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Abstract: The Ising model describes a many-body interacting spin (or particle) system, which can
be utilized to imitate the fundamental forces of nature. Although it is the simplest many-body
interacting system of spins (or particles) with Z2 symmetry, the phenomena revealed in Ising systems
may afford us lessons for other types of interactions in nature. In this work, we first focus on
the mathematical structure of the three-dimensional (3D) Ising model. In the Clifford algebraic
representation, many internal factors exist in the transfer matrices of the 3D Ising model, which are
ascribed to the topology of the 3D space and the many-body interactions of spins. They result in
the nonlocality, the nontrivial topological structure, as well as the long-range entanglement between
spins in the 3D Ising model. We review briefly the exact solution of the ferromagnetic 3D Ising
model at the zero magnetic field, which was derived in our previous work. Then, the framework of
topological quantum statistical mechanics is established, with respect to the mathematical aspects
(topology, algebra, and geometry) and physical features (the contribution of topology to physics,
Jordan–von Neumann–Wigner framework, time average, ensemble average, and quantum mechanical
average). This is accomplished by generalizations of our findings and observations in the 3D Ising
models. Finally, the results are generalized to topological quantum field theories, in consideration
of relationships between quantum statistical mechanics and quantum field theories. It is found
that these theories must be set up within the Jordan–von Neumann–Wigner framework, and the
ergodic hypothesis is violated at the finite temperature. It is necessary to account the time average of
the ensemble average and the quantum mechanical average in the topological quantum statistical
mechanics and to introduce the parameter space of complex time (and complex temperature) in
the topological quantum field theories. We find that a topological phase transition occurs near
the infinite temperature (or the zero temperature) in models in the topological quantum statistical
mechanics and the topological quantum field theories, which visualizes a symmetrical breaking of
time inverse symmetry.

Keywords: 3D Ising model; topology; quantum statistical mechanics; quantum field theories

1. Introduction

It is known that four different fundamental forces, i.e., electromagnetic, weak, and
strong forces (or interactions), and gravity, naturally exist in nature. Fully understanding
the behavior of these interactions has been a long-term challenge in physics and math-
ematics. The electromagnetic (or magnetic) interactions can be studied well within the
framework of electromagnetic theory and/or quantum electrodynamics [1,2]. The elec-
tromagnetic, weak, and strong forces can be treated by the standard model as a unified
theory [2–6], but the study of gravity should involve general relativity [7]. The contradic-
tion in concepts and representations of quantum mechanisms (QM) and general relativity
makes the construction of a grand unified theory for understanding the four fundamental
forces extremely difficult. Another difficulty that hinders our understanding of the nature
of the fundamental forces is the lack of exact solutions of many-body interacting (force)
systems. Among the physical models describing the many-body interacting spin systems,
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the Ising model is one of the simplest models [8–10]. Therefore, the exact solution of the
three-dimensional (3D) Ising model is very important for understanding other many-body
interacting spin systems. Two conjectures were proposed by the author in [10] for solving
the exact solution of the ferromagnetic 3D Ising model at the zero external magnetic field.
Zhang, Suzuki, and March proved four theorems (Trace Invariance Theorem, Linearization
Theorem, Local Transformation Theorem, Commutation Theorem) in [11], which rigor-
ously proved Zhang’s two conjectures. Furthermore, Suzuki and Zhang [12,13] rigorously
proved the two conjectures by the method of the Riemann–Hilbert problem, the monoidal
transformation, and the Gauss–Bonnet–Chern formula. Recently, the lower bound of the
computational complexity of the spin-glass 3D Ising model was determined [14]. More
recently, the exact solution of a ferromagnetic/antiferromagnetic 2D Ising model with a
transverse magnetic field was derived by equivalence between the transverse-field 2D
Ising model and the ferromagnetic/antiferromagnetic 3D Ising model [15]. During these
procedures, we found that the 3D Ising models serve as a good platform for a sensible
interplay between physical properties of interacting many-body systems, algebra, topology,
and geometry. Moreover, we uncovered several characters of the 3D Ising models, which
help us to develop topological quantum statistical mechanics (TQSM), in which one needs
to consider contributions of nontrivial topological structures to physical properties for
quantum statistical mechanics (QSM). Analogously, in some models of quantum field the-
ory (QFT), nontrivial topological structures exist also, which can be defined as topological
quantum field theory (TQFT). Although the 3D Ising model is one of the simplest many-
body interacting models, the findings in our previous work [10–13] may be applicable for
other many-body interacting systems. It will be extremely important to catalog the models
in the same class and/or with the same mathematical structure. The aim of this work is to
establish the framework of TQSM, and to set up the connection between TQSM and TQFT.

