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Abstract: The purpose of this paper is to investigate the existence of attractive solutions for a Cauchy
problem of fractional evolution equations with Hilfer fractional derivative, which is a generalization of
both the Riemann–Liuoville and Caputo fractional derivatives. Our methods are based on the generalized
Ascoli–Arzela theorem, Schauder’s fixed point theorem, the Wright function and Kuratowski’s measure
of noncompactness. The symmetric structure of the spaces and the operators defined by us plays a
crucial role in showing the existence of fixed points. We obtain the global existence and attractivity
results of mild solutions when the semigroup associated with an almost sectorial operator is compact as
well as noncompact.
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1. Introduction

Fractional calculus is considered as a generalization of classical calculus. The order of
the fractional derivative can be an arbitrary (noninteger) positive real number or even a
complex number. In the past two decades, fractional calculus has been a research focus and
attracted the attention of many researchers all over the world. It has been mainly due to the
extensive development in the theory of fractional calculus. Moreover, fractional calculus is
widely used in various disciplines, especially in fluid mechanics, physics, signal processing,
materials science, electrochemistry, biology and so on.

In recent years, fractional differential equations are found to be of great interest in
the mathematical modeling of real-world phenomena. These applications have motivated
many researchers in the field of differential equations to investigate fractional differential
equations of different order, for instance, see the monographs [1–5].

The main motivation of studying fractional evolution equations comes from two
aspects: (i) One is that many mathematical models in physics and fluid mechanics are
characterized by fractional partial differential equations; (ii) many types of fractional partial
differential equations, such as fractional diffusion equations, wave equations, Navier-Stokes
equations, Rayleigh-Stokes equations, Fokker–Planck equations, fractional Schrödinger
equations, and so on, can be abstracted as fractional evolution equations [6–8]. Therefore,
the study of fractional evolution equations is of great significance both in terms of theory
and practical application.

The well-posed nature of fractional evolution equations is an important research topic
of evolution equations, see [9–11]. However, it seems that there are few works dealing
with the existence of fractional evolution equations on infinite intervals. Almost all of
these results involve the existence of solutions for fractional evolution equations on a
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finite interval [0, T], where T ∈ (0, ∞) (see [9–11]). Recently, several research papers
have been published on the attractivity for fractional ordinary differential equations [12],
fractional functional differential equations [13], Volterra fractional integral equations [14]
and fractional evolution equations [15]. On the other hand, the Hilfer fractional derivative
is a natural generalization of fractional derivatives which include the Caputo derivative and
Riemann–Liouville derivative [2]. The evolution equations with Hilfer fractional derivative
received great attention from several researchers (see [16,17]). However, it seems that
there are few works concerned with the attractivity of Hilfer fractional evolution equations.
Almost all these results involve the existence of Hilfer fractional evolution equations on a
finite interval [0, T].

Consider the initial value problem in a Banach space X
HDµ,β

0+ y(t) = Ay(t) + G(t, y(t)), t ∈ (0, ∞),

I(1−µ)(1−β)
0+ y(0) = y0,

(1)

where HDµ,β
0+ is the Hilfer fractional derivative of order 0 < β < 1 and type 0 ≤ µ ≤ 1,

I(1−µ)(1−β)
0+ is a Riemann–Liouville fractional integral of order (1− µ)(1− β), A is an almost

sectorial operator in Banach space X, G : [0, ∞)× X → X is a function to be defined later.
In this paper, we obtain the global existence and attractivity results for mild solutions

of the initial value problem (1) when the semigroup associated with the almost sectorial
operator is compact as well as noncompact. The considerations of this paper are based on
the generalized Ascoli–Arzela theorem, Schauder’s fixed point theorem and Kuratowski’s
measure of noncompactness. The symmetric structure of the spaces and the operators
defined by us plays a crucial role in proving the existence of fixed points.

2. Preliminaries

We first introduce some notations and definitions about almost sectorial operators, frac-
tional calculus and the measure of noncompactness. For more details, we refer to [2,3,18,19].

Denote by D(A) the domain of A, by σ(A) its spectrum, while ρ(A) := C− σ(A) is the
resolvent set of A. We denote by L(X) the space of all bounded linear operators from X to
X with the usual operator norm ‖ · ‖L(X). Let S0

λ = {z ∈ C\{0} : | arg z| < λ} be the open
sector for 0 < λ < π, and Sλ be its closure, i.e., Sλ = {z ∈ C\{0} : | arg z| ≤ λ} ∪ {0}.

Definition 1. Let 0 < k < 1 and 0 < ω < π
2 . We denote Θ−k

ω (X) as a family of all closed linear
operators A : D(A) ⊂ X → X such that

(i) σ(A) ⊂ Sω = {z ∈ C \ {0} : | arg z| ≤ ω} ∪ {0} and

(ii) ∀λ ∈ (ω, π), ∃Cλ such that

‖R(z; A)‖L(X) ≤ Cλ|z|−k, for all z ∈ C \ Sλ,

where R(z; A) = (zI − A)−1, z ∈ ρ(A) is the resolvent operator of A. The linear operator
A will be called an almost sectorial operator on X if A ∈ Θ−k

ω (X).

