiers are similar. Thus, we can
calculate the average of the output of all the predictors as the label of the target instance.

In general, the loss of our method includes three parts: classification loss, mmd loss
and alignment loss. Specifically, by minimizing the mmd loss, the model maps each pair of
source and target projects to a specific feature space; by minimizing the classification loss,
the model can accurately classify the source project data; by minimizing the alignment loss,
the model can reduce the output difference between the classifiers, so that the prediction
becomes more accurate. The total loss formula is as (7):

Γtotal = Γcls + λΓmmd + γΓals (7)

5.3. Experimental Parameter Setting

The paper used mini-batch stochastic gradient descent (SGD) with a momentum of 0.9.
The batch size is set as 64. Following [52], using the learning rate annealing strategy:
the learning rate is not selected by a grid search to high computation cost, it is adjusted
during SGD using the following formula: ηp = η0

(1+αp)β ,where p is the training progress

linearly changing from 0 to 1, η0 = 0.001, α = 10 and β = 0.75, which is optimized to
promote convergence and low error on the source project. To suppress noisy activations at
the early stages of training, instead of fixing the adaptation factor λ and γ, we gradually
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change them from 0 to 1 by a progressive schedule: γp = λp = 2
exp(−θp) − 1, and θ = 10 is

fixed throughout the experiments. The main code can be available at https://github.com/
ZhaoYu-Lab/MSCPDP (accessed on 16 February 2022).

6. Experimental Research

This section introduces our experimental research. The previous experimental results
tell us that single-source CPDP has two shortcomings, one is the poor performance lower
limit, the other is the need to select the appropriate source project in order to get the optimal
performance. Moreover, in most cases, the performance of multi-source merged is not even
as good as the average value of single-source CPDP. As mentioned above, our method uses
data information from multiple source projects at the same time, and its purpose is to solve
the two shortcomings of single-source CPDP. Therefore, we still conducted experiments
on the previously mentioned datasets, AEEEM and PROMISE, and compared them with
the average performance of the current more advanced CPDP method. We still focused on
observing the two index values of F1 and AUC.

6.1. Experimental Parameter Setting

In order to explore the performance of our MSCPDP method, we compared our
method with the current more advanced methods. We combined the MSCPDP method
with CamargoCruz [53], TCA+ [25], CKSDL [31], CTKCCA [32], HYDRA [30] and Man-
ualDown [44]. These methods are the ones with good performance. The CamargoCruz
method was evaluated by Herbold [54], and it was found that the classic CamargoCruz
method always achieve the best performance.

TCA + and CTKCCA are effective transfer methods based on feature transformation.
CKSDL is an effective semi-supervised CPDP method. HYDRA is an ensemble learning
method using much labeled data from source project and a limited amount of labeled data
from target project. ManualDown is an unsupervised method with excellent performance.

We set the following settings for the comparison method: for a given dataset, using
one project of the dataset as the target project in turn, and use the other projects of the
dataset as the source projects for cross-project prediction. For example, if the project EQ in
the AEEEM dataset is selected as the target project, then the remaining projects (JDT, LC,
ML, and PDE) in the AEEEM dataset are set as training projects once, and get four sets of
EQ prediction results, namely JDT→EQ, LC→EQ, ML→EQ and PDE→EQ. On this basis,
the average predicted value of the four sets of predicted results with EQ as the target project
is calculated. As a result, we obtained the average F1 and AUC value of 15 target projects
marked with the target project name. The experimental results are shown in Tables 4 and 5.

https://github.com/ZhaoYu-Lab/MSCPDP
https://github.com/ZhaoYu-Lab/MSCPDP
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Table 4. Comparison of F1 value between MSCPDP and current advanced methods; bold is the
maximum, * is the minimum.

Project CamargoCruz CKSDL TCA+ CTKCCA HYDRA ManualDown MSCPDP

EQ 0.6592 0.2709 * 0.4112 0.3530 0.5926 0.6742 0.3185
JDT 0.4732 0.3522 0.4093 0.3495 * 0.5385 0.3976 0.4218
LC 0.2448 0.3467 0.3631 0.3326 0.3774 0.2046 * 0.4355
ML 0.3238 0.3642 0.3581 0.3530 0.5385 0.2581 * 0.3246
PDE 0.3249 0.3507 0.4209 0.3495 0.2000 * 0.3009 0.3593
ant 0.4582 0.3497 0.4390 0.3177 * 0.3774 0.4853 0.5688

camel 0.3420 0.4614 0.3986 0.2404 0.1734 * 0.3333 0.3133
ivy 0.3477 0.3037 * 0.4510 0.2961 0.4400 0.3188 0.4717

jedit 0.3992 0.3028 0.1444 * 0.3588 0.4203 0.2843 0.5581
lucene 0.4022 0.2953 * 0.4441 0.3749 0.3273 0.6454 0.3213

poi 0.3713 0.2895 0.4117 0.4040 0.3333 0.5729 0.2866 *
synapse 0.4056 0.2583 * 0.3669 0.4099 0.5000 0.4933 0.5571
velocity 0.4635 0.2696 * 0.4598 0.4156 0.3447 0.5609 0.4132

xalan 0.5186 0.2652 * 0.4261 0.3967 0.3723 0.6225 0.4369
xerces 0.3000 0.3378 0.4033 0.3839 0.3200 0.2279 * 0.3803
mean 0.4028 0.3212 * 0.3938 0.3557 0.3904 0.4253 0.4113

median 0.3992 0.3976 0.3037 * 0.4112 0.3530 0.3774 0.4132

Table 5. Comparison of AUC value between MSCPDP and current advanced methods; boldface is
the maximum, * is the minimum.

