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Abstract: Generative adversarial networks are known as being capable of outputting data that can
imitate the input well. This characteristic has led the previous research to propose the WGAN_MTD
model, which joins the common version of Generative Adversarial Networks and Mega-Trend-
Diffusion methods. To prevent the data-driven model from becoming susceptible to small datasets
with insufficient information, we introduced a robust Bayesian inference to the process of virtual
sample generation based on the previous version and proposed its refined version, WGAN_MTD2.
The new version allows users to append subjective information to the contaminated estimation of the
unknown population, at a certain level. It helps Mega-Trend-Diffusion methods take into account not
only the information from original small datasets but also the user’s subjective information when
generating virtual samples. The flexible model will not be subject to the information from the present
datasets. To verify the performance and confirm whether a robust Bayesian inference benefits the
effective generation of virtual samples, we applied the proposed model to the learning task with three
open data and conducted corresponding experiments for the significance tests. As the experimental
study revealed, the integrated framework based on GAN and RBI, WGAN_MTD2, can perform better
and lead to higher learning accuracies than the previous one. The results also confirm that a robust
Bayesian inference can improve the information capturing from insufficient datasets.

Keywords: data augmentation; robust Bayesian inference; mega-trend-diffusion; small sample
learning; virtual sample generation; WGAN

1. Introduction

We have stepped into the era of AI for decades, and our generation has even been
named the Big Data generation. However, we probably encounter fewer, small, and insuf-
ficient data available for decision-making, albeit usually requiring enough data to form
reliable strategies amid rapid real-world changes. Insufficient datasets are often collected
everywhere: by developing new products or new modules, modeling and detecting abnor-
mal and unpredictable manufacturing problems [1–5], rare disease diagnoses [6–8], DNA
analyses of cancer patients [9], etc. It is ironic that we can only collect rare data because
of personal privacy in the data explosion age, but it is inevitable. In the real world, every
company owns confidential data, such as medical data and banking data, and is prohibited
by law to share them with the public. Another occasion when small samples are a problem
is the processing of imbalanced datasets, as the data collected are extremely uneven among
each class. Moreover, the modeling process based on imbalanced datasets would value the
majority classes more highly and ignore the information from the minority classes, thereby
yielding potentially biased results [10–12].

Symmetry 2022, 14, 339. https://doi.org/10.3390/sym14020339 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14020339
https://doi.org/10.3390/sym14020339
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-5922-5971
https://doi.org/10.3390/sym14020339
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14020339?type=check_update&version=2


Symmetry 2022, 14, 339 2 of 15

For the learning tasks with small or insufficient datasets, we proposed a method to
generate more reliable virtual data. In the proposed method, we integrated the robust
Bayesian inference and the mega-trend-diffusion method to establish a robust estimation
of unknown population for the small dataset and adopted the Wasserstein Generative
Adversarial Network, which can imitate the original dataset as closely as possible, as
the implementation tool, to monitor the virtual sample generation process. The main
contribution of this study is to propose a method to generate more informative virtual
samples for small datasets, which can help improve the learning accuracy when conducting
learning tasks with small datasets that contain insufficient information.

Insufficient datasets, with insufficient data size and imbalanced amounts among
classes, lead to information asymmetry and compromise the model fit. When the trained
model results from an insufficient dataset, it is expected that the overfitting model will
have lower training errors and higher test errors. In addition, it is expected that the model
will not work well in the real world. To make machine learning more reliable and robust,
the first task should be to address the information asymmetry issue, the information gap
between insufficient datasets and real data. In other words, it is possible to explore the
underlying distribution of insufficient data and to estimate it as reasonably as possible,
although we cannot make up for non-existent information.

When tackling the issue of insufficient datasets, artificially generating more data is
an intuitive solution. It is the case, for example, of the Bootstrapping method [13]. The
results of machine learning depend on the representative sample of data when imple-
menting Bootstrapping. Furthermore, these kinds of intuitively generating methods are
subject to important assumptions, like the independence of samples and a large enough
sample size. The apparent simplicity and intuition may conceal the weakness of the orig-
inal small datasets. The distribution underlying the insufficient datasets should possess
the information requested by sample generating. Instead of repeating samples or other
bootstrapping-like methods, generating data from an underlying distribution estimated
from insufficient data would be more acceptable.

Virtual sample generation (VSG) is one solution for addressing the issues of learning
with small sample data and insufficient datasets. It aims to exhaust the information from
the insufficient datasets for estimating the underlying distribution to infer the possible
population. Furthermore, VSG generates new data, named virtual samples, based on the
estimated distribution, instead of resampling from the insufficient datasets. The distribution
mentioned in the article does not mean the statistical distribution, but the functional
distribution referring to the range according to which the population can be distributed. The
VSG method provides an alternative way of learning with small datasets, while often raising
another issue—namely, that the quality of the virtual samples produced is not stable and
varies depending on the sample-generating algorithm adopted. If a biased generated virtual
sample is obtained, the result of the subsequent modeling would be biased. Generative
adversarial networks (GANs) [14] have been a popular VSG method, which consists of
two parts—the generative network, known as Generator, and the discriminative network,
known as Discriminator. The Generator is used to generate new data with a distribution like
that of the original real data, so that the Discriminator is unable to distinguish them from
the dataset of the original mixing and the generated data. The confrontation between the
Generator and the Discriminator is the core concept of GAN, to ensure that the generated
virtual samples are more like the training samples. Moreover, it is interesting that the VSG
process of GAN does not really aim to handle the learning with small datasets, but usually
to imitate the target image by generating mass virtual data, like the followed revisions
(Wasserstein GAN (WGAN) [15], conditional GAN (GAN) [16]). Although the GAN and
its extension versions enhance the similarity between generated virtual samples and real
data, the need for vast amounts of data and heavy computational ties make the training
costs unaffordable.

