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Abstract: The sign-invariant theory is used to study the radially symmetric nonlinear diffusion equa-
tions with gradient-dependent diffusivities. The first-order non-stationary sign-invariants and the
first-order non-autonomous sign-invariants admitted by the governing equations are identified. As a
consequence, the exact solutions to the resulting equations are constructed due to the corresponding
reductions. The phenomena of blow-up, extinction and behavior of some solutions are also described.

Keywords: sign-invariant; conditional Lie-Bäcklund symmetry; exact solution; nonlinear diffu-
sion equation

1. Introduction

For nonlinear diffusion equations, some results on second-order conditional Lie-
Bäcklund symmetries can be translated to first-order sign-invariants [1–3]. The sign-
invariant theory, introduced by Galationov [4], is a junction of qualitative and quantitative
properties of nonlinear partial differential equations. Some ideas of sign-invariants are orig-
inated from the blow-up singularity analysis of combustion reaction-diffusion Equations [5].
Sign-invariants play a fundamental role in the study of existence, uniqueness, differential
and asymptotic properties of wide classes of solutions [6]. In addition, exact solutions via
finite-dimensional dynamical systems can be constructed due to zero-preserving of the
first-order operator [4–7]. The corresponding reduction idea has a natural relation to the
general theory of differential constraint [8].

The paper [4] presents a backward approach to study nonlinear parabolic equation
starting from sign-invariant computed via the idea from the qualitative theory and finally
giving the set of exact solution by means of the zero-invariant property. Three different
types of first-order sign-invariants are, respectively, considered for different kinds of
nonlinear diffusion equations. The governing equations and the admitted sign-invariants
are presented. As a consequence, exact solutions of the resulting equations are constructed
due to the corresponding reductions. In addition, the definition of Hamilton–Jacobi sign-
invariant for evolution equation is also given in [4].

Definition 1 ([4]). The first-order Hamilton–Jacobi operator

J[u] = J(r, t, u, ut, ur)

is said to be a sign-invariant of the nonlinear evolution equation

ut = Ẽ(r, t, u, ur, · · · , unr)

if it preserves both signs≥ 0 and≤ 0 on the solution manifold of the evolution equation. This means

J[u] ≥ 0 (resp. ≤ 0) in R for t = 0,
⇒ J[u] ≥ 0 (resp. ≤ 0) in R for t > 0.
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The types of non-stationary autonomous sign-invariant

J = ut − ψ(u) (1)

for the parabolic equations with the diffusion term of the gradient-dependent type

ut = L(u, |∇u|, 4u)

and

ut = g(|∇u|)4u + f (u)

are, respectively, studied in [4,7]. The structure of (1) comes from the conditions of
ψ−criticality of solutions to quasi-linear parabolic Equations [9]. The general quadratic
Hamilton–Jacobi sign-invariants

J = ut −
[

A(u)u2
x + B(u)ux + C(u)

]
(2)

for the nonlinear diffusion equation

ut = D(u)uxx + P(u)u2
x + Q(u)

are considered in [5]. It is known that the type of first-order Hamilton–Jacobi sign-invariant
(2) is closely related to the second-order conditional Lie-Bäcklund symmetry

σ = uxx + H(u)u2
x + G(u)ux + F(u)

for nonlinear diffusion Equations [1–3].
The second-order conditional Lie-Bäcklund symmetry with the characteristic

η = urr + H(u)u2
r + G(r, u)ur + F(r, u) (3)

is used to study classifications and reductions of the radially symmetric nonlinear diffusion
equation with gradient-dependent diffusivity

ut =
1

rn−1

(
rn−1ukum

r

)
r
+ Q(r, u) ≡ Ẽ (4)

in [10], where the type of first-order Hamilton–Jacobi sign-invariant

J = ut − A(u)um+1
r − B(r, u)um

r − C(r, u)um−1
r − E(r, u)

is also presented due to the admitted conditional Lie-Bäcklund symmetry (3). The type of
first-order sign-invariant

J = ut − R(r, u)ur − E(r, u) (5)

is not discussed there [10] since the corresponding conditional Lie-Bäcklund symmetry (3)
degenerates to conditional symmetry.

In fact, Equation (4) is corresponding to the multi-dimensional generalization of
nonlinear diffusion equation

ut = div
(

uk|∇u|m−1∇u
)
+ Q

(√
x2

1 + x2
2 + · · ·+ x2

n, u
)

.