Denote the semigroup {Q(t)}t≥0 by

Q(t) = e−tz(A) =
1

2πi

∫
Γρ

e−tzR(z; A)dz, t ∈ S0
π
2 −ω,

where Γρ = {R+eiρ}⋃{R+e−iρ} with ω < ρ < λ < π
2 − | arg t| is oriented

counter-clockwise.

Lemma 1 (see [5]). Assume that 0 < k < 1 and 0 < ω < π
2 . Set A ∈ Θ−k

ω (X). Then

(i) Q(s + t) = Q(s)Q(t), for ∀s, t ∈ S0
π
2 −ω

;
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(ii) ∃ a constant C0 > 0 such that ‖Q(t)‖L(X) ≤ C0tk−1, for ∀ t > 0.

Definition 2 (see [3]). The fractional integral of order β for a function u : [0, ∞)→ R is defined as

Iβ
0+u(t) =

1
Γ(β)

∫ t

0
(t− s)β−1u(s)ds, β > 0, t > 0,

provided the right side is point-wise defined on [0, ∞), where Γ(·) is the gamma function.

Definition 3 (Hilfer fractional derivative, see [2]). Let 0 < β < 1 and 0 ≤ µ ≤ 1. The Hilfer
fractional derivative of order β and type µ for a function u : [0, ∞)→ R is defined as

HDµ,β
0+ u(t) = Iµ(1−β)

0+
d
dt

I(1−µ)(1−β)
0+ u(t).

Remark 1.

(i) If µ = 0, 0 < β < 1, then

HD0,β
0+u(t) =

d
dt

I1−β
0+ u(t) =: LD

β
0+u(t),

where LDβ
0+ is the Riemann–Liouville derivative.

(ii) If µ = 1, 0 < β < 1, then

HD1,β
0+u(t) = I1−β

0+
d
dt

u(t) =: CDβ
0+u(t),

where CDβ
0+ is the Caputo derivative.

Assume that X is a Banach space with the norm | · |. Let D be a nonempty subset of X.
The Kuratowski’s measure of noncompactness χ is defined by

χ(D) = inf

d > 0 : D ⊂
n⋃

j=1

Mj and diam(Mj) ≤ d

,

where the diameter of Mj is given by diam(Mj) = sup{|x− y| : x, y ∈ Mj}, j = 1, . . . , n.

Lemma 2 ([20]). Let X be a Banach space, and let {un(t)}∞
n=1 : [0, ∞) → X be a continuous

function family. If there exists ξ ∈ L1[0, ∞) such that

|un(t)| ≤ ξ(t), t ∈ [0, ∞), n = 1, 2, . . . .

Then β({un(t)}∞
n=1) is integrable on [0, ∞), and

χ
({ ∫ t

0
un(t)dt : n = 1, 2, . . .

})
≤ 2

∫ t

0
χ({un(t) : n = 1, 2, . . .})dt.

Definition 4 ([21]). Define the Wright function Wβ(θ) by

Wβ(θ) =
∞

∑
n=1

(−θ)n−1

(n− 1)!Γ(1− βn)
, 0 < β < 1, θ ∈ C,

with the following property ∫ ∞

0
θδWβ(θ)dθ =

Γ(1 + δ)

Γ(1 + βδ)
, for δ ≥ 0.



Symmetry 2022, 14, 392 4 of 13

Lemma 3. The problem (1) is equivalent to the integral equation

y(t) =
y0

Γ(µ(1− β) + β)
t(µ−1)(1−β)

+
1

Γ(β)

∫ t

0
(t− s)β−1[Ay(s) + G(s, y(s))]ds, t ∈ (0, ∞).

(2)

Proof. This proof is similar to [22], so we omit it.

Lemma 4. Assume that y(t) satisfies integral Equation (2). Then

y(t) = Kµ,β(t)y0 +
∫ t

0
Qβ(t− s)G(s, y(s))ds, t ∈ (0, ∞), (3)

where

Kµ,β(t) = Iµ(1−β)
0+ Qβ(t), Qβ(t) = tβ−1Tβ(t), and Tβ(t) =

∫ ∞

0
βθWβ(θ)Q(tβθ)dθ.

Proof. This proof is similar to [16], so we omit it.

In view of Lemma 3, we have the following definition.

Definition 5. By the mild solution of the initial value problem (1), we mean that the function
y ∈ C((0, ∞), X) satisfies

y(t) = Kµ,β(t)y0 +
∫ t

0
Qβ(t− s)G(s, y(s))ds, t ∈ (0, ∞).

Definition 6. The mild solution y(t) of the initial value problem (1) is called attractive if y(t)→ 0
as t→ ∞.