The previous research [17] proposed the improved GAN architecture, named WGAN_MTD,
for the learning task with small numerical datasets. It integrated the mega-trend-diffusion (MTD)
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method and the generative network of GAN to construct an acceptable learning framework
for small dataset learning. This framework makes the learning task more feasible when only
insufficient data are available. The MTD method provides a new way to exhaust the last
information of the small dataset through rebuilding the possible, estimated distribution for
the small datasets on hand based on fuzzy theory. It addresses the data consumption issue
in the training process of GAN, to a certain extent. To assure the stabilization of the learning
performance resulting from MTD and make the learning framework more applicable to small
datasets, we introduce the Bayesian technique to improve the modeling of small datasets’
estimated distributions. Bayesian inference allows researchers to combine subjective information
or domain knowledge with the model establishment, when there is a lack of sufficient data for
reliable modeling. Robust Bayesian inference (RBI) can help the extraction of information about
the estimated distribution from small datasets and then avoid, as much as possible, the biased
inference—in the form, for example, of learning results—coming from the insufficient datasets.
This study aims to propose a machine learning framework capable of this robustness and of
handling the insufficient datasets.

In the following sections, the Literature Review (Section 2) discusses several concepts and
research articles related to the current topic. Our proposed approach to improving the MTD
method and integrating it with the generative network of GANs is presented in Section 3. The
integrated learning framework proposed was validated based on experiments with two public
datasets, as presented in Section 4. Section 5 concludes the research and provides a summary.

2. Literature Review
2.1. Virtual Sample Generation

Since small data sizes limit the ability of modeling, especially for machine learning
tools, ill-performance makes the modeling based on small datasets unsuitable for solving
real-world problems. As mentioned above, VSG can intuitively generate virtual samples
meeting the data required for most training processes and learning tools, and guarantee
that the derived data follows the estimated distribution of original small datasets. In pattern
recognition, VSG helps to solve the lack of training samples. Niyogi et al. [18] converted 2D
images into 3D images by transforming mathematical algorithms. The generated virtual
samples follow statistical inference mechanisms and the principle of repeated sampling
without replacement. In industrial contexts, VSG tries to explore the possible range of
manufacturing data and extends the basis of decision-support for rapid strategy-making to
react to changing business challenges. Li et al. [19] produced a functional virtual population
(FVP) through trial-and-error methods. This approach is the first method proposed for
small dataset learning, and it aims to extend the domain of variables and generate virtual
samples under the scenario of constructing early scheduling knowledge. It requires a trial-
and-error procedure which takes time to complete [1]. When applying FVP to the system
with nominal input variables or high covariance between time stages, it has significant
limitations, keeping the modeling from converging toward a stable learning result [20].

To address the issue of insufficient information, the principle of information diffusion
based on fuzzy theory provides VSG with a more robust and sufficient development [21].
Huang and Moraga [22] proposed the diffusion neural network based on the concept that
each sample point following the normal diffusion function can be distributed or scattered
on both sides of the center. This approach succeeded in raising the learning accuracy and
improving the performance when learning with a small dataset. The information diffusion
concept has been adopted in the development of the mega-trend diffusion (MTD) method.
MTD was first proposed in [23] and considered to fill the information gap within the
insufficient datasets based on the information diffusion method and fuzzy theory [21,24].
Unlike the information diffusion method, applying diffusion techniques to each data
separately, MTD adopts the fuzzy-diffusion function to scatter a set of data across the
entire dataset.

The above proposed method can improve the learning performance significantly when
handling small datasets in the scenarios of less-heavy data consumption. When training
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the deep learning structure and facing huge amounts of data requirements, the amount of
network parameters is much higher than the size of the data input.

2.2. Generative Adversarial Networks

A Generative Adversarial Network (GAN) [14] can be regarded as a type of machine
learning framework composed of two mutually competing neural networks. With a given
training dataset, GAN learns to generate new data with the same statistics as the training
set, meaning that it follows the same distribution. In the application of image processing,
a GAN trained on photographs can develop new photographs that are similar, at least
superficially, to those produced by humans. Although GAN and its extension methods
improve the similarity between the generated virtual sample and the real data, they mostly
use a large number of graphic datasets as their input rather than small datasets of numeric
data. Besides, the development of GAN is based on the convolutional neural network
(CNN), which is a deep neural network (DNN) structure that is not suitable for learning
scenarios with a sparse sample [25].

According to the website of GAN Zoo, more than 70 kinds of GAN are proposed and
widely adopted in many fields. Mirza and Sander [16] proposed an improved version
of GAN, conditional generative adversarial nets (can), subject to additional conditions of
the generative/discriminative network. Besides, the improvement converted the GAN
structure into a supervised learning model. Wasserstein GAN (WGAN) was proposed by
Arjovsky et al. [15] and mainly improves the problem of gradient vanishing when adding
the 1-Lipschitz continuous function, replacing the sigmoid function with the discrimina-
tive network and introducing the concept of Wasserstein Distance. As a result of these
changes, the discriminative network output [0, 1] determines the degree of similarity to the
training sample.