Project CamargoCruz CKSDL TCA+ CTKCCA HYDRA ManualDown MSCPDP

EQ 0.7406 0.5567 * 0.6572 0.6437 0.7666 0.7137 0.5750
JDT 0.7359 0.6028 * 0.5606 0.6430 0.7394 0.6212 0.6295
LC 0.7159 0.5660 * 0.6631 0.6456 0.7337 0.5902 0.6790
ML 0.7065 0.5940 0.6164 0.6437 0.7394 0.5690 * 0.6041
PDE 0.6964 0.5787 * 0.6628 0.6430 0.6532 0.6343 0.6411
ant 0.6732 0.5644 * 0.6442 0.5842 0.7331 0.6947 0.7287

camel 0.5743 0.5771 0.5794 0.5595 * 0.6838 0.5611 0.5683
ivy 0.6797 0.5969 0.7088 0.5516 * 0.7797 0.7119 0.7497

jedit 0.6198 0.6152 0.6439 0.6484 0.6763 0.4613 * 0.6959
lucene 0.6284 0.5855 0.5911 0.6647 0.5746 * 0.5980 0.5802

poi 0.6154 0.5371 * 0.6235 0.6867 0.6935 0.6611 0.5579
synapse 0.6518 0.5556 * 0.6211 0.6602 0.6762 0.5823 0.6826
velocity 0.5990 * 0.6093 0.6010 0.6569 0.6550 0.6395 0.6042

xalan 0.5884 0.5707 * 0.6821 0.6578 0.6743 0.5988 0.5918
xerces 0.6092 0.5838 0.6207 0.6392 0.6290 0.4873 * 0.6404
mean 0.6556 0.5796 * 0.6317 0.6352 0.6939 0.6083 0.6352

median 0.6518 0.5787 * 0.6235 0.6437 0.6838 0.5988 0.6295

6.2. Analysis of Experimental Results

Comparing the MSCPDP method with the current more advanced methods. We hope
that our method can be similar to the average performance of these advanced methods, so
that our method can achieve relatively good performance while avoiding the lower limit of
performance, and ultimately has practical application value.

Tables 4 and 5 have 8 columns and 18 rows, respectively. The first column in the table
indicates the target project, and the second to seventh columns indicate the F1 and AUC
value obtained by using the current advanced CPDP methods. The eighth column indicates
the F1 and AUC value obtained by using our MSCPDP method to predict the target project.
The second last row and the last row in the tables are the average value and median value
of each column. Analyze the data in the second row of the Table 4 as an example. The
second row uses EQ as the target project. The methods from the second column to the
seventh column, CamargoCruz, CKSDL, TCA+, CTKCCA, HYDRA and ManualDown, all
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use EQ as the target project and perform JDT→EQ, LC→EQ, ML→EQ and PDE→EQ four
groups of experiments, and then average the obtained F1 values to obtain 0.6592, 0.2709,
0.4112, 0.3530, 0.5926, and 0.6742, respectively. Our method MSCPDP in the last column
uses JDT, LC, ML, and PDE data at the same time to construct a defect prediction model
and then predict EQ to obtain an F1 value of 0.3185. Table 5 is the same analysis process
as such.

First of all, from the point of view of F1 value, CKSDL has the minimum value in 6
out of 15 experiments, 3 times in ManualDown, 2 times each in HYDRA and CTKCCA,
one time in TCA+, and our method MSCPDP has achieved the minimum F1 only once. In
addition, about the maximum F1 value, CKSDL achieved the largest F1 value once, TCA+
and HYDRA each twice, ManualDown five times, and our method five times. Thus, in
terms of quantity, our method MSCPDP does perform better since our method achieved a
large number of maximums and a small number of minimums. From a detailed point of
view, we are comparing the average F1 value of the previous methods. For example, with
LC as the target project, our method MSCPDP achieved the best F1 value of 0.4355, while
the F1 value obtained by CamargoCruz was 0.2448, which shows the average F1 value of
the four sets of experiments performed using the CamargoCruz method is 0.2448, which
can indicate that the performance of our MSCPDP method exceeds most of the four sets of
experiments conducted by the CamargoCruz method, and may exceed two of them, and
even the maximum value of the four sets of experiments conducted by the CamargoCruz
method does not exceed 0.4355. Taking velocity as the target project again, although the
best F1 value is 0.5609 of the ManualDown method, the F1 value of our MSCPDP method
is 0.4132, which is close to the average F1 value of the ManualDown method, which shows
that the average value of 9 sets of experiments conducted by the ManualDown method with
velocity as the target project is 0.5609, and our F1 value of 0.4132 may exceed the F1 value
of 3 out of 9 sets of experiments or 4 sets of experiments, although not necessarily the best
F1 in 9 sets of experiments value, but also exceeded the F1 value of most experiments in
the 9 groups.