Lemma 5 ([17]). For any fixed t > 0, {Tβ(t)}t>0, {Qβ(t)}t>0 and {Kµ,β(t)}t>0 are linear
operators, and for any y ∈ X,

|Tβ(t)y| ≤ L1tβ(k−1)|y|, |Qβ(t)y| ≤ L1t−1+βk|y|, and |Kµ,β(t)y| ≤ L2t−1+µ−βµ+βk|y|,

where

L1 = βC0
Γ(1 + k)

Γ(1 + βk)
and L2 =

L1Γ(βk)
Γ(µ(1− β) + βk)

.

Lemma 6 ([17]). {Tβ(t)}t>0, {Qβ(t)}t>0 and {Kµ,β(t)}t>0 are strongly continuous, that is, for
∀ y ∈ X and t′′ > t′ > 0, we have

|Tβ(t′)y− Tβ(t′′)y| → 0, |Qβ(t′)y−Qβ(t′′)y| → 0, as t′′ → t′

and
|Kµ,β(t′)y−Kµ,β(t′′)y| → 0, as t′′ → t′.

Let

E = {u ∈ C([0, ∞), X) : lim
t→∞

|u(t)|
1 + t

= 0}.

Clearly, (E, ‖ · ‖) is a Banach space with the norm ‖u‖ = supt∈[0,∞) |u(t)|/(1 + t) < ∞.
In the following, we state the generalized Ascoli–Arzela theorem [23].

Lemma 7. The set Λ ⊂ E is relatively compact if and only if the following conditions hold:

(a) for any h > 0, the set V = {v : v(t) = x(t)/(1 + t), x ∈ Λ} is equicontinuous on [0, h];
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(b) limt→∞ |x(t)|/(1 + t) = 0 uniformly for x ∈ Λ;

(c) for any t ∈ [0, ∞), V(t) = {v(t) : v(t) = x(t)/(1 + t), x ∈ Λ} is relatively compact in E.

3. Some Lemmas

Define

Cβ([0, ∞), X) =
{

y ∈ C((0, ∞), X) :

lim
t→0+

t1−µ+βµ−βky(t) = 0, and lim
t→∞

t1−µ+βµ−βk|y(t)|
1 + t

= 0
}

,

with the norm

‖y‖β = sup
t∈[0,∞)

t1−µ+βµ−βk|y(t)|
1 + t

.

Then (Cβ([0, ∞), X), ‖ · ‖β) is a Banach space (see Lemma 3.2 of [24]).
For any y ∈ Cβ([0, ∞), X), define the mapping Ψ by

(Ψy)(t) = (Ψ1y)(t) + (Ψ2y)(t),

where

(Ψ1y)(t) = Kµ,β(t)y0, (Ψ2y)(t) =
∫ t

0
Qβ(t− s)G(s, y(s))ds, f or t ∈ (0, ∞).

Clearly, the problem (1) has a mild solution y∗ ∈ Cβ([0, ∞), X) if and only if Ψ has a
fixed point y∗ ∈ Cβ([0, ∞), X).

Let
y(t) = t−1−µ+βµ−βku(t), for any u ∈ E, t ∈ (0, ∞).

Clearly, y ∈ Cβ([0, ∞), X). Define an operator Φ by

(Φu)(t) = (Φ1u)(t) + (Φ2u)(t),

where

(Φ1u)(t) =

{
t1−µ+βµ−βk(Ψ1y)(t), for t ∈ (0, ∞),

0, for t = 0.

(Φ2u)(t) =

{
t1−µ+βµ−βk(Ψ2y)(t), for t ∈ (0, ∞),

0, for t = 0.

First, we introduce the following hypotheses:

H1. for each t ∈ [0, ∞), the function G(t, ·) : X → X is continuous and for each y ∈ X, the
function G(·, y) : [0, ∞)→ X is strongly measurable.

H2. there exist L ≥ 0 and α ∈ (βk, 1− µ(1− β)) such that

|G(t, y)| ≤ Lt−α, for a.e. t ∈ (0, ∞) and all y ∈ X.

Since

lim
t→0

{
L1LΓ(βk)Γ(1− α)

Γ(βk + 1− α)

t1−α−µ(1−β)

1 + t

}
= 0,

and

lim
t→∞

{
L1LΓ(βk)Γ(1− α)

Γ(βk + 1− α)

t1−α−µ(1−β)

1 + t

}
= 0,
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there exists a constant r > 0 such that

max
t∈[0,∞)

{
L2|y0|+

L1LΓ(βk)Γ(1− α)

Γ(βk + 1− α)

t1−α−µ(1−β)

1 + t

}
≤ r. (4)

Let
Ω1 = {u : u ∈ E, ‖u‖ ≤ r}. (5)

Then, Ω1 is a nonempty, convex and closed subset of E.
Let

V :=
{

v : v(t) = (Φu)(t)/(1 + t), u ∈ Ω1
}

.

To prove the results in this paper we need the following lemmas.