Li et al. [17] proposed a learning framework of GAN that can generate effective virtual
samples with the small datasets, named WGAN_MTD. Based on the architecture of GAN,
WGAN_MTD consists of a generative network for generating numerical data instead of
graphical data, with leveraging MTD for virtual sample generation. It is developed based
on the Wasserstein GAN (WGAN) architecture and modified mega-trend-diffusion (MTD),
as the limitation of the generative network to control the VSG process.

2.3. Robust Bayesian Inference

In statistical inference, there are two mainstream philosophies: Bayesian and fre-
quentist. Frequentist inference regards an unknown population with fixed, unvarying
information. Based on this concept, researchers calculate confidence intervals for popu-
lation parameters or significance tests of hypotheses [26]. Bayesian inference introduces
Bayes’ theorem to update the probability of concerning hypotheses as more evidence
or information becomes available. In the decision-making process, Bayesian inference
depends closely on subjective probability, often defined by researchers or observers [27].
When the information from the data population is insufficient, Bayesian inference provides
an alternative way to support the modeling of small datasets. Bayesian inference has
been adopted in various fields, such as software development [28], medical diagnosis [29],
civil engineering [30] and business negotiations [31]. It suggests that researchers consider
leveraging subjective information or domain knowledge when they lack sufficient data for
reliable modeling.

Robust Bayesian analysis (RBI) aims to explore the robustness of the inference obtained
from the Bayesian analysis [32]. A robust inference means it does not vary sensitively by
changing inputs and it depends more on the given subjective information. In RBI, re-
searchers applied the Bayesian approach to all possible combinations of prior distributions
functions, which are selected based on what they empirically consider reasonable. RBI
provides an idea for extracting information about the population distribution from small
datasets, with less influence from insufficient information on the population. Related
research [33,34] shows that the learning performance can be acceptably improved by in-
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troducing RBI to the modeling process, and RBI can benefit small dataset learning by
providing a robust information base for training the learning tools.

3. Learning Framework of Integrating RBI and GAN
3.1. Modified MTD with RBI

The ε-contaminated prior distribution of RBI has the following form:

Γ = {π : π = (1− ε)π0(θ |λ ) + εq, q ∈ Q},

where π0(θ|λ ) denotes the basic prior of parameter vector θ estimated with samples, λ is the
hyperparameter vector, q is a predefined contamination belonging to class Q, and ε means
the extent of error in π0(θ|λ ). The MTD framework depends totally on the computation
based on the original dataset. For systematically controlling the risk behind the small
dataset, we introduce the concept of RBI with ε-level contamination to the MTD model.
The controlling parameter, ε, refers to any value between 1 and 0, used to express the error
rate that could result from adopting the original dataset, and (1− ε) means the confidence
level of believing the information from the original datasets. In the section, we modify
the original MTD framework to acquire information from the collected data, but it is also
reasonable to consider the subjective information from researchers.

By reshaping MTD, we first redefine each of its elements in terms of RBI as follows.
In the MTD method, the location parameters of variable Xj include its upper bound,
UBj, central location, CLj, and lower bound, LBj, which can form the parameter vector
θj and θj =

(
LBj, CLj, UBj

)
. Moreover, NL

j and NU
j can be regarded as elements of the

hyperparameter vector λj, or λj =
(

NL
j , NU

j

)
, which are used to compute the corresponding

lower and upper bound, LBj and UBj. CLj, the center point of the range for variable Xj,
can be found by averaging the minimum and the maximum value of

{
x1j, x2j, . . . , xnj

}
, the

data collected from size n, and it is involved with the formula computing of θj and λj. Since
this section aims to modify the MTD model, we adopt the same the form and formula of
each element for θj and λj, which can be referred to [17].

In the research, we take the same form of LBj, CLj, UBj, NL
j , and NU

j , as suggested
in [17]. Hence, CLj can be defined as the center point between the minimum and the
maximum of values for the given

{
x1j, x2j, . . . , xnj

}
, indicated as minj and maxj. The

number of data that are less than, and greater than, CLj can be defined as NL
j and NU

j ,
respectively, and LBj has the form as

LBj =


min

{
CLj −

(
NL

j /
(

NL
j + NU

j

))√
−2
(

s2
j /NL

j

)
ln(10−20), minj

}
minj/5, s2

j = 0

(1)

In a large dataset, we would hardly ever get a sample variance of zero, i.e., s2
j = 0.

However, this often occurs when processing a small dataset, and we need to define the
value of LBj for that case. Analogous to LBj, we set the form of UBj as

UBj =


max

{
CLj −

(
NU

j /
(

NL
j + NU

j

))√
−2
(

s2
j /NU

j

)
ln(10−20), maxj

}
5 maxj , s2

j = 0

(2)

Besides generating virtual samples, MTD constructs new variables that can produce
more useful information for learning tools’ training, with membership function MF. When
considering the RBI model, the membership function MF can have the following form:

MF = (1− ε)MF0(θ|λ ) + εq, q ∈ Q and ε ∈ (0, 1) (3)
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where MF0 can be referred to the original form in [17], which is constructed with θ and
λ. Its membership value concerns a set of linear functions subject to the relative location
of input xij, the ith data value of the jth variable. As Figure 1 shows, the triangle-shaped
MF0

(
xi,j
)

should consist of two linear functions concerning different cases of xij’s location:
in the right side (xij > CLj) and in the left side (xij ≤ CLj). However, MF0 is not necessarily
a symmetric function, since CLj is not subject to LBj and UBj, even if it looks like the center
between them.

