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Abstract: We describe an explicit statistical model of local hidden variables that reproduces the
predictions of quantum mechanics for the ideal Franson experiment and sheds light on the physical
mechanisms that might be involved in the actual experiment. The crux of our model is the spon-
taneous breaking of time-translation gauge symmetry by the hidden configurations of the pairs of
photons locked in time and energy involved in the experiment, which acquire a non-zero geometric
phase through certain cyclic transformations.
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1. Introduction

It is widely accepted wisdom that quantum phenomena cannot be fully described
within the framework of any physical theory that shares the same notions of reality and
relativistic causality that we acknowledge as a given in our classical descriptions of the
macroscopic world [1]. This wisdom is precisely formulated through the Bell theorem on
the attainable correlations between the outcomes of polarization measurements performed
on pairs of photons prepared in a singlet polarization state [2,3]. The theorem draws a solid
line (the Bell inequality) that allows experimentally discriminating between the predictions
of quantum mechanics for these correlations and those of models of local hidden variables
that fulfill certain physically intuitive requirements [4–7].

In a series of recent papers, we have shown, however, that the proof of the Bell theorem
relies crucially on a subtle implicit assumption that is not required by fundamental physical
principles and, therefore, the Bell inequality does not necessarily hold for models of local
hidden variables that do not comply with the said unjustified assumption [8–10]. As
a consequence, such models cannot be ruled out by the experimental evidence for the
violation of the inequality [11–13].

The Franson experiment is often regarded as an alternative demonstration of the
impossibility of describing quantum phenomena within the framework of any local model
of hidden variables [14–17]. As in the case of the Bell experiment, it has been shown that
certain features of the predictions of quantum mechanics for the Franson experiment cannot
be reproduced within the framework of any model of local hidden variables that shares
certain intuitive requirements [18–21].

In this paper we argue, however, that as in the case of the Bell experiment the models of
local hidden variables whose predictions for the Franson experiment can be distinguished
from those of quantum mechanics all share an assumption that is not required by any
fundamental principle. Indeed, we explicitly describe a model of local hidden variables
that does not comply with the disputed assumption; hence, it successfully reproduces
the predictions of quantum mechanics for the experiment. The crux of our model is the
spontaneous breaking of time-translation gauge symmetry by the hidden configurations
of the pairs of photons locked in time and energy involved in the experiment, which
acquire due to a holonomy a non-zero geometric phase through certain cyclic coordinate
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transformations. Let us stress that the gauge symmetry is spontaneously broken when each
one of the possible hidden configurations of the pair of photons is considered separately
(that is, for every single realization of the experiment), but it is statistically restored over
the entire population of all possible hidden configurations (that is, over a long sequence
of repetitions). Thus, the expected average correlations do only depend on the gauge-
independent physical parameters that describe the settings of the experiment, in agreement
with Elitzur’s theorem [22]. The model discussed here for the Franson experiment closely
resembles the model of hidden variables introduced in [8–10] for the Bell experiment.

The paper is organized as follows. In section II, we present a (somewhat simplistic)
description of the ideal Franson experiment within the framework of quantum mechanics
and summarize its predictions (see [16] for a general review of optical tests of the Bell
inequality). In section III, we present a detailed description of the setup of an actual experi-
ment. In section IV, we describe a explicit model of local hidden variables that reproduces
the predictions and the collected experimental data described in the two previous sections.
Finally, in section V, we discuss and summarize our findings.

2. The Franson Experiment

In a Franson experiment, a source produces pairs of photons, A and B, for which their
state is described by a wavefunction of the following form:

|Ψ〉 = |ξ1〉(A) + eiφA |ξ2〉(A)

√
2

⊗ |ξ1〉(B) + eiφB |ξ2〉(B)
√

2
, (1)

where {|ξ1〉, |ξ2〉}(A,B) are orthonormal bases in their respective single-particle Hilbert
spaces:

(A)〈ξ1|ξ2〉(A) = (B)〈ξ1|ξ2〉(B) = 0, (2)

and φA and φB are phases that, in principle, can be controlled and set at will.
A projective measurement is then performed on the pair of photons along the or-

thonormal basis in their joint Hilbert space {|c1〉, |c2〉, |c3〉, |c4〉} defined by the following
vectors:

|c1〉, =
1√
2

(
|ξ1〉(A) ⊗ |ξ1〉(B) + i|ξ2〉(A) ⊗ |ξ2〉(B)