The exact solution of the ferromagnetic 3D Ising model stands up as a hard problem
in physics for almost 100 years [8], since it is extremely difficult to overcome several key
obstacles, such as nonlocal behavior (nontrivial topological structures), non-Gaussian
behavior (nonlinear terms of Γ-matrices), noncommutative behavior of Γ-operators [11].
In the procedures developed for solving explicitly the solution [10–13], we performed a
gauge transformation or a monoidal transformation in a higher dimensional space-time to
deal with the nonlocal problem, processed a linearization procedure to remove the non-
Gaussian obstruction, and introduced the Jordan–von Neumann–Wigner (JNW) framework
to eliminate the noncommutative hindrance. Because the 3D Ising model is a paradigm
in TQSM, other models in TQSM may also possess these basic characters so that the same
(nonlocal, non-Gaussian, and noncommutative) obstacles do exist for exactly solving them.
Thus, we have to set up the same mathematical framework for other TQSM models as
we have established for the 3D Ising model with respect to aspects of topology, algebra,
and geometry. Furthermore, in certain conditions, a model in QSM can be mapped to a
model in QFT so that the mathematical basis established for TQSM can be generalized to
be appropriate for TQFT. This is a fact that, except for gravity, the fundamental models for
the other three (i.e., electromagnetic, weak, and strong) interactions can be formulated in
the same/similar forms, but with different symmetries for spins (or particles). We hope
that we have ensured the validity of the concept that significant progress in solving the
problems of the physics of fundamental interactions can be achieved on the basis of the 3D
Ising model.

In this paper, we first review the progresses in the 3D Ising models, especially empha-
sizing the important roles of Clifford algebra. The results obtained for the exact solution
of the ferromagnetic 3D Ising model are briefly summarized in Section 2. In Section 3,
we set up the framework of TQSM, with respect to the mathematical aspects (topology,
algebra, and geometry) and physical features (the contribution of topology to physics,
JNW framework, time average, ensemble average, and quantum mechanical average), by
a generalization of our findings and observations in the 3D Ising models. We also focus
our attention on a topological phase transition with a symmetrical breaking of time inverse
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symmetry near the infinite temperature, accompanied with emerging of massless gauge
bosons. In Section 4, the results obtained in Sections 2 and 3 are generalized to TQFTs, in
consideration of relationships between QSM and QFT. It is found that it is important to
take into account the time average of the ensemble average and the quantum mechanical
average of any physical quantity f in the TQSM (see Section 3), and it is important to
account for the real-time average of the temperature (or imaginary time) average of a
function ϕ(x(t, τ)) in the TQFTs (see Section 4). It is proven that the ergodic hypothesis
is violated at the finite temperature in these theories. Our work indicates clearly that it is
necessary to introduce an emergent time axis in the 3D Ising model and other models in the
TQSM, and to integrate in the parameter space of complex time (or complex temperature)
in the TQFTs. We also find that, in the TQFTs, a topological phase transition occurs with a
symmetrical breaking of time inverse symmetry near the infinite temperature, which leads
to the change in the parameter space from imaginary time (real temperature) to complex
time (or complex temperature).

2. Exact Solution of the Ferromagnetic 3D Ising Model

The Hamiltonian of the 3D Ising model is written as [8–10]:

H = − ∑
<i,j>

JijSiSj (1)

Here, spins with S = 1/2 are arranged on a 3D lattice, with its lattice size N = lmn,
where l, m, n denote the number of lattice points along three crystallographic directions. For
simplicity, we consider only the nearest neighboring interactions Jij. For a ferromagnetic
3D Ising model, all the interactions Jij are positive, and are set to be J, J′, and J ′′ , respec-
tively, for interactions along three crystallographic directions in a simple orthorhombic
lattice. For a spin-glass 3D Ising model [14], the interactions Jij with different signs are
randomly distributed, which can be set to be different, Jij, J′ ij, and J ′′ ij, along the three
crystallographic directions.

In this section, we focus on the ferromagnetic 3D Ising model. We introduce the
generators of Clifford algebra for the 3D Ising model:

Γ2k−1 = C⊗ C⊗ . . . . . .⊗ C⊗ s′ ⊗ 1⊗ . . .⊗ 1 (k− 1 times C) (2)

Γ2k = C⊗ C⊗ . . . . . .⊗ C⊗ (−is′′ )⊗ 1⊗ . . .⊗ 1 (k− 1 times C) (3)

Following the notation, due to Onsager–Kaufman–Zhang [8–11,16,17], we choose the

notation: s′′ =
[

0 −1
1 0

]
(= iσ2), s′ =

[
1 0
0 −1

]
(= σ3), C =

[
0 1
1 0

]
(= σ1), where σj

(j = 1, 2, 3) are Pauli matrices. The partition function of the ferromagnetic 3D Ising model
at the zero magnetic field can be given as follows [8–11,16,17]:

Z = (2sinh2K)
m·n·l

2 · trace(V3V2V1)
m ≡ (2sinh2K)

m·n·l
2 ·

2n·l

∑
i=1

λm
i (4)