Figure 1. The membership function MF0 of the original MTD method, whose corresponding value of
CLj is set to 1 (the highest plausibility of this value occurring) [17].

When integrating RBI, a q function is introduced to the modified membership function
MF, where q can refer to any prior probability density form, such as a gaussian function
with parameter CLj and sample variance s2

j , g. Consequently, considering the ε-level of
contamination with a gaussian prior g, the modified MTD has the ε-contaminated MF
formed as:

MF
(

xi,j
)
=

(1− ε)
xi,j−LBj
CLj−LBj

+ εg
(

CLj, s2
j

)
, i f xi,j ≤ CLj

(1− ε)
UBj−xi,j
UBj−CLj

+ εg
(

CLj, s2
j

)
, otherwise

(4)

Supposing the researcher has come to know some specific characteristics unobserved
from the small dataset on hand, the modified MTD model integrating RBI provides an
operational q to add certain subjective information. As the above MF

(
xi,j
)

shows, users
can consider a symmetric gaussian prior g and include it to MF with a weight ε, should
MF0 have a non-symmetric shape.

3.2. The Architecture of Modified WGAN_MTD

This study adopted the WGAN [15] as the basic adversarial architecture for fur-
ther modification, in which the discriminating and generative networks take the back-
propagation network as the training method, set the output layer activation function of
output layers in the generative network to the tanh function, and propose the modified ver-
sion of WGAN_MTD, named WGAN_MTD2. For the modified WGAN_MTD2, the WGAN
determines whether the virtual sample, generated by the modified MTD (named MTD2), is
like the real data, and then learns how to produce a set of virtual samples that resemble the
original input more closely. The MTD2 limits the range of generated virtual samples with
the mechanism consisting of RBI, including the data-driven MF0 and a subjective prior g.
The built-in RBI helps to minify the scope of virtual sample generation effectively, instead
of irregularly producing virtual samples at the beginning of WGAN’s training. This is the
main reason to integrate WGAN and MTD2 while applying the small-dataset learning.

The original purpose of GAN and its derivated WGAN is to solve the image problems
of the real world by imitating the target image. When dealing with the numerical input,
the generative-discriminative architecture must be modified accordingly. Furthermore, the
original architecture adopts convolution neural networks (CNNs) as its discriminative and
generative networks. The training process of CNNs requires heavy data consuming to
tune the parameters and optimize the loss function that can be barely enough to achieve a
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stable learning result. Moreover, this is not feasible when applied to small datasets. In the
research, the proposed architecture replaces the elements of CNNs with back-propagation
networks (BPNs). Figure 2 shows the modified WGAN architecture adopting the BPN,
requiring relatively less data for training processes, for setting both the generative and
discriminative networks. When training the Discriminator, the discriminative network, the
loss function consists of the loss in identifying real data and generated data instead of the
original single network, so that the training of the discriminative network can be specific.

Figure 2. The training flow and architecture of WGAN_MTD2.

The modified MTD, MTD2, does make the training process of WGAN_MTD2 different
from the previous WGAN_MTDs. Before inputting the training data into the modified
architecture, we added an augmented variable, named Identifier, used to indicate a value
of −1 for real data and 1 for the generated (virtual) sample. The new variable, Identifier,
is designed to flag the input as real or generated, and the created information joins the
training process for updating the parameters and tuning the corresponding loss function.
As for the original design of generating random numbers from Latent Space, we specified
Latent Space as the MTD2 in the modified version, so that it would turn to draw data from
the estimated population constructed by MTD2 as the input for the following generative
network and set the Identifier’s values of these virtual samples to 1.

The training of D, the discriminative network, takes both the ordinal, small data and
the virtual data outputted by the Generator, the generative network, into account. The
whole process will adjust, update, and tune the weights of the discriminative network
by optimizing its loss function. The pathway including the Generator, the Discriminator,
and both of the loss functions forms a training loop. This applies to random numbers
generated from Latent Space, MTD2, and virtual generated samples with Generator. The
corresponding Identifier values of these virtual samples are assigned a value of −1 when
the training process has stabilized and learnt how to generate a set of virtual samples
similar to the real data, meaning that the generated virtual data should look like they
came from the same population as the real data. The above process will be operated
iteratively until it meets the stopping rules, such as the set number of epoch and reaching
the given threshold or the acceptable loss value. Then, the training task can be regarded
as finished. It is expected that WGAN_MTD2 will entail less training costs then WGAN,
because WGAN_MTD2 requires less data-consuming and light computational works.