)
,

|c2〉, =
1√
2

(
|ξ1〉(A) ⊗ |ξ1〉(B) − i|ξ2〉(A) ⊗ |ξ2〉(B)

)
,

|c3〉, = |ξ1〉(A) ⊗ |ξ2〉(B),

|c4〉, = |ξ2〉(A) ⊗ |ξ1〉(B), (3)

so that the probabilities pi = 〈Ψ|ci〉〈ci|Ψ〉 for each one of the four possible outcomes are
given, respectively, by the following.

p1 =
1
4

[
1 + cos(φA + φB −

π

2
)
]
, p3 =

1
4

,

p2 =
1
4

[
1− cos(φA + φB −

π

2
)
]
, p4 =

1
4

. (4)

Outcomes #1 and #2, to which we shall refer as simultaneous events for reasons
that will be clear later on, account for half of all events, while outcomes #3 and #4, to
which we shall refer as non-simultaneous events, account for the other half. The experi-
ment is schematically described in Figure 1. This figure is a reproduction of Figure 1 of
reference [14].
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Figure 1. Schematic setup for an ideal Franson experiment. A source produces pairs of photons
locked in time and energy, which are then sent through two unbalanced, perfectly calibrated Mach–
Zender interferometers. At their exit, each one of the photons is registered by either one of two
detectors located at their corresponding ends (DA, DA′ and DB, DB′ , respectively), which record their
times of arrival. This figure has been adapted from reference [14]. Copyright 1989 by the American
Physical Society. Adapted with permission.

We are interested here in the pattern of interference fringes shown by the probabilities
of the simultaneous events, p1 and p2, as a function of the total phase ∆ = φA + φB. In
particular, probability p1 is equal (up to a normalization factor) to the probability of ’equal’
outcomes—either (−1,−1) or (+1,+1)—at the two polarization measurement devices in a
Bell experiment with photons prepared in a singlet polarization state, while probability p2
is equal (up to the same normalization factor as above) to the probability for ’non-equal’
outcomes—either (+1,−1) or (−1,+1)—in the two devices. Hence, following the Bell
theorem, it is claimed that these probabilities cannot be reproduced within the framework
of any model of local hidden variables [18–20].

Notwithstanding, some authors have raised questions regarding the origin of the
claimed ’non-classical’ features of the Franson experiment [23], since the pairs of photons
are initially prepared in a separable state and they become entangled only when they both
are measured, well after they have left their source and do not further interact with each
other [17]. In this paper, we explore these and other questions with the help of an explicit
model of local hidden variables that reproduces the predictions of quantum mechanics
summarized in (4).

Before we proceed, we make the following important observation. The orthonormal
single-particle eigenstates |ξ1〉(A,B) and |ξ2〉(A,B) are defined each up to a global phase (as
any normalized eigenvector of any linear operator); therefore, the phases φA and φB in the
wavefunction (1) have not been properly defined yet. In order to do so, it is necessary to
set an arbitrary setting of the actual experiment as a reference and measure the resulting
probabilities. This reference setting, thus, fixes a reference value for the phase φA + φB
with respect to which we can properly define a subsequent change. On the other hand, in
the above description, the phase difference φA − φB cannot be properly defined and it is,
therefore, a spurious degree of freedom, which we can set to φA − φB = 0. In other words,
in the quantum description, the setting of the experiment is actually described by a single
physical parameter, φA + φB, rather than two independent parameters φA and φB.

3. The Actual Experimental Set-Up

A general review of the actual setup of the Franson experiment and other related
optical tests can be found in reference [16]. Figure 2 shows the setup of the Franson
experiment described in reference [17]. In this experiment, pairs of photons locked in time
and energy are produced via parametric down conversion by splitting photons from a
single-mode laser pulse with wavelength λp = 351.1 nm inciding on a non-linear crystal.
The laser pulse has a typical time width of T ∼ 20 ns.
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Figure 2. Illustration of the setup of the Franson experiment described in reference [17]. In this
experiment, only events recorded at one of the two detectors at each end of the optical device are
registered, since, by symmetry considerations p(DA

⋂
DB) = p(D′A

⋂
D′B), so these two detectors

are sufficient to test the expected fringes of interference. The figure is reprinted from reference [17].
Copyright 1993 by the American Physical Society. Reprinted with permission.