It is well known that this equation occur, for instance, in the theory of non-Newtonian
liquids and in some turbulence problems [11–13]. The descriptions of Lie symmetries of a
class of nonlinear diffusion equations in one and two dimensions are presented in [14–19].
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The nonclassical symmetries and reductions of nonlinear diffusion equations in two and
n dimensions can, respectively, be referred to [19–22]. The second-order conditional Lie-
Bäcklund symmetry and first-order Hamilton–Jacobi sign-invariant for nonlinear diffusion
equations with gradient-dependent diffusivity can be referred to [2,10,23].

In this manuscript, we consider the non-stationary sign-invariant

J1 = ut − E(r, u) (6)

and non-autonomous sign-invariant

J2 = ur − H(r, u) (7)

for the general Equation (4) with m 6= 1, which are both particular case of (5). Sections 2 and 3
are, respectively, devoted to study sign-invariants of the form (6) and (7) for the nonlinear
diffusion Equation (4). The corresponding exact solutions due to the reductions of the
resulting sign-invariants are constructed in Section 4. The conclusions are provided in the
last section.

2. Non-Stationary Sign-Invariant of Nonlinear Diffusion Equation

The procedure for computing sign-invariant (6) of Equation (4) is about the same
as what is presented in [5,24,25]. Firstly, we need to differentate J1 = 0 with respect to
t. The next step is to eliminate utt and other lower-order ones ut, urt, urrt in J1t = 0 by
substituting the second derivative utt from (4) and calculating other lower-order ones from
J1 = 0. A direct computation yields

Dt J1|Lt∩Mr,t =
(

mukEuu + kuk−1Eu − kuk−2E
)

um+1
r

+
(

2mukEru + 2kuk−1Er

)
um

r

+

(
mukErr +

n− 1
r

ukEr

)
um−1

r

+ QuE + [(m− 1)E−mQ]Eu +
k
u

E(E−Q)

− (m− 1)(Q− E)Eru−1
r

=0,

(8)

where Lt denotes the set of differential consequence of Equation (4) with respect to t, that is,
Di

t(ut − Ẽ) = 0, i = 0, 1, 2, · · · , and Mr,t denotes the set of all differential consequences
of J1 = 0 with respect to t and r, that is, Di

tD
j
r J1 = 0, i, j = 0, 1, 2, · · · .

We can derive the well known Determining System by equating the coefficients of uj
r

and j = m + 1, m, m− 1, 0, −1 to zero, which are listed as

Euu +
k

mu
Eu −

k
mu2 E = 0,

Eru +
k

mu
Er = 0,

Err +
n− 1

mr
Er = 0,

QuE + [(m− 1)E−mQ]Eu +
k
u

E(E−Q) = 0,

(m− 1)(Q− E)Er = 0.

(9)

Solving the determining system (9), we can identify the governing Equation (4) and
the admitting non-stationary sign-invariant (6). It is stated clearly in [10] that Equation (4)
admits of first-order sign-invariant is equivalent to that Equation (4) admits of second-order
conditional Lie-Bäcklund symmetry (3). Thus, the resulting admitting sign-invariant (6)
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of Equation (4) will yield the corresponding conditional Lie-Bäcklund symmetry (3) of
Equation (4). These results are presented in Table 1.

Table 1. Non-stationary sign-invariant (6) and conditional Lie-Bäcklund symmetry (3) of nonlinear
diffusion Equation (4).

No. Nonlinear Diffusion Non-Stationary Conditional Lie-Bäcklund RemarkEquation (4) Sign-Invariant (6) Symmetry (3)