We summarized the operating steps of WGN_MTD2 as follows:
Step 1: Estimate Latent Space for a virtual dataset with size N; suppose a set of real

data X with size n is given, by calculating LBj CLj UBj NL
j and NU

j with the formular
mentioned above for each Xj, where j = 1, 2, . . . , m.
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Step 2: Construct the form of MF
(

xi,j
)

for
{

xi,j
∣∣i = 1, 2, . . . , N

}
with a presetting ε and

g based on MTD2.
Step 3: Draw a random number r from {(0, i)|i = 1, 2, . . . , N} iteratively and map

these N random numbers, {r1, . . . , rN}, into
(

LBj, UBj
)

by
{

vi,j
∣∣i = 1, 2, . . . , N

}
, where

vi,j = LBj + ri
(
UBj − LBj

)
, i= 1, 2, . . . ,N

Step 4: Calculate the value of MF for each point of the real dataset with size n and{
vi,j
∣∣i = 1, 2, . . . , N

}
, and obtain n + N membership function values as the additional

information, new variable, for original data X.
Step 5: Combine the data generated for each Xj, including the augmented new variable,

based on the assumption of independence for the variables, for the virtual dataset.
Step 6: Train Generator of WGAN_MTD2 with the virtual dataset obtained from

Step 5.
Step 7: Train Discriminator of WGAN_MTD2 with the output obtained from Step 6,

the real dataset, and the corresponding values of the Identifier variable.
Step 8: Update weights and parameters iteratively until they meet the stopping rules.

4. Experimental Studies

By verifying the effectiveness of our proposed WGAN_MTD2, we conducted ex-
periments to examine its performance. The section details the implementation of these
experiments and the corresponding results, as well as the comparison with the previous
version model, WGAN_MTD [17]. We used the same datasets as the inputs for both
WGAN_MTD and WGAN_MTD2 to compare their performance, which enabled a fair
judgement of whether the new version works better. Furthermore, we also compared its
performance with those of other learning models, such as support vector machines (SVM),
decision trees (DT), and naive Bayes classifiers (NBC). Public data sets from the UC Irvine
Machine Learning Repository are adopted for our verification.

4.1. Evaluation Criterion

The criteria for the performance evaluation include the learning accuracy, standard
deviation, and p-value of the significance test. Learning accuracy refers to how the virtual
generated data perform subject to various prediction models, in particular to the models
based on only considering small dataset inputs. We took the standard deviation and the
p-value as the measurement of the consistency and stability of the experiments. For a
given dataset as the input of different models, the smaller value of standard deviation
means that the corresponding model can lead to higher stability and more reliable learning
results. And a smaller p-value of significant tests shows that the differences of learning
accuracies between various models can be more consistent. On the contrary, there might be
no significant difference among the accuracies from various models if a higher p-value is
shown, meaning the performance of compared models might not be far-off.

4.2. Experiment Environment and Datasets

To conduct the experiments, we adopted the Python integrated development environ-
ment in Anaconda, including the libraries Pandas, NumPy, Scikit-learn, and TensorFlow.
All the tools mentioned above are open-sourced and available from the internet. When
setting up the experimental environment, the hardware specification we selected includes
an Intel Core i7 processor, 16 GB of RAM, and a NVIDIA GeForce GTX 1650 graphics chip.
For verifying the model performances, three common learning tools, SVM, DT, and NBC
(these abbreviations stand for Support Vector Machines, Decision Trees, and Naive Bayes
Classifiers), are considered in the comparison with WGAN_MTD2 and WGAM_MTD. In
the setting of SVM, two types of kernel functions are included: polynomial functions and
radial basis functions (RBF). We included a scikit-learn library to perform learning tools’
training. When setting DT, we selected C5.0 as the training algorithm, since it uses less
memory and builds smaller rulesets than C4.5 while being more accurate. When comparing
the performances of various models, the learning processes are based on the same datasets,
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cited from UC Irvine Machine Learning Repository (UCI, Retrieved 15 June 2021, from
https://archive.ics.uci.edu/). As Table 1 shows, these datasets, Wine, Seeds, Cervical
Cancer and Lung Cancer, are relatively small in sample size, from 32 to 210, with respect to
the number of variables (input attributes), and from 6 to 55. All three datasets contain a
single independent variable, the output variable, for classification.

Table 1. Detail of datasets from UC Irvine Machine Learning Repository (UCI, Retrieved 15 June
2021, from https://archive.ics.uci.edu/).

Datasets Total
Samples

Input
Attributes

Output
Attributes

Number of Samples

Class 1 Class 2 Class 3

Wine 178 13 1 59 71 48
Seeds 210 6 1 70 70 70

Cervical Cancer 72 18 1 21 51 -
Lung Cancer 32 55 1 9 13 10

4.3. Experiment Results

Table 2 lists various results of the virtual sample generated by WGAN_MTD2 based
on the training datasets of size 10, referred to as 10 TD, from the Wine dataset. For every
dataset, we repeated the experiments 30 times for each learning tool (SVM, DT, and NBC).
As mentioned before, we considered SVMs of two different kernels; SVM_poly denotes
SVMs with polynomial kernel functions, while SVM_rbf denotes SVMs with a radial basis
function kernel. After training the learning tools and conducting a 10-fold cross-validation,
we averaged the accuracies for each learning tool and each kinds of input. Table 2 shows
averaged learning accuracies and a significance test result with considering p-values for
each kind of experiment for the Wine dataset. For every learning model, the experiments
include the training process based on training sets from three scenarios, meaning three
kinds of inputs, with only the original small dataset (the Wine dataset cited for Table 2),
with virtual samples generated by WGAN_MTD and WGAN_MTD2, respectively. To
examine the effectiveness of the proposed method and how it works better than others, we
compared the averaged accuracies resulted from three kinds of inputs, for each learning tool
(SVM_poly, SVM_rbf, DT, and NBC). We denoted each kind of input as SDS, WGAN_MTD
and WGAN_MTD2. SDS means that the learning tool will include only the original small
dataset for training. WGAN_MTD and WGAN_MTD2 indicate that the learning tool will be
trained with virtual samples generated by WGAN_MTD and WGAN_MTD2, respectively.