The produced photons, A and B, have a typical coherence time τ ∼ 36 µm/c ∼ 10−4 ns
and a precisely defined total energy equal to that of the splitted incident photon:

ωA + ωB = ωp ≡
c

λp
, (5)

where
ωA ∼ ωB ∼

ωp

2
, and ∆ωA ∼ ∆ωB ∼ τ−1 � ∆ωp ∼ 0. (6)

The two photons are then sent in opposite directions into two unbalanced Mach–
Zender-type interferometers with a longer arm and a shorter arm. The length differences
between the two arms of each interferometer are set to ∆LA,B ∼ 63 cm, which is much
longer than the typical coherence length of the propagating photons.

∆t ≡ ∆LA,B

c
∼ 2 ns � τ ∼ 10−4 ns. (7)

Hence, there is no single-particle interference in the unbalanced interferometers. How-
ever, the time delay that these length differences introduce is much shorter than the time
width of the incident laser pulse.

∆t ≡ ∆LA,B

c
∼ 2 ns � T ∼ 20ns. (8)

These length differences ∆LA,B can be precisely controlled and modified at each one of
the unbalanced interferometers for different settings of the experiment, but they are always
set at equal values:

∆LA = ∆LB ≡ ∆L, (9)

with high precision.
|∆LA − ∆LB| � λp. (10)
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This length difference ∆L, which is the only parameter in the described experimental
setting, introduces a relative total phase:

φA + φB = 2π
ωp ∆L

c
, (11)

between the splitters located at the exits of the two unbalanced interferometers. It is
important to observe that even though the phases acquired by each one of the photons
of a pair φA,B = 2πωA,B∆L/c fluctuate largely over a long sequence of repetitions of the
experiment due to their limited coherence, 2π τ−1∆L/c � 1, under constraint (10), the
total phase (11) remains constant to a much more stringent amount 2π ∆ωp ∆L/c ∼ 0.

Each one of the two photons leaves its interferometer through one of the two available
ports at the corresponding splitter, and it is recorded by a detector, which measures its time
of arrival. Pairs of photons that arrive at their respective detectors at different times (that is,
non-simultaneous pairs) are defined either as event #3 or event #4 depending on which
one of the two photons arrives earlier. These events occur with probabilities p3 and p4, as
defined in (4), and they account for half of all pairs.

The other half corresponds to pairs for which both photons are detected simultaneously.
If they are detected either by detectors DA and DB or by detectors D′A and D′B, they are
counted as event #1. On the other hand, if they are detected either by detectors DA and
D′B or by detectors D′A and DB, they are counted as event #2. As shown in Figure 3,
which has been taken and reproduced here from reference [17], these events occur with
probabilities that show a characteristic pattern of interference fringes as a function of the
length difference ∆L introduced in the experimental setting (9), even though the total
number of photons collected at each one of the four detectors do not show any such fringes,
which is in good agreement with the predictions (4) of quantum mechanics.

As it can be seen from Figure 3 and Equation (11), the period of the interference
pattern in these probabilities is fixed by the wavelength of the incident photon splitted via
parametric downconversion at the non-linear crystal.

l ∼ λp ∼ 0.35 µm. (12)

Figure 3. Experimental data collected in the Franson experiment described in reference [17]. The
relative number of simultaneous events collected in a given pair of detectors shows a characteristic
pattern of interference fringes with characteristic period of lp ∼ ωp/c ∼ 0.35µm, while the total
number of events in each detector shows no such pattern. The figure is reprinted from reference [17].
Copyright 1993 by the American Physical Society. Reprinted with permission.
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The described interference pattern in the probabilities of simultaneous events is at-
tributed within the framework of quantum mechanics to the experimental impossibility to
distinguish if the pair of simultaneous photons arrived at their detectors either both through
the longer arms or both through the shorter arms of their respective interferometers. The
two possibilities are undistinguishable because, as we observed above in Equation (8), the
uncertainty in their emission time caused by the time width of the laser pulse, T ∼ 20 ns, is
much longer than the time delay introduced by the length difference between the longer
and shorter arms, ∆t ∼ 2 ns [14,15,17].