1 ut =
1

rn−1 (rn−1ukum
r )r J = ut −

[
au + (b + cr

m+1−n
m )u−

k
m

]
η = urr +

k
mu u2

r +
n−1
mr ur k 6= −m

+au + (b + cr
m+1−n

m )u−
k
m m 6= n− 1

2 ut =
1

rn−1 (rn−1ukun−1
r )r J = ut −

[
au + (b + c ln r)u

k
1−n

]
η = urr +

k
(n−1)u u2

r +
1
r ur k 6= 1− n

+au + (b + c ln r)u
k

1−n

3 ut =
1

rn−1 (rn−1u−mum
r )r J = ut − u(a + br

m+1−n
m + c ln u) η = urr − 1

u u2
r +

n−1
mr ur m 6= n− 1

+(a + br
m+1−n

m + c ln u)u
4 ut =

1
rn−1 (rn−1u1−nun−1

r )r J = ut − u(a + b ln r + c ln u) η = urr − 1
u u2

r +
1
r ur

+(a + b ln r + c ln u)u
5 ut =

1
rn−1 (rn−1ukum

r )r J = ut − au η = urr +
k

mu u2
r +

n−1
mr ur

+au + f (r)uk+m +
f (r)
m umu1−m

r

6 ut =
1

rn−1 (rn−1ukum
r )r J = ut − bu−

k
m η = urr +

k
mu u2

r +
n−1
mr ur

+bu−
k
m + f (r) +

f (r)
m u−ku1−m

r
7 ut =

1
rn−1 (rn−1u−mum

r )r J = ut − au− bu ln u η = urr − 1
u u2

r +
n−1
mr ur

+au + bu ln u +
f (r)
m um(au

+ f (r)(au + bu ln u)m +bu ln u)mu1−m
r

3. Non-Autonomous Sign-Invariant of Nonlinear Diffusion Equation

In this section, we consider sign-invariant of the stationary structure (7) which is
non-autonomous in the spatial variable r ∈ R. We restrict our attention to the first-order
operator possessing the form

J = ur − g(r)h(u) (10)

with yet unknown smooth non-negative functions g(r) 6= const and h(u) 6= 0. The idea of
such sign-invariants goes to the gradient bounds introduced [26] for semi-linear parabolic
equations. Generalizations to the quasi-linear gradient-dependent operators can be found
in [27]. The discussion of the sign-invariant

J = ur − rF(u) (11)

and

J = ur −
1
r

F(u) (12)

for the quasi-linear heat equations can be referred to [4]. These two structures are, re-
spectively, include the rotation invariant and scaling invariant [28]. The extension to the
rotation invariant and scaling invariant (11), (12) and other generalized forms for nonlinear
evolution equations are considered in [29,30], where the form of (11) and (12) are defined
as the invariant set.

Similar procedure as what is shown for the previous one in Section 2 will yield that
H(r, u) and Q(r, u) satisfy
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muk Hm−1(Hrr + 2HHru + H2Huu)

+ m(m− 1)uk Hm−2(H2
r + 2HHr Hu + H2H2

u)

+ kuk−1Hm[(2m + 1)Hr + 2mHHu]

+ k(k− 1)uk−2Hm+2 + HQu −QHu + Qr

+
n− 1

r
uk−1

[
uHm−1(mHr + (m− 1)HHu) + kHm+1

]
− n− 1

r2 uk Hm = 0

(13)

if the non-autonomous operator (7) is a sign-invariant of Equation (4).
Substituting H(r, u) = rh(u) into (13), we can derive that

r(Quh− h′Q) + Qr + uk−2hm{(m− 1)(m + n− 1)u2rm−2

+ [k(2m + n)uh + (2m2 + mn−m− n + 1)u2h′]rm

+ [k(k− 1)h2 + muh(2kh′ + uh
′′
) + m(m− 1)u2(h′)2]rm+2} = 0.

(14)

The left-side of (14) is a linear combination in a space of the form

W = L{rm−2, rm, rm+2, Qr, rQ}. (15)

For the case of Q(r, u) = Q(u), the space W degenerate to

W = L{rm−2, rm, rm+2, r}. (16)

The discussion of the dimension of the linear space (15) and (16) will finally yield the
determining system for h and Q. We omit the tedious computational procedure and just list
the corresponding results in Table 2. The results for the sign-invariant (12) of Equation (4)
are also listed in Table 2.

Table 2. Non-autonomous sign-invariant (7) of nonlinear diffusion Equation (4).