V3 =
nl

∏
j=1

exp
{

iK′′ Γ2j

[j+n−1

∏
k=j+1

iΓ2k−1Γ2k

]
Γ2j+2n−1

}
=

nl

∏
j=1

exp
{

iK′′ s′ js′ j+n

}
; (5)

V2 =
nl

∏
j=1

exp
{

iK′Γ2jΓ2j+1
}
=

nl

∏
j=1

exp
{

iK′s′ js′ j+1
}

; (6)

V1 =
nl

∏
j=1

exp
{

iK ∗ ·Γ2j−1Γ2j
}
=

nl

∏
j=1

exp(K ∗ Cj). (7)
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Here, variables K = J/(kBT), K′ = J′/(kBT) and K′′ = J′/(kBT) are introduced, instead
of J′ J′ and J ′′ . K* is defined by e−2K ≡ tanhK∗ [8–11,16–19]. We define the matrices Cj and s′ j
as follows: Cj = I ⊗ I ⊗ . . .⊗ I ⊗ C⊗ I ⊗ . . .⊗ I and s′ j = I ⊗ I ⊗ . . .⊗ I ⊗ s′ ⊗ I ⊗ . . .⊗ I.
For the ferromagnetic 3D Ising model, the Clifford algebraic representation plays an im-
portant role in solving analytically its exact solution [10,11,16,17]. The difficulties arisen
by the transfer matrix V3 (as seen from Equation (5)) for exactly solving the ferromagnetic
3D Ising model at the zero magnetic field consist of nonlocal behavior, non-Gaussian, and
noncommutative operators [11]. One must take into account the contribution of nontrivial
topological effect to the partition function and thermodynamic properties of the 3D Ising
system. Any procedures that do not consider such contributions cannot derive a correct
solution, owing to lack of important energy terms arising from topology. This is also
why approximations (such as conventional low-temperature expansions, conventional
high-temperature expansions, renormalization group, and Monte Carlo simulations) with-
out consideration of nontrivial topological contributions cannot serve as a standard for
adjudging the correctness of an exact solution [10–13].

Definition 1. The topological structures of a ferromagnetic 3D Ising system at the zero magnetic
field are constructed by the partition function Z (Equation (4)), which consists of the transfer
matrices V1, V2, and V3 represented in Equations (5)–(7). To illustrate the topological structures,
at first, a knot γ = {Pj} is constructed by the horizontal line and vertical joint line with vertex {Pj}
on the 3D lattice Z3; see Figure 1, as an example. This kind of knot, which can be either nontrivial
or trivial, represents the local spin alignments at the lattice points and the nearest neighboring
interactions between spins (edges connecting points). The linear terms of Γ matrices in the transfer
matrices V1 and V2 correspond to circles (or intervals), while the internal factors of nonlinear terms
of Γ matrices in V3 correspond to braids [12]. The circles (or intervals) and braids are attached on
every lattice point. In Figure 1, we only illustrate some braids, for simplicity, not the circles (or
intervals). The nontrivial topologic structures that we are interested in in this work are these braids,
which represent the long-range entanglements between spins in the 3D many-body interacting spin
systems [12].

Figure 1. Schematic illustration of a knot γ = {Pj} on the 3D lattice Z3, which is connected to some
braids in the transfer matrix V3, while the circles (or intervals) of V1 and V2 are not shown for
simplicity [12].

Remark 1. The form of the knot γ is not the focus of this work, while we are interested mainly in the
braids attached to the knot γ. The existence of nontrivial topologic structures in a ferromagnetic 3D
Ising system at the zero magnetic field is caused by many-body interactions between spins located in
a 3D lattice and the 2D character of the transfer matrices in the quantum statistical mechanism.
Each factor of iΓ2k−1Γ2k in the transfer matrices V is equal to the Pauli matrix −σz

k , contributing
a crossing topologically [12]. The crossings of the braids correspond to the Γ matrices in internal
factors of V3, while the circles (or intervals) represent the linear terms in V1 and V2 [12]. Schematic
illustration of the nontrivial topologic structures can be seen in Figure 1.
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A braid represents a long-range many-body entanglement in which all the spins in a
plane are involved. Indeed, there are two kinds of contributions to physical properties of
the 3D Ising model: one is from local spin alignments and another is from braids [12,13].
An equivalent representation of the nontrivial topologic structure shown in Figure 1 can be
found in Figure 2.

Figure 2. A unit cell of the 3D simple cubic Ising lattice (black dashed lines) with spins (red arrows)
located at every lattice site and braids (blue curves) attached to every pair of the two nearest
neighboring lattice sites along the third dimension [13]. Note that each braid corresponds to a
long-range many-body entanglement between spins in a (001) plane.

The spins in Figure 2 can be mapped to crossings so that Figure 2 can be mapped to
Figure 3.