Table 2. The learning accuracies of 4 different models considering original small datasets (SDS) and
virtual samples by WGAN_MTD and WGAN_MTD2, respectively (10 TD, Wine dataset).

Averaged Accuracy SVM_poly SVM_rbf DT NBC

SDS 55.323% 57.684% 68.171% 61.905%
WGAN_MTD 77.673% * 78.323% * 85.632% 74.271%
WGAN_MTD2 83.119% **,++ 79.160% *,+ 86.342% **,+ 79.104% ***,++

* and + mean a p-value less than 0.05, ** and ++ mean a p-value less than 0.01, *** mean a p-value less than 0.001.

As to the comparison, we conducted the significance t tests with p-value for differences
between SDS and WGAN_MTD, and differences between SDS and WGAN_MTD2. The star
mark denotes the significance in statistics for different comparisons: * means a p-value less
than 0.05, ** means a p-value less than 0.01, and *** means a p-value less than 0.001. We also
conducted the significance t tests with p-value for differences between WGAN_MTD and
WGAN_MTD2. The “+” mark denotes the significance in statistics for these comparisons:
+ means a p-value less than 0.05, ++ means a p-value less than 0.01, and +++ means a p-value
less than 0.001.

In Table 2, the experiments show that our proposed WGAN_MTD2 works better
in these four models, as indicated by the better average accuracies and significance by
the p-value (under 0.01) for 10 TD in the Wine dataset with 100 virtual data generated.
The significance tests show that WGAN_MTD and WGAN_MTD2 improve the learning
tools and lead to a better learning accuracy than SDS, both for SVM_poly and SVM_rbf.

https://archive.ics.uci.edu/
https://archive.ics.uci.edu/
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WGAN_MTD2 performs better than WGAN_MTD, both for SVM_poly and SVM_rbf, as
the + marks imply. For DT and NBC, WGAN_MTD2 can help raise the learning accuracy
higher than WGAN_MTD and SDS.

Further experiments were conducted with various amounts of training datasets (10,
15, and 20) in the Wine dataset. The sample size of virtual data generated was set to 100,
for the aforementioned experiments, when applying WGAN_MTD and WGAN_MTD2
to each model. Table 3 lists the averaged accuracies for each learning model trained
by SDS, WGAN_MTD, and WGAN_MTD2, where each averaged value is calculated
from 30 repeated experiment results. As Table 3 shows, WGAN_MTD2 provides a better
performance for the four learning models listed when using only 10 training data as
the virtual data generation seeds, and WGAN_MTD2 provides a better performance in
averaged accuracy for SVM_ploy and DT when 15 training data are selected from the
original Wine dataset as the seed to generate 100 virtual data, where the corresponding
marks show the significant difference based on the p-value. Similarly, WGAN_MTD2 also
results in higher averaged accuracies for SVM_ploy and DT when increasing the size of
original data for virtual sample generation, such as a size of 20, where the corresponding
marks show the significant difference based on the p-value.

For the Seed dataset, we conducted experiments using various amounts of train-
ing datasets (10, 15, and 20), considering 100 virtual generated data when applying
WGAN_MTD and WGAN_MTD2 to each model. Using the layout of Tables 3 and 4,
we list the averaged accuracies for each learning model trained by SDS, WGAN_MTD,
WGAN_MTD2, where each averaged value is calculated from 30 repeated experiment
results. As Table 4 shows, WGAN_MTD2 provides a better performance in the averaged
accuracy for SVM_poly and NBC when using only 10 training data as the virtual data
generation seeds to generate 100 virtual data for training. Besides, WGAN_MTD2 also
works well for SVM_poly when increasing the size of the original Seed dataset, to 15 and
20. As for Table 5, the experiments for the Cervical Cancer dataset show results similar
to those from Table 4. The proposed WGAN_MTD2 provides a better performance in the
averaged accuracies for the SVM_ploy and NBC and is even better than the results from the
previous version, WGAN_MTD. Similarly, WGAN_MTD2 also works well for SVM_poly
when increasing the size of the Cervical Cancer dataset with 100 virtual samples, to 15
and 20.

In the experiments for the Lung Cancer dataset, the proposed WGAN_MTD2 provides
a better performance in averaged accuracies for SVM_ploy, SVM_rbf, DT, and NBC. By in-
creasing the training data and virtual samples, the averaged accuracies is apparently raised
for SDS, WGAN_MTD, and WGAN_MTD2. Furthermore, the averaged accuracies from
WGAN_MTD2 are even better than the results from the previous version, WGAN_MTD.
For the two cancer datasets, we demonstrated medical applications that, by applying
WGAN_MTD2, can help the learning performance when dealing with the classification
task. With the assistance of WGAN_MTD2, it can generate more informative virtual data
as the input for learning tools and help them achieve better accuracies when classifying the
cases of cancer. Moreover, the results from these four learning tools support this view.