No. Nonlinear Diffusion Equation (4) Non-Autonomous Sign-Invariant (7)

1 ut =
1

rn−1 (rn−1uku1−n
r )r + q exp

(
1
2 ar2

)
exp

[
(n−1)a

(k+1−n)s u
n−1−k

n−1

]
u

k
n−1 J = ur − sru

k
n−1

2 ut =
1

rn−1

[
rn−1u−

2(n+8)
n+2 u3

r

]
r
+ qu

n+6
n+2 + 1

4 (n + 2)2s2u
n−2
n+2 J = ur − sru

n+6
n+2

3 ut =
1

rn−1 (rn−1uku−1
r )r + qul − (k− l)uk−1 + 2−n

sr2 uk−l J = ur − srul

4 ut =
1

rn−1

(
rn−1uku1−k

r

)
r
+ s2−k

(
a− r2−k + k−n

s r−k
)

u J = ur − sru

5 ut =
1

rn−1 (rn−1un−1u1−n
r )r + q exp

(
1
2 ar2

)
u

s−a
s J = ur − sru

6 ut =
1

rn−1 (rn−1uku−k
r )r + q exp

(
1
2 sr2

)
+ (k + 1− n)s−kr−(k+1) J = ur − sru

7 ut =
1
r (ru2u−1

r )r + q exp
(

1
2 sr2

)
J = ur − sru

8 ut =
1

rn−1 (rn−1ukun−1
r )r + qu−

k
n−1 J = ur − s

r u−
k

n−1

9 ut =
1

rn−1

(
rn−1ukum

r

)
r
+

[
sm(m− n + 1)ulm+k J = ur − s

r ul

−sm+1(lm + k)u(m+1)l+k−1 + qul exp
(

m+1
(1−l)s u1−l

)]
r−(m+1)

10 ut =
1

rn−1

[
rn−1ul(1−n)un−1

r

]
r
+ qraul exp

[
a

s(l−1)u1−l
]

J = ur − s
r ul

11 ut =
1

rn−1

(
rn−1u

1+m+s−ms
s um

r

)
r
+ qrau

s−a
s J = ur − s

r u

12 ut =
1

rn−1 (rn−1u
1+m−n−ms

s um
r )r + qrau

s−a
s J = ur − s

r u
13 ut =

1
rn−1 (rn−1u

s−a−ms
s um

r )r +
[
qra + sm(m− n + a− s + 1)r−m−1]u s−a

s J = ur − s
r u
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Table 2. Cont.

No. Nonlinear Diffusion Equation (4) Non-Autonomous Sign-Invariant (7)

14 ut =
1

rn−1 (rn−1ukum
r )r +

[
qu

s+1+m
s − (ks + ms−m + n− 1)smuk+m

]
r−(1+m) J = ur − s

r u

15 ut =
1

rn−1 (rn−1um
r )r + qr

m+1
m−1 J = ur − 1

r

(
m+1
m−1 u + s

)
16 ut =

1
rn−1

(
rn−1uu

n−2
n+2
r

)
r
+ qr−

n
2 J = ur − 1

r
(
s− n

2 u
)

17 ut =
1

rn−1

(
rn−1u

1−n
a−1
r

)
r
+ qra J = ur − 1

r (au + s)

4. Exact Solutions of Nonlinear Diffusion Equation

The compatibility of η = 0 (J1 = 0, J2 = 0) and the governing Equation (4) will yield
exact solutions of the nonlinear diffusion Equation (4). To derive these solutions, one first
solves the ordinary differential equation η = 0 (J1 = 0, J2 = 0) to determine the form of
u(r, t), and then substitutes the corresponding results into Equation (4) to finally identify
the solutions. Here we just present several examples to illustrate the reduction procedure.

Example 1. Equation

ut =
1

rn−1 (r
n−1ukum

r )r + au + (b + cr
m+1−n

m )u−
k
m

with k 6= −m and m 6= n− 1 admits of the first-order sign-invariant

J = ut −
[

au + (b + cr
m+1−n

m )u−
k
m

]
and the second-order conditional Lie-Bäcklund symmetry

η = urr +
k

mu
u2

r +
n− 1

mr
ur.

The corresponding solutions are given by

u(r, t) =
[

m + k
m + 1− n

α(t)r
m+1−n

m +
m + k

m
β(t)

] m
m+k

,

where α(t) and β(t) satisfy two-dimensional dynamical system

α′ =
(m + k)a

m
α +

(m + 1− n)c
m

, β′ =
(m + k)a

m
β + b.

This system can be easily integrated. The corresponding solutions are given as follows.

(i) For a 6= 0,

α(t) = c1 exp
[
(m+k)at

m

]
− (m+1−n)c

(m+k)a ,

β(t) = c2 exp
[
(m+k)at

m

]
− mb

(m+k)a .