Lemma 8. Suppose that H1 and H2 hold. Then, the set V is equicontinuous.

Proof. Step I. We first prove that
{

v : v(t) = (Φ1u)(t)/(1 + t), u ∈ Ω1
}

is equicontinuous.
Since

t1−µ+βµ−βkKµ,β(t)y0 =
t1−µ+βµ−βk

Γ(µ(1− β))

∫ t

0
(t− s)µ(1−β)−1sβ−1Tβ(s)y0ds

=
∫ 1

0
(1− z)µ(1−β)−1zβ−1tβ(1−k)Tβ(tz)y0dz.

Noting that limt→0+ tβ(1−k)Tβ(tz)y0 = 0 and
∫ 1

0 (1− z)µ(1−β)−1zβ−1dz exists, we have

lim
t→0+

t1−µ+βµ−βkKµ,β(t)y0 = 0.

Hence, for t1 = 0, t2 ∈ (0, ∞), we obtain∣∣∣ (Φ1u)(t2)

1 + t2
− (Φ1u)(0)

∣∣∣ ≤∣∣∣ 1
1 + t2

t2
1−µ+βµ−βkKµ,β(t2)y0 − 0

∣∣∣→ 0, as t2 → 0. (6)

For any t1, t2 ∈ (0, ∞) with t1 < t2, we have∣∣∣ (Φ1u)(t2)

1 + t2
− (Φ1u)(t1)

1 + t1

∣∣∣
≤
∣∣∣ t2

1−µ+βµ−βkKµ,β(t2)y0

1 + t2
−

t1
1−µ+βµ−βkKµ,β(t1)y0

1 + t1

∣∣∣
≤
∣∣∣ t2

1−µ+βµ−βkKµ,β(t2)y0

1 + t2
−

t2
1−µ+βµ−βkKµ,β(t2)y0

1 + t1

∣∣∣
+
∣∣∣ t2

1−µ+βµ−βkKµ,β(t2)y0

1 + t1
−

t1
1−µ+βµ−βkKµ,β(t1)y0

1 + t1

∣∣∣
≤|t2

1−µ+βµ−βkKµ,β(t2)y0|
|t2 − t1|

(1 + t2)(1 + t1)

+ |t2
1−µ+βµ−βkKµ,β(t2)y0 − t1

1−µ+βµ−βkKµ,β(t1)y0|
1

1 + t1

≤|t2
1−µ+βµ−βkKµ,β(t2)y0|

|t2 − t1|
(1 + t2)(1 + t1)

+ |t2
1−µ+βµ−βk||Kµ,β(t2)y0 −Kµ,β(t1)y0|

1
1 + t1

+ |t2
1−µ+βµ−βk − t1

1−µ+βµ−βk||Kµ,β(t1)y0|
1

1 + t1

→ 0, as t2 → t1.

(7)
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Hence,
{

v : v(t) = (Φ1u)(t)/(1 + t), u ∈ Ω1
}

is equicontinuous.
Step II. We prove that

{
v : v(t) = (Φ2u)(t)/(1 + t), u ∈ Ω1

}
is equicontinuous.

Let y(t) = t−1−µ+βµ−βku(t), for any u ∈ Ω1, t ∈ (0, ∞). Then y ∈ Ω̃1, where Ω̃1 is
nonempty, convex and closed set defined by

Ω̃1 = {y ∈ Cβ([0, ∞), X) : ‖y(t)‖β ≤ r}.

For ε > 0, in view of βk < α < 1− µ(1− β), there exists T2 > 0 such that

L1LΓ(βk)Γ(1− α)

Γ(βk + 1− α)

t1−α−µ(1−β)

1 + t
<

ε

2
, for t ≥ T2. (8)

For t1, t2 > T2, by virtue of H2 and (8), we obtain∣∣∣ (Φ2u)(t2)

1 + t2
− (Φ2u)(t1)

1 + t1

∣∣∣
≤
∣∣∣ t2

1−µ+βµ−βk

1 + t2

∫ t2

0
Qβ(t2 − s)G(s, y(s))ds

∣∣∣
+
∣∣∣ t1

1−µ+βµ−βk

1 + t1

∫ t1

0
Qβ(t1 − s)G(s, y(s))ds

∣∣∣
≤ L1Lt2

1−µ+βµ−βk

1 + t2

∫ t2

0
(t2 − s)βk−1s−αds

+
L1Lt1

1−µ+βµ−βk

1 + t1

∫ t1

0
(t1 − s)βk−1s−αds

=
L1LΓ(βk)Γ(1− α)

Γ(βk + 1− α)

t2
1−α−µ(1−β)

1 + t2

+
L1LΓ(βk)Γ(1− α)

Γ(βk + 1− α)

t1
1−α−µ(1−β)

1 + t1

<ε.