Figure 3. A unit cell of the 3D simple cubic Ising lattice (black dashed lines) with knots constructed
from two parts, in which some crossings (red curves) are mapped from spins and some crossings
(blue curves) are attached braids representing long-range many-body entanglements between spins
in a (001) plane [13].

Theorem 1. The nontrivial topologic problem of a ferromagnetic 3D Ising system at the zero
magnetic field can be solved by introducing an additional rotation in a four-dimensional (4D)
space or a (3+1)D space–time. A spin representation in 2n l o-space can be found for this additional
rotation in 2n l o-space, while the transfer matrices V1, V2, and V3 can be represented and rearranged
also in the 2n l o-space. Namely, for the knot γ and attached braids defined in Definition 1, we
have data (γ, X) which are called Knot/Clifford (K/C) data, Zγ. For a given Zγ, we can make a
trivialization Z̃γ̃.

Proof of Theorem 1. Zhang, Suzuki, and March developed a Clifford algebraic approach
for the ferromagnetic 3D Ising model at the zero magnetic field and rigorously proved
four theorems (Trace Invariance Theorem, Linearization Theorem, Local Transformation
Theorem, Commutation Theorem) [11]. By the introduction of many unit matrices to the
partition function, the 3D Ising model can be expanded to be realized in a 4D space or a
(3+1)D space–time. This process expands the space of spin representation from 2n l -space
to 2n l o-space, while expanding the space of rotations from 2n l -space to 2n l o-space.
Then, we can adjust the sequence of these unit matrices to isolate the (3+1)D system to be
many quasi-2D subsystems. According to the property of the direct product of matrices,
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adding and changing positions of unit matrices can keep the trace of the transfer matrices’
invariance (with compensation of a factor). Each quasi-2D subsystem with sub-transfer
matrices stands for the contribution of a plane of the 3D Ising lattice and interactions with
its neighboring plane. At the quasi-2D limit, we can perform a linearization process on the
nonlinear terms of the transfer matrices, while splitting the space to be many subspaces.
Then we can carry out a local transformation (a gauge transformation), represented by a
rotation, to trivialize the nontrivial topological structures and to generalize the topological
phases on eigenvectors. Clearly, the transfer matrices V1, V2, and V3 can be represented
and rearranged in the 2n l o-space of rotations. Meanwhile, a spin representation in 2n l o-
space can be found for this additional rotation in 2n l o-space. The Zhang–Suzuki–March
approach in [11] rigorously proved Zhang’s two conjectures proposed in [10] and verified
the correctness of the conjectured exact solution.

Furthermore, Suzuki and Zhang [12] employed the method of the Riemann–Hilbert
problem and performed the monoidal transformation to trivialize the nontrivial topological
structure in the ferromagnetic 3D Ising model at the zero magnetic field. We can find a 4D
manifold M̃4, and K/C data Z̃γ̃ =

{
γ̃, X̃

}
on M̃, where γ̃ is a knot and X̃ =

{
Γ̃j

}
, Γ̃j is a

member of generators satisfying the following condition: we can find a trivialization map-
ping [12], F : M̃× K/C(M̃)→ Z3 × K/C(Z3) , satisfying F(Z̃γ̃) = Zγ. These procedures
in [12] have rigorously proven Zhang’s conjecture 1. �

Theorem 2. Let M be a manifold, p0 ∈ M and let π1(M, p0) be the fundamental group of
M-based at p0. Consider a monodromy representation: ρ : π1(M, p0)→ GL(M, C) . Given the
representation for the ferromagnetic 3D Ising model at the zero external magnetic field:

ρ̃ : π1
(

Rg − {a1, . . . , aN}
)
⊗ Cl(I3D)→ CL∗(I3D)

with singularities ai (i = 1, . . . ,N). The vertex operators are introduced to represented knots for
the 3D Ising model. A solution of the Riemann–Hilbert problem results in a flat connection. The
three topological phases are generated on the eigenvectors of the ferromagnetic 3D Ising model at the
zero magnetic field, which represent the projection of the energy spectrum from 4D to 3D.

Proof of Theorem 2. The Zhang–Suzuki–March approach [11] rigorously proved Zhang’s
two conjectures proposed in [10]. Furthermore, Zhang and Suzuki [13] applied the method
of the Riemann–Hilbert problem, introduced vertex operators of knot types and a flat vector
bundle, and used the Gauss–Bonnet–Chern formula to generate the topological phases
on the eigenvectors of the ferromagnetic 3D Ising model at the zero magnetic field. The
model with singularities of crossings of nontrivial topology can be renormalized by use
of the derivation of the Gauss–Bonnet–Chern formula, in co-operation with the monoidal
transforms in a 4D Riemann manifold. The ferromagnetic 3D Ising model with nontrivial
topological structures can be transformed to be a trivial model on a nontrivial topological
manifold. These procedures in [13] have rigorously proven Zhang’s conjecture 2. �

Therefore, the partition function of the ferromagnetic 3D Ising model on a simple
orthorhombic lattice at the zero magnetic field, being dealt within a (3+1)D framework, can
be written as [10,16]:

N−1lnZ = ln 2 + 1
2(2π)4

π∫
−π

π∫
−π

π∫
−π

π∫
−π

ln[cosh 2K cosh 2(K′ + K′′ + K′′′ )

−sinh2K cos ω′ − sinh2(K′ + K′′ + K′′′ )

(
∑

q=x,y,z

∣∣wq
∣∣ cos φq cos ωq

)
]dω′dωxdωydωz

(8)

The weight factors wx, wy, and wz generated in the eigenvectors in Equation (33) of [10]
were generalized as complex numbers |wx|eiφx , |wy|eiφy , and |wz|eiφz with phases ϕx, ϕy,
and ϕz [16,20]. The topological phases are generated by a local transformation, being a mon-
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odromy representation [11], which are determined to be ϕx = 2π, ϕy = ϕz = π/2 [10,11,13].
The spontaneous magnetization M for the ferromagnetic 3D Ising model on a simple
orthorhombic lattice was obtained as [10]:

M =

[
1−

16x2
1x2

2x2
3x2

4

(1− x2
1)

2
(1− x2

2x2
3x2

4)
2

] 3
8

(9)

where xi = e−2Ki (i = 1, 2, 3, 4), and where Ki = Ji/(kBT) (i = 1,2,3) for K, K′, and K′′ , and
K4 = K′′′ = K′K′′/K. The critical temperature of the simple orthorhombic Ising lattices
was given by the relation of KK∗ = KK′ + KK′′ + K′K′′ [10]. The critical temperature of
the simple cubic Ising lattice is determined by K∗ = 3K, i.e., 1/Kc = 4.15617384 . . . The
golden ratio xc = e−2Kc =

√
5−1
2 (or silver ratio xc =

√
2− 1) is the largest solution for the

critical temperature of the ferromagnetic 3D (or 2D) Ising systems, which corresponds to
the most symmetric lattice in 3D (or 2D) [10]. The critical exponents for the ferromagnetic
3D Ising model were determined to be α = 0, β = 3/8, γ = 5/4, δ = 13/3, η = 1/8, and
ν = 2/3, satisfying the scaling laws [10].

It should be noted that nonlocal (topological), non-Gaussian (nonlinear), and non-
commutative behaviors of Γ-operators are acting on all the terms of operators of spins
with j = 1, . . . , nl for the 3D Ising model (see the transfer matrices Equations (5)–(7)). If
one considers that the periodic boundary condition along one direction has been applied
already, all the N (= l mn) spins located at the 3D lattice are involved for calculations of
bulk thermodynamic properties (see the partition function Equation (4)). One must deal
with all these nonlinear terms of Γ-matrices in the partition function, as well as the transfer
matrices for bulk, while the effects of boundary conditions can be neglected. It is well
known that, in the thermodynamic limit for the bulk free energy per site, the boundary
terms have no effect, owing to the Bogoliubov inequality, as the surface-to-volume ratio
vanishes for the infinite system. Therefore, to derive an exact solution in thermodynamic
limit, the contributions of boundary conditions are negligible.

Remark 2. For judging the correctness of an exact solution, there is a criterion that the critical
point of the 3D simple cubic Ising model must be much higher than that (1/Kc = 3.6409569 . . . )
of the 2D triangular Ising model. The 2D triangular Ising model is equalized to the 2D square
Ising model with one next-nearest neighboring interaction. Assuming that the third interaction of
the simple cubic Ising model is the same as the next-nearest neighboring interaction of the latter
model, the only difference between the two models is whether the third interaction lies in the 2D
(001) plane along [110] direction or points to the third dimension along [001] direction in the
3D space. Clearly, there must be an additional contribution of space (topology) in the 3D Ising
lattice. Therefore, the difference between the critical points of the simple cubic lattice and the
triangular lattice (or the square Ising model with one next-nearest neighboring interaction) must be
positive (∆Tc = Tcube

c − Ttriangle
c > 0), which originates from the topological contribution of the 3D

lattice. Obviously, one can exclude the solution of K∗ = 2K, resulting in 1/Kc = 3.28203585 . . .
(i.e., Kc = 0.30468893 . . . ) for the simple cubic Ising model, since it is even lower than that
(1/Kc = 3.6409569 . . . ) of the triangular Ising model. For detailed discussion, readers refer to page
5334 of [10].