From Tables 3–6, the experimental results show that WGAN_MTD2 can improve the
learning performance by adding more informative virtual data, when only small datasets
are available for training. For each learning model, we compared the averaged accuracies of
WGAN_MTD2 and its previous version, WGAN_MTD, and found the difference is statistically
significant, meaning that the built-in VSG of WGAN_MTD2 can produce more robust and
more informative virtual data than the previous version. The experimental results indicate
that WGAN_MTD2 can help the learning models achieve higher learning accuracies even
when increasing the size of the original data as VSG seeds. This implies that the virtual
samples generated by WGAN_MTD2 can have a better quality as regards population infor-
mation. Table 7 digests the experimental results of SVM_poly from Tables 3–6: Wine, Seeds,
Cervical Cancer, and Lung Cancer, showing that WGAN_MTD2 can work better than SDS
and WGAN_MTD, as implied by the results of statistical significance tests.
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Table 3. The experiment results of SDS, WGAN_MTD, and WGAN_MTD2 when generating 100 virtual samples for the Wine dataset.

Accuracy (%)

Learning Model

SVM_poly SVM_rbf DT NBC

SDS WGAN_MTD WGAN_MTD2 SDS WGAN_MTD WGAN_MTD2 SDS WGAN_MTD WGAN_MTD2 SDS WGAN_MTD WGAN_MTD2

10 with 100
virtual

samples

average 55.323 77.673 83.119 57.684 78.323 79.160 68.171 85.632 86.342 61.905 74.271 79.104

Comparsion * **,++ * **,+ **,+ ***,++

15 with 100
virtual

samples

average 70.319 80.849 86.421 72.438 80.077 82.109 73.119 84.371 86.231 75.125 81.903 80.111

Comparsion ** **,++ *,+ ** ***,+ ns *,+

20 with 100
virtual

samples

average 75.369 82.263 85.157 77.069 85.512 86.287 74.731 83.132 84.781 79.709 80.739 82.246

Comparsion ** ***,++ ns *,+ ** ***,++ ns *,+

* and + mean a p-value less than 0.05, ** and ++ mean a p-value less than 0.01, *** mean a p-value less than 0.001.

Table 4. The experiment results of SDS, WGAN_MTD, and WGAN_MTD2 when generating 100 virtual samples for the Seed dataset.

Accuracy (%)

Learning Model

SVM_poly SVM_rbf DT NBC

SDS WGAN_MTD WGAN_MTD2 SDS WGAN_MTD WGAN_MTD2 SDS WGAN_MTD WGAN_MTD2 SDS WGAN_MTD WGAN_MTD2

10 with 100
virtual

samples

average 69.403 74.532 80.619 83.527 85.720 84.760 79.797 79.180 81.275 71.895 74.907 78.944

Comparsion * **,++ ns *,+ ns + * **,++

15 with 100
virtual

samples

average 72.785 80.171 82.219 87.303 87.711 86.809 82.018 82.191 84.233 81.837 82.328 82.191

Comparsion *** ***,++ ns ns ns *,+ ns *,+

20 with 100
virtual

samples

average 76.789 81.981 82.578 88.762 89.563 87.876 84.705 85.561 85.192 86.004 85.372 84.286

Comparsion ** ***,++ ns * ns ns ns *,+

* and + mean a p-value less than 0.05, ** and ++ mean a p-value less than 0.01, *** mean a p-value less than 0.001.
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Table 5. The experiment results of SDS, WGAN_MTD, and WGAN_MTD2 when generating 100 virtual samples for the Cervical Cancer dataset.

Accuracy (%)

Learning Model

SVM_poly SVM_rbf DT NBC

SDS WGAN_MTD WGAN_MTD2 SDS WGAN_MTD WGAN_MTD2 SDS WGAN_MTD WGAN_MTD2 SDS WGAN_MTD WGAN_MTD2

10 with 100
virtual

samples

average 70.593 75.391 82.953 84.771 84.953 83.701 73.184 76.453 80.372 70.462 72.682 80.944

Comparsion * **,++ * *,++ ns *,+ * **,++

15 with 100
virtual

samples

average 74.963 81.224 84.829 86.921 88.761 87.139 80.253 81.741 83.723 79.937 81.592 82.143

Comparsion *** ***,+++ * ns ns *,++ * *,+

20 with 100
virtual

samples

average 75.971 82.891 83.816 87.267 88.938 87.943 83.535 86.171 84.982 80.922 82.782 83.736

Comparsion ** ***,++ * * ns ns ns *,++

* and + mean a p-value less than 0.05, ** and ++ mean a p-value less than 0.01, *** and +++ mean a p-value less than 0.001.

Table 6. The experiment results of SDS, WGAN_MTD, and WGAN_MTD2 when generating 100 virtual samples for the Lung Cancer dataset.

Accuracy (%)

Learning Model

SVM_poly SVM_rbf DT NBC

SDS WGAN_MTD WGAN_MTD2 SDS WGAN_MTD WGAN_MTD2 SDS WGAN_MTD WGAN_MTD2 SDS WGAN_MTD WGAN_MTD2

10 with 100
virtual

samples

average 55.443 63.102 71.528 60.173 69.040 73.811 61.053 72.610 75.732 61.231 70.432 74.567

Comparsion * **,++ * *,+ *,+ * **,++

15 with 100
virtual

samples

average 60.683 70.214 75.289 61.034 70.671 77.019 64.431 73.341 77.873 65.387 71.052 76.431

Comparsion ** ***,+++ * **,+ *,+ * *,++

20 with 100
virtual

samples

average 71.251 76.981 78.386 70.426 74.898 78.413 72.139 76.711 80.802 70.112 72.892 81.076

Comparsion ** **,++ * **,+ ** **,+ ** **,++

* and + mean a p-value less than 0.05, ** and ++ mean a p-value less than 0.01, *** and +++ mean a p-value less than 0.001.
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Table 7. The comparison of SDS, WGAN_MTD, and WGAN_MTD2 considering SVM_poly as the
learning tool, SDS subject to a size of 20, randomly selected from the original dataset for each, and
100 virtual samples generated by WGAN_MRD and WGAN_MTD2, respectively. All the averaged
accuracies are calculated based on 10-fold cross-validation experiments.