4. The Statistical Model

In this section, we describe an explicit model of local hidden variables that reproduces
the predictions of quantum mechanics for the ideal Franson experiment, as summarized in
Equation (4). The model closely resembles the model introduced in [8–10] to reproduce the
predictions of quantum mechanics for the Bell experiment. It also bears some similarities
as well as many crucial differences, which we highlight below, with the model of hidden
variables introduced by Aerts et al. in [21]. The comparison between the two models will
help us to make clear the novel features of our model.

The crux of our model is the spontaneous breaking of the time-translation gauge
symmetry by the hidden configurations of the pair of photons produced in the non-linear
crystal. The breaking of time-translation symmetry in this model is tantamount, as we
show below, to the impossibility to set the time of emission of the photons with precision
better than roughly 10% of the period of the observed interference fringes (12), that is,
∼0.03 µm/c ∼ 10−16 s. At the origin of this uncertainty is a geometric phase associated
with a holonomy, as intuitively illustrated in Figure 3 in [8]. In the example shown in that
figure, three parties located on the surface of a sphere cannot agree on the orientation of
a tangent vector shared between them to a precision better than the geometric phase that
the vector acquires when transported over the closed loop that connects the parties. In the
model discussed in this paper, the three parties are the source of the pairs of photons and
the detectors at both ends of the optical device, which cannot agree on the phase of the
photons shared between them due to a similar holonomy.

Since the time uncertainty associated to this holonomy is shorter by three orders
of magnitude than the coherence time of the two propagating photons, see Table 1, it
cannot be discarded as a key ingredient for a succesful description within the framework
of a model of local hidden variables of the pattern of inteference fringes observed in
the Franson experiment. Nonetheless, Aerts et al. claim in [21] that “The emission time
should be one of the (well-defined) variables, because if the beam splitters of, say, the
right interferometer were removed, the photons would be detected solely by the detector
+1, and the detection time tE would indicate the moment of emission”, thus discarding
from their considerations the possibility of spontaneous breaking of the time translation
symmetry and the appearance of a holonomy.

Table 1. Characteristic time and length scales in the Franson experiment reported in reference [17].

Time Scale Length Scale

Laser pulse ∼20 ns ∼6 m

Arms imbalance ∼2 ns ∼60 cm

Photons coherence ∼10−4 ns ∼36 µm

Interference fringes ∼10−6 ns ∼0.3 µm

We consider a statistical model in which the space of possible hidden configurations of
the pairs of photons consists of two separated sub-populations, each one of them occurring
with a probability of one half. The first sub-population accounts for events in which the two
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photons of the pair are detected simultaneously, that is, events #1 and #2 in (4), for which
their probabilities depend on the total phase defined by the setting of the experiment:

∆ ≡ φA + φB −
π

2
= 2π

ωp ∆L
c
− π

2
, (13)

while the second sub-population accounts for events in which the two photons of the pair
are detected at distinct times, that is, events #3 and #4, for which their probabilities do not
depend on the setting of the experiment.

The statistical space consists of an infinitely large number of possible hidden con-
figurations distributed over the unit circle, with a density of probability given by the
following:

g(ϕA) =
1
4
|sin(ϕA)|, (14)

where ϕA ∈ [−π, π) is an angular coordinate over the circle, i.e., a phase, which determines
if photon A will be detected either at detector DA or at detector D′A, according to the
following.

S (A) = S(ϕA) =

{
DA, if ϕA ∈ [−π, 0)
D′A, if ϕA ∈ [0, +π)

(15)

Since g(ϕA) = g(−ϕA), each one of the two possibilities occurs with a probability of
one half. Let us notice that the density of probability (14) is normalized to the following.∫ +π

−π
dϕA g(ϕA) = 1. (16)

This coordinate is somewhat similar to the angular coordinate θ used in the model
of hidden variables built by Aerts et al. in [21]. In their model the random variable θ is
distributed uniformly over its range [−π, π), but they introduce a non-uniform boundary
to produce the correct distribution.