The 3D Ising model can be mapped to the 3D Z2 gauge lattice theory [21,22], which
can be used to model the interactions between Ising spins (belonging to electromagnetism,
however, with polarization). Solving the 3D Ising model can help to understand some fun-
damental interactions of particle physics. This is because the 3D Z2 gauge lattice theory can
be generalized to other gauge lattice theories with different symmetries for electromagnetic
interactions, weak interactions, and strong interactions. Furthermore, the action of these
gauge lattice theories can be mapped to the kinetic (i.e., gauge) terms of quantum field
theories with different symmetries for these interactions, with ultraviolet cutoff.
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3. Topological Quantum Statistical Mechanics

In this section, we first define topological quantum statistical mechanics (TQSM) and
describe its important characters, with regards to the mathematical aspects (topology,
algebra, and geometry) and physical features (the contribution of topology to physics, JNW
framework, time average, ensemble average, and quantum mechanical average). Then, we
demonstrate four corollaries and a theorem for the models cataloged into TQSM.

Definition 2. The topological quantum statistical mechanics (TQSM) deals with specific models in
the quantum statistical mechanics (QSM), in which many-body interactions existing in spins located
at a 3D lattice cause the nontrivial topological structures and the long-range spin entanglement.

In the TQSM, we deal with statistical models with the following characters: (1) Topology:
the nontrivial topological structures exist in the transfer matrices for the partition function,
which are caused by a combination of the planar character of the transfer matrices and
the 3D lattice arrangement of many-body interacting spins. (2) Algebra: Clifford algebra
is introduced to represent the interactions between spins in the Clifford algebra space in
order to illustrate the nontrivial topological structures. Jordan algebra is introduced to deal
with the noncommutative relations of Γ-operators in the transfer matrices. (3) Geometry:
the geometry phases appear in the eigenvectors of the many-body interacting system
due to the parallel transport on the Riemann surface in manifold during the topological
transformation. The models in QSM with the characters above can be cataloged into TQSM,
which include the 3D Ising model, the 3D Z2 lattice gauge theory, the Abelian U(1) lattice
gauge theory, the non-Abelian SU(2) lattice gauge theory, and the non-Abelian SU(3) lattice
gauge theory. The 3D Z2 lattice gauge theory is dual to the 3D Ising model, while the latter
three lattice gauge theories are generalizations of the 3D Z2 lattice gauge theory [21,22].

According to the topology theory [23–30], it is well known that, in the models of
QSM, a spin located at a lattice can be mapped to a crossing of a knot so that a one-to-one
mapping exists between a knot and a spin lattice. A state of the knot diagram is very
analogous to the energetic states of a physical system. The Kauffman bracket polynomial
for a knot equals the partition function of a Potts spin model (including an Ising spin
model), but up to an irrelevant multiplicative factor. It is noted that the Kauffman and
Jones bracket polynomials in the topology coincide when A1/4 = t [23–30]. In the models
of TQSM, besides the component of spin local alignments in the partition function, there
is an additional component of nonlocal and global effects of braids caused by many-body
interactions and 3D dimensionality. The braids, as represented in Figures 1–3 for the 3D
Ising model as an example, illustrate the long-range entanglement of spins in a plane.
Caused by the planar character of the transfer matrices in QSM and the arrangement of
interacting spins in a 3D lattice, it, indeed, represents a nontrivial topological structure. It
should be noted that the nontrivial topological structures in some models in TQSM may be
much more complicated than what we illustrated in Figures 1–3, with more complex braids
due to that the spins with U(1), SU(2), or SU(3), which may result in more complicated
transfer matrices. As uncovered in [13,16], a nontrivial topological basis of a physical system
can be transformed to a trivial topological basis by a transformation (a rotation), and vice
versa. As long as nontrivial knots or links exist in a many-body interacting spin system, a
rotation matrix representing such a transformation intrinsically and spontaneously always
exists, no matter how complicated the nontrivial topological structures are. Meanwhile, the
transformation changes the gauge of local systems and generates the topological/geometric
phases in the eigenvectors (and the partition function) of these many-body interacting spin
systems [10–13].

The following corollary is validated:

Corollary 1. The topological quantum statistical mechanics must take into account the contribution
of nontrivial topological structures to physical properties of the many-body interacting spin system.
This can be accomplished by either of the following processes:
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(1) Performing a gauge transformation in one-dimensional higher space, changing the gauge of
spins by the transformation while it generalizes the phase factor on wave functions (or fields)
of the system [11].

(2) Performing a monoidal transformation, resulting in a trivialization mapping with a mon-
odromy representation [12,13].

The Jordan algebra of A ◦ B = 1
2 (AB + BA) [31,32] and the JNW theorem [33] pro-

vide the mathematical basis of quantum mechanics (QM), which are compatible with
Schrödinger’s wave question, quantization in the Hilbert space, Heisenberg’s uncertainty
principle, Bohr’s concept of complementarity [34], Pauli exclusion principle, and Bose
statistics [35]. The JNW theorem has been applied to various quantum mechanics theo-
ries [36–39]. According to Definition 2, the TQSM deals with specific models with nontrivial
topological structures in the QSM, which should be set up within the framework of the QM.
The logic chain can be demonstrated briefly as follows: QM ⊃ ⋂

QSM ⊃ ⋂
TQSM and,

because JNW for QM, we have JNW for QM→ JNW for QSM→ JNW for TQSM. Thus,
the JNW framework being the mathematical basis of quantum mechanics is the sufficient
condition that it is also the mathematical basis of topological quantum statistical mechanics.