(ii) For a = 0,

α(t) =
(m + 1− n)c

m
t + c1, β(t) = bt + c2.

The solutions blow-up along the curves r = [−(m + 1− n)β(t)/m/α(t)]
m

m+k
+ for the

case of m(m + k) < 0 and extinguish along the curves for the case of m(m + k) > 0, namely,

the interface of the solution is the curve r = [−(m + 1− n)β(t)/m/α(t)]
m

m+k
+ . Notably, exact

solutions of this form were found by Cherniha et al. [18] for the special case of n = 2 and
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k = a = b = c = 0, where the solutions are constructed due to Lie’s classical symmetry
reductions. It is also remarked that the solutions can reduce to the instantaneous source
solutions of the porous medium equation with source for the case of a = c = 0 and
m = n = 1. Thus, the resulting solutions are also generalizations of the instantaneous
source solutions of the porous medium equation with source.

Example 2. Equation

ut =
1

rn−1 (r
n−1ukun−1

r )r + au + (b + c ln r)u
k

1−n , k 6= 1− n

admits of the first-order sign-invariant

J = ut −
[

au + (b + c ln r)u
k

1−n

]
and the second-order conditional Lie-Bäcklund symmetry

η = urr +
k

(n− 1)u
u2

r +
1
r

ur.

The corresponding solutions are given by

u(r, t) =
[

k + n− 1
n− 1

(α(t) ln r + β(t))
] n−1

k+n−1
,

where α(t) and β(t) are given as below.

(i) For a 6= 0,
α(t) = c1 exp

[
(n+k−1)at

n−1

]
− (n−1)c

(n+k−1)a ,

β(t) = c2 exp
[
(n+k−1)at

m

]
− (n−1)b

(n+k−1)a .

(ii) For a = 0,
α(t) = ct + c1, β(t) = bt + c2.

The solutions blow-up along the curves r = exp [−β(t)/α(t)] for the case of
(n− 1)(k + n− 1) < 0 and extinguish along the curves for the case of (n− 1)(k + n− 1) > 0,
namely, the interface of the solution is the curve r = exp [−β(t)/α(t)]. Figure 1 shows the
typical behavior of the governing equation for the case of a = b = 0 and n = 2. The three
curves are, respectively, corresponding to different times, and the vertical axis and the
horizontal axis are, respectively, corresponding to u and r; this is the same as for the other
Figures below.

Figure 1. Cont.
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Figure 1. Typical variation of the solutions with a = b = 0 and n = 2 of Example 2 for different types
of parameters.

Example 3. Equation

ut =
1

rn−1 (r
n−1u−mum

r )r + (a + br
m+1−n

m + c ln u)u, m 6= n− 1

admits of the first-order sign-invariant

J = ut − u(a + br
m+1−n

m + c ln u)

and the second-order conditional Lie-Bäcklund symmetry

η = urr −
1
u

u2
r +

n− 1
mr

ur.

The corresponding solutions are given by

u(r, t) = exp
[

m
m + 1− n

α(t)r2−n + β(t)
]

,
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where α(t) and β(t) are listed as below.

(i) For c 6= 0,

α(t) = c1 exp (ct)− (m + 1− n)b
mc

,

β = c2 exp (ct)− a
c

.

(ii) For c = 0,

α(t) =
(m + 1− n)bt

m
+ c1, β = at + c2.

For the r−independent case, the relevant equation with b = 0 degenerates to the
Gompertz Equation [31].

Nt = (a + c ln N)N,

which is suitable for the tumor growth. It is also noted that the resulting solution can reduce
to the traveling wave solution for the case of b = 0 and n = 1. Thus, this solution can be
regarded as an extension of the traveling wave solution of the porous medium equation
with source. Figure 2 shows the typical behavior of the governing equation for the case of
a = c = 0 and n = 3, m = 1/2.

Figure 2. Typical variation of the solutions with a = c = 0 and m = 1/2, n = 3 of Example 3 for
different types of parameters.

Example 4. Equation

ut =
1

rn−1 (r
n−1u−mum

r )r + au + bu ln u + f (r)(au + bu ln u)m

admits of the first-order sign-invariant

J = ut − au− bu ln u
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and the second-order conditional Lie-Bäcklund symmetry

η = urr −
1
u

u2
r +

n− 1
mr

ur +
f (r)
m

um(au + bu ln u)mu1−m
r .