(9)

When t1 = 0, 0 < t2 ≤ T2, we have∣∣∣ (Φ2u)(t2)

1 + t2
− (Φ2u)(0)

∣∣∣ =∣∣∣ t2
1−µ+βµ−βk

1 + t2

∫ t2

0
Qβ(t2 − s)G(s, y(s))ds

∣∣∣
≤ L1Lt2

1−µ+βµ−βk

1 + t2

∫ t2

0
(t2 − s)βk−1s−αds

=
L1LΓ(βk)Γ(1− α)

Γ(βk + 1− α)

t2
1−α−µ(1−β)

1 + t2

→ 0 as t2 → 0.

(10)

When 0 < t1 < t2 ≤ T2, we obtain∣∣∣ (Φ2u)(t2)

1 + t2
− (Φ2u)(t1)

1 + t1

∣∣∣
≤
∣∣∣ t1

1−µ+βµ−βk

1 + t1

∫ t2

t1

(t2 − s)β−1Tβ(t2 − s)G(s, y(s))ds
∣∣∣

+
∣∣∣ t1

1−µ+βµ−βk

1 + t1

∫ t1

0

(
(t2 − s)β−1 − (t1 − s)β−1)Tβ(t2 − s)G(s, y(s))ds

∣∣∣
+
∣∣∣ t1

1−µ+βµ−βk

1 + t1

∫ t1

0
(t1 − s)β−1(Tβ(t2 − s)− Tβ(t1 − s)

)
G(s, y(s))ds

∣∣∣
(11)
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+
∣∣∣ t2

1−µ+βµ−βk

1 + t2
− t1

1−µ+βµ−βk

1 + t1

∣∣∣∣∣∣ ∫ t2

0
(t2 − s)β−1Tβ(t2 − s)G(s, y(s))ds

∣∣∣
≤I1 + I2 + I3 + I4,

where

I1 =
L1Lt1

1−µ+βµ−βk

1 + t1

∣∣∣ ∫ t2

0
(t2 − s)βk−1s−αds−

∫ t1

0
(t1 − s)βk−1s−αds

∣∣∣,
I2 =

L1Lt1
1−µ+βµ−βk

1 + t1

∫ t1

0

(
(t1 − s)β−1 − (t2 − s)β−1)(t2 − s)β(k−1)s−αds,

I3 =
t1

1−µ+βµ−βk

1 + t1

∣∣∣ ∫ t1

0
(t1 − s)β−1(Tβ(t2 − s)− Tβ(t1 − s)

)
G(s, y(s))ds

∣∣∣,
I4 =

∣∣∣ t2
1−µ+βµ−βk

1 + t2
− t1

1−µ+βµ−βk

1 + t1

∣∣∣ L1LΓ(βk)Γ(1− α)

Γ(βk + 1− α)
t2

βk−α.

By direct calculation, we obtain

I1 =
L1LΓ(βk)Γ(1− α)

Γ(βk + 1− α)

t1
1−µ+βµ−βk

∣∣t2
βk−α − t1

βk−α
∣∣

1 + t1
→ 0, as t2 → t1.

Note that

((t1 − s)β−1 − (t2 − s)β−1)(t2 − s)β(k−1)s−α ≤ (t1 − s)βk−1s−α, for s ∈ [0, t1],

then Lebesgue dominated convergence theorem implies that∫ t1

0

(
(t1 − s)β−1 − (t2 − s)β−1)(t2 − s)β(k−1)s−αds→ 0, as t2 → t1,

So, I2 → 0 as t2 → t1.
By H2, for ε > 0, we have

I3 ≤
t1

1−µ+βµ−βk

1 + t1

∫ t1−ε

0
(t1 − s)β−1∣∣(Tβ(t2 − s)− Tβ(t1 − s)

)
G(s, y(s))

∣∣ds

+
t1

1−µ+βµ−βk

1 + t1

∫ t1

t1−ε
(t1 − s)β−1∣∣(Tβ(t2 − s)− Tβ(t1 − s)

)
G(s, y(s))

∣∣ds

≤ t1
1−µ+βµ−βk

1 + t1

∫ t1

0
(t1 − s)β−1|G(s, y(s))|ds sup

s∈[0,t1−ε]

|Tβ(t2 − s)− Tβ(t1 − s)|

+
2L1t1

1−µ+βµ−βk

1 + t1

∫ t1

t1−ε
(t1 − s)βk−1|G(s, y(s))|ds

≤I31 + I32 + I33,

where

I31 =
t1

1−µ+βµ−βk

1 + t1

∫ t1

0
(t1 − s)β−1|G(s, y(s))|ds sup

s∈[0,t1−ε]

‖Tβ(t2 − s)− Tβ(t1 − s)‖L(X),

I32 =
2L1Lt1

1−µ+βµ−βk

1 + t1

∣∣∣ ∫ t1

0
(t1 − s)βk−1s−αds−

∫ t1−ε

0
(t1 − ε− s)βk−1s−αds

∣∣∣,
I33 =

2L1Lt1
1−µ+βµ−βk

1 + t1

∫ t1−ε

0
((t1 − ε− s)βk−1 − (t1 − s)βk−1)s−αds.