From the AUC value, the results are similar. MSCPDP does not have a minimum
value, but has three maximum values. In addition, from the average and median of the two
indicators, ManualDown achieved the largest overall average of F1 indicators, MSCPDP
was the second largest, but MSCPDP achieved the largest overall median. Moreover,
MSCPDP achieved the third-largest overall average value of AUC indicators, and the
overall median value we are in the fourth place. These fully shows that our method can
reach the average or above level with the current advanced methods. However, we can
find that the performance of HYDRA is very good; in fact, it is true, because HYDRA uses
an ensemble learning method and some marked target project instances, but HYDRA also
has the drawbacks that we mentioned earlier. This means that the average performance
on camel is only 0.1734, which means that they get the worst performance here. Thus, it is
necessary to use multi-source at the same time for defect prediction in practice.

Therefore, from this perspective, we can find that we can indeed acquire knowledge
related to the target project from multiple source projects at the same time, and the defect
prediction model constructed can avoid the worst performance even if the best performance
cannot be achieved in practice. Relatively speaking, our MSCPDP method can improve
the performance of cross-project defect prediction and reach the average or above level
of the current advanced methods. This is very important in practice, because we cannot
know in advance which source project to build the model will get the best performance, so
we can avoid the two shortcomings of current advanced CPDP methods, one is the poor
performance lower limit, the other is the need to select the appropriate source project in
order to get the optimal performance, and we also reach or exceed its average performance,
which is very valuable.
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6.3. Discussion

First of all, it needs to be clear whether the experimental exploration of single source
CPDP and multi-source CPDP is meaningful. The answer is yes. For most current CPDP
studies, single source CPDP only uses the data information of a single source project.
In multi-source CPDP studies, one part uses heuristic methods to select similar source
projects, and the other part simply combines the data volume of multiple source projects.
The experimental results of this paper show that the setting of single source CPDP cannot
know the best source project in advance in practice, while the setting of multi-source
CPDP is often not so effective when using heuristic search method for the best source
project, and the selected source project sometimes has the problem of lower performance
limit; When merging multiple source projects to expand the amount of data, multiple
data distributions are not considered. These problems are real in practice, thus they have
practical significance.

Secondly, for the two problems found in the experiment, whether the MSCPDP method
proposed in this paper has practical value, the answer is also yes. The method proposed in
this paper considers the data distribution of multiple source projects at the same time. It
not only uses the data information of multiple source projects, but also pays attention to
the data differences between multiple source projects and target projects. At the same time,
this method also successfully avoids the selection of single source CPDP in source projects
in practice. From the experimental results, the proposed method has practical significance.

Finally, it needs to be clear whether our method has some limitations. It is certain that
any method will have some limitations. For the method proposed in this paper, with the
growth of the number of open source projects, it must be desirable. This paper uses all
available source projects in the experiment, but a natural question is: how does one choose
if the number of source projects is too large? The increase in number will lead to more
redundancy and greater data differences. From this point of view, the method proposed in
this paper also needs to carry out element control analysis on a larger dataset.

7. Conclusions and Future Work

Although the current experimental performance of cross-project defect prediction is
not bad, in practice, it is difficult to determine which source project to use to train the defect
prediction model to get the best performance and if the source project data used to build
the model is inappropriate, it will lead to extremely poor performance. Aiming at this
problem, this paper proposes a new solution, i.e., simultaneously using the knowledge
of multiple source projects related to the target project to construct a defect prediction
model. This paper first explores the practical significance and existing problems of the
cross-project defect prediction method based on multiple sources, and then according to
the existing problems, we propose a multi-source-based cross-project defect prediction
method MSCPDP, which can solve the problem of data distribution differences between
multiple source projects and target projects when the data of multiple source projects are
used at the same time. Experiments show that, compared with the current more advanced
CPDP methods, MSCPDP can achieve comparable performance on F1 and AUC and can
effectively avoid the two shortcomings of the current cross-project defect prediction method
based on a single source project.

However, there are still many subsequent steps worth discussing in this paper. First
of all, we found that our MSCPDP method cannot completely defeat the current more
advanced methods. We hope that our multi-source and cross-project defect method should
be able to defeat the best performance of a single-source single-target setting, instead of
just avoiding the worst performance and at the same level with them. We believe that the
feature distortion phenomenon in the original feature space leads to unsatisfactory results
in reducing the difference in data distribution between each pair of source projects and
target projects, which leads to poor results in some experiments. Secondly, our MSCPDP
chooses the simplest network and classifier. Later, a better performance model can be
selected for research to see if the performance of multi-source and cross-project defect
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prediction can be improved, such as integrating different types of models. Finally, when
all source project data are available, we use all source projects. One question is that using
more source projects and different source projects will introduce more redundant data
and greater data distribution differences; therefore, how to reduce redundant data and
data distribution differences and how to maintain the balance of quantity combination and
performance when using multiple source projects is the next step worth studying.
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