Each one of these possible hidden configurations may appear in four possible shapes,
labelled as (ηA = ±1, ηB = ±1), each one with a probability of 1/4. These shapes determine
if the photons are detected either at the earlier or the later time slot according to the
following:

s(N) =

{
EARLY, if ηN = −1
LATE, if ηN = +1

, (17)

where N = A, B. For example, photon A of a pair with shape defined by ηA = +1, ηB = −1
will be detected in the later time slot, while photon B of the same pair will be detected
at the earlier time slot. These binary variables come instead the continuous coordinate
r ∈ [0, 1] considered in the model discussed by Aerts et al. in [21].

In simultaneous events, the two photons of the pair acquire equal phases φA = φB =
π ωp ∆L/c as they go through their respective interferometers, which add up to a total
phase that depends on the setting of the experiment (13):

∆̃ = ηA · ∆ = ηA ·
(

φA + φB −
π

2

)
, if ηA = ηB, (18)

while in not-simultaneous events the two photons acquire opposite phases φA = −φB so
that the total phase between the two does not depend on the experimental setting.

∆̃ = −ηA ·
π

2
, if ηA = −ηB. (19)
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A hidden configuration characterized by a phase ϕA at the exit of interferometer A
is described at the exit of interferometer B by a phase ϕB related to the former by the
following coordinate transformation:

ϕB = L(ϕA, ∆̃), (20)

where the transformation function is defined as follows:

• If ∆̃ ∈ [0, π), then we have the following:

L(ϕ; ∆̃) =



q(ϕ) · arc-cos
(
− cos(∆̃)− cos(ϕ)− 1

)
,

if − π ≤ ϕ < ∆̃− π,
q(ϕ) · arc-cos

(
+ cos(∆̃) + cos(ϕ)− 1

)
,

if ∆̃− π ≤ ϕ < 0,
q(ϕ) · arc-cos

(
+ cos(∆̃)− cos(ϕ) + 1

)
,

if 0 ≤ ϕ < ∆̃,
q(ϕ) · arc-cos

(
− cos(∆̃) + cos(ϕ) + 1

)
,

if ∆̃ ≤ ϕ < +π,

(21)

• If ∆̃ ∈ [−π, 0), then we have the following:

L(ϕ; ∆̃) =



q(ϕ) · arc-cos
(
− cos(∆̃) + cos(ϕ) + 1

)
,

if − π ≤ ϕ < ∆̃,
q(ϕ) · arc-cos

(
+ cos(∆̃)− cos(ϕ) + 1

)
,

if ∆̃ ≤ ϕ < 0,
q(ϕ) · arc-cos

(
+ cos(∆̃) + cos(ϕ)− 1

)
,

if 0 ≤ ϕ < ∆̃ + π,
q(ϕ) · arc-cos

(
− cos(∆̃)− cos(ϕ)− 1

)
,

if ∆̃ + π ≤ ϕ < +π,

(22)

where we have made use of the function:

q(ϕ) = sign((ϕ− ∆̃)mod([−π, π))),

and defined the function y = arc-cos(x) in its main branch, such that y ∈ [0, π] while
x ∈ [−1,+1].

We have shown in [8–10] that this coordinates transformation fulfills the following
constraint:

dϕA g(ϕA) = dϕB g(ϕB), (23)

so that the phases ϕB are distributed over the circle with a density of probability:

g(ϕB) =
1
4
|sin(ϕB)| (24)

that is functionally identical to the density of probability for the phases ϕA, as it should
be expected from symmetry considerations. Furthermore, constraint (23) states that the
probability to occur of each possible configuration is independent—as it must be—from the
set of coordinates used to describe them.
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In order to keep the symmetry between the two involved parties, we stipulate that
photon B is detected either at detector DB or at detector D′B according to the same response
function defined above for photon A.