The corresponding solutions are given by

u(r, t) = exp
[

exp b(t + g(r))− a
b

]
and g(r) satisfy

(g′)m−1
[

mg
′′
+ mb(g′)2 +

n− 1
r

g′
]
+ f = 0.

Example 5. Equation

ut =
1

rn−1

[
rn−1u−

2(n+8)
n+2 u3

r

]
r
+ qu

n+6
n+2 +

1
4
(n + 2)2s2u

n−2
n+2

admits of the first-order sign-invariant

J = ur − sru
n+6
n+2 .

The corresponding solutions are given by

u(r, t) =
[

α(t)− 2s
n + 2

r2
]− n+2

4
,

where α(t) satisfy

n + 2
4

α′ +
1
4
(n + 2)2s2α2 + q = 0.

The solutions are listed as below.

(i) For q > 0,

α(t) = −
2
√

q
(n + 2)s

tan[2s
√

q(t + c)].

(ii) For q < 0,

α(t) =
2
√−q

(n + 2)s
tanh

[
2s
√
−q(t + c)

]
.

(iii) For q = 0,

α(t) =
1

(n + 2)s2t + c
.

The solutions exhibit the asymptotical behavior u −→ 0 as r −→ +∞. Moreover,
the solutions are the periodic function of t with the period π/(2s

√
q) for q > 0. Figure 3

shows the typical behavior of the governing equation for the case of n = 2.
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Figure 3. Typical variation of the solutions with n = 2 of Example 5 for different types of parameters.

Example 6. Equation

ut =
1

rn−1

[
rn−1ul(1−n)un−1

r

]
r
+ qraul exp

[
a

s(l−1)u1−l
]

admits of the first-order sign-invariant

J = ur − s
r ul .

The corresponding solutions are given as

u(r, t) = [α(t) + (1− l)s ln r]
1

1−l ,

where α(t) satisfy

α′ + (l − 1)q exp
[

a
(l − 1)s

α

]
= 0.

The solutions are listed as below.



Symmetry 2022, 14, 386 14 of 18

(i) For a 6= 0,

α(t) =
(l − 1)s

a
ln
[

s
qa(t + c)

]
.

(ii) For a = 0,
α(t) = q(1− l)t + c.

The resulting solutions are exactly functional separable solutions, which exist widely
for the nonlinear diffusion Equation (4) with n = 1 and m = 1.

Example 7. Equation

ut =
1

rn−1 (r
n−1u

1+m−n−ms
s um

r )r + qrau
s−a

s

admits of the first-order sign-invariant

J = ur −
s
r

u.

The corresponding solutions are given as below.

(i) For a 6= 0,

u(r, t) =
( qa

s
t + c

) s
a rs.

(ii) For a = 0,
u(r, t) = c exp (qt)rs.

The solutions exhibit the asymptotical behavior u −→ 0 as r −→ +∞ for s < 0.
Figure 4 shows the typical behavior of the governing equation.

Figure 4. Cont.
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Figure 4. Cont.
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Figure 4. Typical variation of the solutions of Example 7 for different types of parameters.

5. Conclusions

We constructed exact solutions to the radially symmetric nonlinear diffusion equation
with gradient-dependent diffusivity (4) due to the first-order sign-invariant (6), (11) and
(12). The first-order sign-invariant (6) can be translated to the degenerated second-order
conditional Lie-Bäcklund symmetry for Equation (4), which yields the form of nonlinear
separable solutions for the governing Equation (4). Moreover, various kinds of functional
separable solutions for Equations (4) are constructed due to the reductions of the admit-
ted first-order sign-invariant (11) and (12). The analysis of the resulting equation are
also presented.

In fact, second-order conditional Lie-Bäcklund symmetry can give symmetry inter-
pretation for first-order sign-invariant of nonlinear diffusion Equations [1–3]. Moreover,
symmetry methods and symmetry-related methods are very effective to study different
types of evolution equations and its fractional version, so does for systems of evolution
equations. The discussion of first-order sign-invariant (6), (7) and other forms for variant
forms of KdV Equation [32] and its fractional version, multi-dimensional Schrödinger
equation, and systems of KdV equations will be involved in our future study.
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