Learning
Accuracy from

SVM_poly
Wine Seeds Cervical Cancer Lung Cancer

SDS 75.369% 76.789% 75.971% 71.251%

WGAN_MTD 82.263% ** 81.981% ** 82.891% ** 76.981% **

WGAN_MTD2 85.157% ***,++ 82.578% ***,++ 83.816% ***,++ 78.386% **,++

** and ++ mean a p-value less than 0.01, *** mean a p-value less than 0.001.

5. Conclusions and Discussion

When encountering a learning task with small datasets, the common steps would
start by exhausting the last useful information within the present dataset for establishing
a well-trained model. A relatively small dataset always limits the exploration for useful
information, though the previous WGAN_MTD has constructed an acceptable VSG process
for estimating the possible population behind the present small datasets. When conducting
the learning task with small datasets, WGAN_MTD can generate virtual samples for
augmenting the original training dataset, based on our previous research. For the fully
data-driven WGAN_MTD, estimations of the unknown population range cannot always
guarantee an effective capture of the underlying information. In the research, we refined
WGAN_MTD and integrated RBI to propose a new version, WGAN_MTD2. The integrated
model, WGAN_MTD2, retains the original mechanism of monitoring the consistency for
both original small datasets and virtually generated datasets, and introduces RBI to the VSG
process of keeping the room for adding the researcher’s subjective information. Therefore,
WGAN_MTD2 is not fully data-driven, but flexible. As shown in Tables 3–6, the VSG
process based on WGAN_MTD2 can improve the learning performance by raising the
accuracy, in particular in the cases of small dataset learning. Besides, VSG can provide
decision-makers with more informative data for diversifying the decision-making, though
including excessive virtual samples might bias the prediction to a certain extent.

According to the experimental results, in most cases of these three datasets, WGAN_MTD2
can perform better and more stably for SVM with polynomial kernel functions, based on the
p-values of the significance tests. However, augmented data bring more information and
noise, as the number of virtual data increases. The noise would lead to a higher standard
deviation of accuracies, even though the averaged accuracy increases. This might explain why
the unstable learning accuracies occur when applied to the Decision Tree model and the Naive
Bayes Classifier.

In the training process, it was found that the discriminate network causes overfitting
when increasing iterates to converge stable weights for WGAN_MTD2. Overfitting leads
WGAN_MTD2 to generate virtual data that failed to pass the discriminate network. By
introducing RBI into WGAN_MTD2, the subjective information added by users can make
the generated dataset less reliable on the original datasets, since WGAN_MTD training is
relatively dependent on the initially generated virtual samples.

In the experimental study, we set the subjective prior function for RBI as a gaussian
function when implementing WGAN_MTD2. The setting of subjective information is
independent of the original data on hand and would affect the convergence and the
number of iterative, required researchers searching by trial-and-error. The mechanism
of searching a proper subjective prior deserves further study for the sake of future users’
implementation of WGAN_MTD2.

The parameters in the algorithm include ε and q for setting the RBI. In the research,
it is reasonable to assume that the small dataset follows a simple distribution, with a
simple pattern, and it is uneasy to infer the population results by setting a distribution as
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complicated as the prior q. Moreover, we set a gaussian function as the prior q, with its
features of single-mode and symmetry. The contamination level ε can take a small value of
0.1, meaning a 90% confidence level for believing the unknown population would follow
π0. However, these parameters can be adjusted by the users, since the basic concept of
including RBI to WGAN_MTD2 is to allow users to add their subjective information.

Even though WGAN_MTD2 can help raise the learning accuracy for learning machines
by generating virtual samples similar enough to the original dataset, there still needs to
be a mechanism to determine the optimal size of virtual samples. When increasing the
size of the virtual sample generated, it was found that the learning accuracy would raise
and then drop for certain datasets in our experimental studies. Trial-and-error would
be the inefficient way to find the optimal virtual sample size. Therefore, future research
should establish a process or mechanism to determine the optimal size for saving the
implementation cost.
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2. Ivǎnescu, V.C.; Bertrand, J.W.M.; Fransoo, J.C.; Kleijnen, J.P.C. Bootstrapping to solve the limited data problem in production

control: An application in batch process industries. J. Oper. Res. Soc. 2006, 57, 2–9. [CrossRef]
3. Kuo, Y.; Yang, T.; Peters, B.A.; Chang, I. Simulation metamodel development using uniform design and neural networks for

automated material handling systems in semiconductor wafer fabrication. Simul. Model. Pract. Theory 2007, 15, 1002–1015.
[CrossRef]

4. Lanouette, R.; Thibault, J.; Valade, J.L. Process modeling with neural networks using small experimental datasets. Comput. Chem.
Eng. 1999, 23, 1167–1176. [CrossRef]
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