S (B) = S(ϕB) =

{
DB, if ϕB ∈ [−π, 0)
D′B, if ϕB ∈ [0, +π)

(25)

Therefore, for simultaneous events, we have the following:

p1 = p
[(

DA
⋂

DB

)⋃(
D′A

⋂
D′B
)]

=
1
4

[
1 + cos(∆̃)

]
,

p2 = p
[(

D′A
⋂

DB

)⋃(
DA

⋂
D′B
)]

=
1
4

[
1− cos(∆̃)

]
,

which exactly reproduces the probabilities (4) for events #1 and #2. For non-simultaneous
events, on the other hand, we obtain the following:

p3 = p
[(

DA
⋂

DB

)⋃(
D′A

⋂
D′B
)]

=
1
4

,

p4 = p
[(

D′A
⋂

DB

)⋃(
DA

⋂
D′B
)]

=
1
4

,

which also corresponds to the probabilities (4) for events #3 and #4.
In order to obtain these results, we notice that L(ϕA; ∆̃) changes signs at ϕA = ∆̃ and

at ϕA = ∆̃− π (see Figure 4); therefore, we have the following.

p
[(

DA
⋂

DB

)⋃(
D′A

⋂
D′B
)]

=
∫ 0

∆̃−π
dϕA g(ϕA) +

∫ π

∆̃
dϕA g(ϕA), (26)

p
[(

D′A
⋂

DB

)⋃(
DA

⋂
D′B
)]

=
∫ ∆̃−π

−π
dϕA g(ϕA) +

∫ ∆̃

0
dϕA g(ϕA). (27)

A/p

L(


A
;D

) 
/p

Figure 4. Plot of the transformation law ϕA → ϕB = L(ϕA; ∆̃) for ∆̃ = π/3 (solid line), compared to
the corresponding linear transformation (dotted line).

The coordinate transformation (20) as defined in (21) and (22) introduces the holonomy
responsible for the time uncertainty mentioned above. This non-linear transformation gener-
alizes the linear transformation ϕ̃B = ϕA + ∆̃ assumed as an unavoidable must in the model
of hidden variables discussed by Aerts et al. in [21]. In Figure 4, the transformation (20)
is plotted against the linear transformation for the particular value ∆̃ = π/3 for the sake
of illustration. The maximum difference between the actual transformation L(ϕ; ∆̃) and
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the linear transformation, which bounds the geometric phase that can be accumulated in a
cycle, is roughly a 10% of the period of the transformation, that is, ∼0.1ω−1

p ∼ 10−16 s.
As already observed, this model closely resembles the model of local hidden variables

introduced in [8–10]. The crux of both models is the spontaneous breaking of a gauge
symmetry by the hidden configuration of the described pairs of photons, which acquires a
non-zero geometric phase through certain cyclic transformations. In the model discussed
here, the spontaneously broken gauge symmetry is the time-translation symmetry or
equivalently the rotational symmetry of the phases ϕA, ϕB of the hidden configurations,
which cannot be described at once with respect to the two splitters and the source of the
photons due to the holonomy of the model.

In both cases, however, gauge symmetries are statistically restored when considered
over the entire population of possible hidden configurations, in agreement with Elitzur’s
theorem that forbids any gauge-dependent magnitude to obtain a non-invariant expected
value [22]. Thus, in the model discussed in this paper, the expected probabilities (4)
predicted by the model depend only on the well-defined physical parameter φA + φB that
describes the experimental setting.

5. Discussion

We have presented an explicit model of local hidden variables that reproduces the
predictions of quantum mechanics for the Franson experiment with pairs of photons
locked in time and energy produced by parametric down-conversion in a non-linear
crystal [14,17]. The model resembles closely the model of hidden variables introduced
in [8–10] to reproduce the predictions of quantum mechanics for the Bell experiment with
pairs of photons prepared in a singlet polarization state.

The crux of both models is the spontaneous breaking of a gauge symmetry by the
hidden configuration of the pairs of photons, which acquires a non-zero geometric phase
through certain cyclic coordinates transformations. In the model presented in this paper
the broken gauge symmetry is the time-translation symmetry. The symmetry is broken at
the scale of ∼ 10−16s, which is roughly the inverse of the frequency of the photon splitted
via parametric down conversion and much shorter than the coherence time of each one of
the photons of the resulting pair.

The insight described here for pairs of photons produced via parametric down-
conversion at a non-linear crystal might also be applied to study pairs of photons (or
Z-bosons) produced in the decay of scalar massive particles such as, for example, positron-
ium or neutral pions [24].
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