Lemma 6 implies that I31 → 0 as t2 → t1. Using the method employed to prove I1, I2
tend to zero, we obtain I32 → 0 and I33 → 0 as ε → 0. Hence, I3 tends to zero as t2 → t1.
We can also prove that I4 → 0 as t2 → t1 which is similar to (7).
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For 0 ≤ t1 < T2 < t2, if t2 → t1, then t2 → T2 and t1 → T2. Thus, for u ∈ Ω1,∣∣∣ (Φ2u)(t2)

1 + t2
− (Φ2u)(t1)

1 + t1

∣∣∣
≤
∣∣∣ (Φ2u)(t2)

1 + t2
− (Φ2u)(T2)

1 + T2

∣∣∣+ ∣∣∣ (Φ2u)(T2)

1 + T2
− (Φ2u)(t1)

1 + t1

∣∣∣→ 0, as t2 → t1.
(12)

Consequently, ∣∣∣ (Φ2u)(t2)

1 + t2
− (Φ2u)(t1)

1 + t1

∣∣∣→ 0, as t2 → t1.

Therefore,
{

v : v(t) = (Φ2u)(t)/(1 + t), u ∈ Ω1
}

is equicontinuous. Furthermore, V
is equicontinuous.

Lemma 9. Assume that H1 and H2 hold. Then, limt→∞ |(Φu)(t)|/(1 + t) = 0 uniformly for
u ∈ Ω1.

Proof. In fact, for any u ∈ Ω1, by H2 and Lemma 5, we obtain

|(Φu)(t)| ≤
∣∣∣t1−µ+βµ−βkKµ,β(t)y0

∣∣∣+ ∣∣∣t1−µ+βµ−βk
∫ t

0
Qβ(t− s)G(s, y(s))ds

∣∣∣
≤L2|y0|+ L1Lt1−µ+βµ−βk

∫ t

0
(t− s)βk−1s−αds

≤L2|y0|+
L1LΓ(βk)Γ(1− α)

Γ(βk + 1− α)
t1−α−µ(1−β).

(13)

Dividing (13) by (1 + t), we get

|(Φu)(t)|
1 + t

≤ L2|y0|
1 + t

+
L1LΓ(βk)Γ(1− α)

Γ(βk + 1− α)

t1−α−µ(1−β)

1 + t
. (14)

Consequently,

|(Φu)(t)|
1 + t

→ 0, as t→ ∞,

which implies that limt→∞ |(Φu)(t)|/(1 + t) = 0 uniformly for u ∈ Ω1. This completes
the proof.

Lemma 10. Assume that H1 and H2 hold. Then ΦΩ1 ⊂ Ω1.

Proof. Let y(t) = t−1−µ+βµ−βku(t), for u ∈ Ω1, t ∈ (0, ∞). Then y ∈ Ω̃1.
For t > 0, from (4) and (14), we have

|(Φu)(t)|
1 + t

≤L2|y0|+
L1LΓ(βk)Γ(1− α)

Γ(βk + 1− α)

t1−α−µ(1−β)

1 + t
≤ r, (15)

For t = 0, |(Φu)(0)| = 0 < r. Therefore, ΦΩ1 ⊂ Ω1.

Lemma 11. Suppose that H1 and H2 hold. Then Φ is continuous.

Proof. Let {um}∞
m=1 be a sequence in Ω1 converging to u ∈ Ω1. Consequently,

lim
m→∞

um(t) = u(t), and lim
m→∞

t−1−µ+βµ−βkum(t) = t−1−µ+βµ−βku(t), for t ∈ (0, ∞).

Let y(t) = t−1−µ+βµ−βku(t), ym(t) = t−1−µ+βµ−βkum(t) t ∈ (0, ∞). Then y, ym ∈ Ω̃1.
In view of H1, we have
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lim
m→∞

G(t, ym(t)) = lim
m→∞

G(t, t−1−µ+βµ−βkum(t)) = G(t, t−1−µ+βµ−βku(t)) = G(t, y(t)).

For any ε > 0, there exists T2 > 0 such that (8) holds. Thus, for t > T2,

∣∣∣ (Φum)(t)
1 + t

− (Φu)(t)
1 + t

∣∣∣ ≤ 2L1LΓ(βk)Γ(1− α)

Γ(βk + 1− α)

t1−α−µ(1−β)

1 + t
< ε. (16)

which implies that ‖Φum −Φu‖ → 0 as m→ ∞.
For each t ∈ [0, T2], (t− s)βk−1|G(s, ym(s))− G(s, y(s))| ≤ 2L1(t− s)βk−1s−α. By the

Lebesgue-dominated convergence theorem, we obtain∫ t

0
(t− s)βk−1|G(s, ym(s))− G(s, y(s))|ds→ 0, as m→ ∞.