As pointed out in [40–43], the present author gave quaternion-based 3D quantum
models for order–disorder transitions in simple orthorhombic Ising lattices [10], based
on JNW procedure [33]. It is necessary to apply the Jordan algebra in order to overcome
the difficulty of noncommutative Γ-operators/matrices in the 3D Ising model. With com-
mutative operators/matrices of Jordan algebra, the (3+1)D Ising model in a certain order,
as the evolution of the system in space–time, can be transformed into a 3D Ising model
with time average and vice versa [11]. The commutativity of transfer matrices with Jordan
algebra and generalized Yang–Baxter equation together ensure the integrability of the 3D
Ising model [11,16]. The 3D Z2 lattice gauge theory is constructed by interaction between
spins around each plaquette, with Z2 symmetry for Ising spins. The 3D Z2 lattice gauge
theory is dual to the 3D Ising model [21,22], which must be set up on the JNW framework
also. The 3D U(1), SU(2), or SU(3) lattice gauge theory has the same formulation also
for interaction between spins around each plaquette, except for different symmetry U(1),
SU(2), or SU(3) of operators of spins. The operators of spins in the Abelian U(1) lattice
gauge theory are commutative, but similar to the case that, in the 3D Z2 lattice gauge
theory (as well as in the 3D Ising model), the Γ-matrix in the Clifford algebra representation
satisfies anticommutative relations, which must be dealt with by application of Jordan
algebra. The operators of spins in the 3D non-Abelian SU(2) or SU(3) lattice gauge theory
are noncommutative, and the Γ-matrices are anticommutative; thus, the Jordan algebra is
also needed to build the JNW framework. Analogously, it can be mapped into a model of
the many-body interacting spins with symmetry U(1), SU(2), or SU(3) in the TQSM [21,22].
As the generalizations of the 3D Ising model (and the 3D Z2 lattice gauge theory), these
models in TQSM must be built up also on the JNW framework with application of Jordan
algebras. Thus, the JNW framework being the mathematical basis of TQSM is the necessary
condition for studying the many-body interacting spin models in 3D.

We arrive at the following corollary:

Corollary 2. The topological quantum statistical mechanics must be set up on the Jordan–von
Neumann–Wigner framework, with application of Jordan algebras for multiplication of operators,
which ensures the integrability of the system.

In the classical statistical mechanics, Boltzmann’s fundamental hypothesis is that all
microstates are equally probable, and it was assumed that two ensembles (time ensemble
and statistical ensemble) lead to the same results [44]. The time ensemble consists of discrete
time-out of the time development of a physical system, while the statistical ensemble
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consists of many systems at one instant in time [44]. The time average can be formulated in
the form of:

< f >t= lim
T→∞

1
2T

∫ +T

−T
f (p, q, t)dt (10)

Under the ergodic hypothesis, the relations between the averages are discussed as
follows [45]: because the ensemble in statistical mechanics is a stationary one, the ensemble
average of any physical quantity f is independent of time; accordingly, it also equals the
time average of the ensemble average of f. In principle, the processes of time averaging
and ensemble averaging are completely independent. So, it is thought that the order for
performing these averages can be reversed without causing any change. Namely, the
time average of the ensemble average of f is identical to the ensemble average of the time
average of f, and also to the long-time average of f that is the same value obtained through
experiment. Therefore, with the ergodic hypothesis, we have the following consequence:
the ensemble average of any physical quantity f is identical to the value obtained by an
appropriate measurement on the given system [45].

The situation in QSM becomes much more complicated than in classical statistical me-
chanics [45]. One needs to introduce the concepts of QM, such as wavefunction, probability
amplitude, expectation value, etc. [45], to inspect the ergodic hypothesis. In this case, an
ensemble is constructed by N identical systems with N >> 1, characterized by a common
Hamiltonian Ĥ. The wavefunction ψ(ri,t) characterizes the physical states at time t of the
various systems in the ensemble, where ri denotes the position co-ordinates relevant to
the system, while ψk(ri,t) (with k = 1,2, . . . , N) is the normalized wavefunction for the
kth system of the ensemble [45]. The time variation of the wavefunction ψk(t), which is
expressed in terms of a complete set of orthonormal functions ϕn with coefficients ak

n(t), is

controlled by the Schrödinger equation. It should be noted that the number
∣∣∣ak

n(t)
∣∣∣2 deter-

mines the probability that a measurement at time t finds the kth system of the ensemble in
the particular state ϕn. The density operator is described by the matrix elements [45]:

ρmn(t) =
1
N

N

∑
k=1

∣∣∣ak
m(t)ak∗

n (t)
∣∣∣ (11)

The matrix element ρmn(t) represents the ensemble average of the quantity am(t)a∗n(t).
The diagonal element ρnn(t) denotes the ensemble average of the probability |an(t)|

2 (i.e.,
a quantum mechanical average). Thus, In QSM, we must encounter a double-averaging
process with respect to the probabilistic aspect of the wavefunction and the statistical aspect
of the ensemble. The quantity ρnn(t) accounts for the probability that one finds a system,
which is chosen at random from the ensemble at time t, to be in the state ϕn, and we have
∑
n

ρnn(t) = 1 [45]. Therefore, in QSM, we must encounter a double-averaging process

consisting of ensemble average and quantum mechanical average, in consideration of the
ergodic hypothesis.