Thus, for t ∈ [0, T2],∣∣∣ (Φum)(t)
1 + t

− (Φu)(t)
1 + t

∣∣∣
≤ t1−µ+βµ−βk

1 + t

∫ t

0
|Qβ(t− s)(G(s, ym(s))− G(s, y(s)))|ds

≤L1
t1−µ+βµ−βk

1 + t

∫ t

0
(t− s)βk−1|G(s, ym(s))− G(s, y(s))|ds→ 0, as m→ ∞.

So, ‖Φum −Φu‖ → 0 as m→ ∞. Hence, Φ is continuous. The proof is completed.

4. Main Results

Theorem 1. Suppose that Q(t) is compact for t > 0. Further assume that H1 and H2 hold. Then
(i) there is at least one mild solution of (1); (ii) all mild solutions of (1) are attractive.

Proof. (i) Clearly, the problem (1) has a mild solution y ∈ Ω̃1 if and only if the operator Φ
has a fixed point u ∈ Ω1, where u(t) = t1−µ+βµ−βky(t). Hence, we only need to prove that
the operator Φ has a fixed point in Ω1. From Lemmas 10 and 11, we know that ΦΩ1 ⊂ Ω1
and Φ is continuous. In order to prove that Φ is a completely continuous operator, we
need to prove that ΦΩ1 is a relatively compact set. In view of Lemmas 8 and 9, the set V ={

v : v(t) = (Φu)(t)/(1+ t), u ∈ Ω1
}

is equicontinuous and limt→∞ |(Φu)(t)|/(1+ t) = 0
uniformly for u ∈ Ω1. According to Lemma 7, we only need to prove V(t) is relatively
compact in X for t ∈ [0, ∞). Clearly, V(0) is relatively compact in X. We only consider the
case t > 0. For ∀ ε ∈ (0, t) and δ > 0, define Φε,δ on Ω1 as follows

(Φε,δu)(t) := t1−µ+βµ−βk(Ψε,δy)(t)

:=t1−µ+βµ−βk

(
Kµ,β(t)y0

1 + t
+
∫ t−ε

0

∫ ∞

δ
βθ(t− s)β−1Wβ(θ)Q((t− s)βθ)G(s, y(s))dθds

)
.

Thus,

Φε,δu)(t)
1 + t

=
t1−µ+βµ−βk

1 + t

(
Kµ,β(t)y0

1 + t

+ Q(εβδ)
∫ t−ε

0

∫ ∞

δ
βθ(t− s)β−1Wβ(θ)Q((t− s)βθ − εβδ)G(s, y(s))dθds

)
.

By Theorem 3 of [17], we know that Kµ,β(t) is compact because Q(t) is compact for
t > 0. Furthermore, Q(εβδ) is compact. Then the set {Vε,δu, u ∈ Ω1} is relatively compact
in X for any ε ∈ (0, t) and for any δ > 0. Moreover, for every u ∈ Ω1, we find that
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∣∣∣∣∣ (Φu)(t)
1 + t

− (Φε,δu)(t)
1 + t

∣∣∣∣∣
≤ t1−µ+βµ−βk

1 + t

∣∣∣ ∫ t

0

∫ δ

0
βθ(t− s)β−1Wβ(θ)Q((t− s)βθ)G(s, y(s))dθds

∣∣∣
+

t1−µ+βµ−βk

1 + t

∣∣∣ ∫ t

t−ε

∫ ∞

δ
βθ(t− s)β−1Wβ(θ)Q((t− s)βθ)G(s, y(s))dθds

∣∣∣
≤ βC0t1−µ+βµ−βk

1 + t

∫ t

0
(t− s)βk−1|G(s, y(s))|ds

∫ δ

0
θkWβ(θ)dθ

+
βC0t1−µ+βµ−βk

1 + t

∫ t

t−ε
(t− s)βk−1|G(s, y(s))|ds

∫ ∞

0
θkWβ(θ)dθ

≤ βC0LΓ(βk)Γ(1− α)

Γ(βk + 1− α)

t1−α−µ(1−β)

1 + t

∫ δ

0
θkWβ(θ)dθ

+
βC0Lt1−α−µ(1−β)

1 + t

∫ 1

1−ε/t
(1− s)βk−1s−αds

∫ ∞

0
θkWβ(θ)dθ

→ 0, as ε→ 0, δ→ 0.

Thus, V(t) is also a relatively compact set in X for t ∈ [0, ∞). Therefore, the Schauder
fixed point theorem implies that Φ has at least a fixed point u∗ ∈ Ω1. Let y∗(t) =
t−1−µ+βµ−βku∗(t). Then y∗ is a mild solution of (1).

(ii) If y(t) is a mild solution of (1), then

y(t) = Kµ,β(t)y0 +
∫ t

0
Qβ(t− s)G(s, y(s))ds, t ∈ (0, ∞).

By H2, noting that −1 + µ− βµ + βk < 0 and βk < α, we obtain

|y(t)| ≤ L2|y0|t−1+µ−βµ+βk +
L1LΓ(βk)Γ(1− α)

Γ(βk + 1− α)
tβk−α → 0, as t→ ∞, (17)

which implies that y(t) is an attractive solution.

In the case that Q(t) is noncompact for t > 0, we impose the following hypothesis.

H3. there exists a constant K > 0 such that for any bounded D ⊆ X,

χ(G(t, D)) ≤ Kt1−µ+βµ−βkχ(D), for a.e. t ∈ [0, ∞),

where χ is Kuratowski’s measure of noncompactness.

Theorem 2. Suppose that Q(t) is noncompact for t > 0. Further assume that H1, H2 and H3
hold. Then (i) there is at least one mild solution for (1); (ii) all mild solutions of (1) are attractive.

Proof. (i) Let u0(t) = t1−µ+βµ−βkKµ,β(t)y0 for all t ∈ [0, ∞) and um+1 = Φum, m =

0, 1, 2, · · · . Consider set V =
{

vm : vm(t) = (Φum)(t)/(1 + t), um ∈ Ω1}∞
m=0, and we will

prove set V is relatively compact.
In view of Lemmas 8 and 9, the set V is equicontinuous and limt→∞ |(Φum)(t)|/(1 +

t) = 0 uniformly for um ∈ Ω1. According to Lemma 7, we only need to prove V(t) ={
vm(t) : vm(t) = (Φum)(t)/(1 + t), um ∈ Ω1}∞

m=0 is relatively compact in X for t ∈ [0, ∞).
Under the condition H3, by the properties of measure of noncompactness and Lemma 2,

for any t ∈ [0, ∞), we have

χ
({um(t)

1 + t

}∞

m=0

)
= χ

({u0(t)
1 + t

}
∪
{um(t)

1 + t

}∞

m=1

)
= χ

({um(t)
1 + t

}∞

m=1

)
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and

χ
({um(t)

1 + t

}∞

m=1

)
=χ
({um(t)

1 + t

}∞

m=0

)
=χ
({ t1−µ+βµ−βk

1 + t
Kµ,β(t)y0 +

t1−µ+βµ−βk

1 + t

∫ t

0
Qβ(t− s)G(s, ym(s))ds

}∞

m=0

)
=χ
({ t1−µ+βµ−βk

1 + t

∫ t

0
Qβ(t− s)G(s, ym(s))ds

}∞

m=0

)
≤2L1

t1−µ+βµ−βk

1 + t

∫ t

0
(t− s)βk−1χ

(
G(s, {s−1+µ−βµ+βkum(s)}∞

m=0)
)

ds

≤2L1KM∗
∫ t

0
(t− s)βk−1s1−µ+βµ−βkχ

(
{s−1+µ−βµ+βkum(s)}∞

m=0

)
ds

≤2L1KM∗
∫ t

0
(t− s)βk−1(1 + s)χ

({um(s)
1 + s

}∞

m=0

)
ds,

then

χ(V(t)) ≤ 2L1KM∗
∫ t

0
(t− s)βk−1(1 + s)χ(V(s))ds, (18)

where

M∗ = max
t∈[0,∞)

{ t1−µ+βµ−βk

1 + t
}

.

From (18), we know that

χ(V(t)) ≤ 4L1KM∗
∫ t

0
(t− s)βk−1χ(V(s))ds,

or

χ(V(t)) ≤ 4L1KM∗
∫ t

0
(t− s)βk−1sχ(V(s))ds,

holds. Therefore, by the inequality in [25] (p. 188), we obtain that χ(V(t)) = 0, and hence
V(t) is relatively compact. Consequently, it follows from Lemma 7 that set V is relatively
compact, that is, there exists a convergent subsequence of {um}∞

m=0. Without any confusion,
let limm→∞ um = u∗ ∈ Ω1.

Thus, by continuity of the operator Φ, we have

u∗ = lim
m→∞

um = lim
m→∞

Φum−1 = Φ
(

lim
m→∞

um−1

)
= Φu∗,

Let y∗(t) = t−1+µ−βµ+βku∗(t). Thus, y∗(t) is a mild solution of (1).
(ii) This proof is similar to (ii) of Theorem 1, so we omit it.

5. Conclusions

In this paper, by using the generalized Ascoli–Arzela theorem, we investigated the
existence of attractive solutions for Hilfer fractional evolution equations with an almost
sectorial operator. We have obtained the global existence and attractivity results when the
semigroup is compact as well as noncompact. In particular, we do not need to assume
that the G(t, ·) satisfies the Lipschitz condition. It is worth mentioning that we have
developed some new techniques, for example, structuring the space Cβ([0, ∞), X) which
is the key method concerning the existence of global solutions for fractional evolution
equations on infinite intervals. The method employed in this paper can be applied to
infinite intervals problems for fractional evolution equations with instantaneous/non-
instantaneous impulses, fractional stochastic evolution equations.
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