However, in statistical mechanics and QSM, the ergodic hypothesis can be rigor-
ously proven only in very few, largely artificial cases. It does not even apply in some
instances [46]. Counter examples are easily constructed in one dimension, where the ex-
istence of numerous constants of the motion prevents the initial variable from becoming
randomized in so-called integrable models. It has been known that, in its original form,
the ergodic hypothesis cannot be strictly maintained. Meanwhile, its application, even as a
working hypothesis, would oppose statistical ensemble of their full function of representing
the relative probabilities for all the different kinds of states, which include the unusual
ones [47]. Except for the trivial one-dimensional case, a mechanical system cannot possibly
obey this ergodic hypothesis in its original strict form, because it requires the phase point
to pass precisely through every point in the phase space compatible with the system’s
energy. In some examples, the departure from the consequence of the ergodic hypothesis
can be very great. The ergodic theorem, ergodic theory, and statistical mechanics have been
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extensively investigated for various physical systems [48–55], and nonergodicity has been
found in several spin systems [56–58]. The ergodic hypothesis cannot be proven for the 3D
many-body interacting spin systems because of the existence of nonlocality and nontrivial
topological structures, as in the 3D Ising model [10,11,16].

In our previous work [11], it was shown that it is necessary to introduce the time
average for solving the exact solution of the ferromagnetic 3D Ising model at the zero
magnetic field, which proves that the ergodic hypothesis is violated at the finite temperature
in this system and it is dealt with in (3+1) dimensions. At the infinite temperature, where the
interactions are negligible, one may use only the ensemble average (see detailed discussion
in proof of Theorem 3, below), and the ergodic hypothesis can be held. The 3D Z2 lattice
gauge theory can be mapped equivalently to the 3D Ising model, and thus the ergodic
hypothesis is violated also in the 3D Z2 lattice gauge model. The Abelian U(1) lattice
gauge theory, the non-Abelian SU(2) lattice gauge theory, and the non-Abelian SU(3) lattice
gauge theory are generalizations of the 3D Z2 lattice gauge model. Though they have
different spin symmetries with the 3D Z2 lattice gauge model, these models in the TQSM
possess some characters that are the same as those of the 3D Z2 lattice gauge model (and
the 3D Ising model), such as noncommutative operators (of Clifford algebras), nonlocality,
and nontrivial topological structures that are caused by dimensionality and many-body
interactions in a 3D lattice. All of these characters in the mathematical structure require the
time average with monodromy representation in (3+1) dimensions. Therefore, the ergodic
hypothesis is violated at the finite temperature also in these TQSM models.

Summarizing the procedures above, we have demonstrated the following corollary:

Corollary 3. The ergodic hypothesis is violated at the finite temperature in the topological quantum
statistical mechanics.

Remark 3. Corollaries 2 and 3 above are complementary in a sense that the JNW framework
provides the mathematical basis of the models in TQSM with application of Jordan algebra in order
to overcome the difficulty of noncommutative operators, which actually performs a time average for
a physical quantity, violating the ergodic hypothesis.

According to Corollary 3 above, in TQSM systems (such as the 3D Ising model),
the ergodic hypothesis is not satisfied at the finite temperature. We have to make the
time ensemble, not only the statistical ensemble and quantum mechanical average for a
physical quantity [10,11,16,20,59]. Indeed, when the ergodic hypothesis is violated, we
must reconsider the relations between time average, ensemble average, and quantum
mechanical average. In this case, the ensemble under study cannot be considered as
a completely stationary one, and it can be treated as a quasi-stationary one. Thus, the
ensemble average of any physical quantity f is not independent of time; accordingly, we
must take the time average of the ensemble average and the quantum mechanical average
of f. The order for the processes of time averaging and ensemble averaging can be reversed
without causing any change, because the operators commute with the use of Jordan algebra
in the JNW framework. The time average of the ensemble average and the quantum
mechanical average of f can be represented as the ensemble average and the quantum
mechanical average of f in terms with multiplication of Jordan algebra. Namely, the time
average of the ensemble average and the quantum mechanical average of f is equal to the
ensemble average and the quantum mechanical average of the time average of f. Either of
these equals the long-time average of f that equals the value one expects to obtain through
experiment. For TQSM, we have:

< ρnn(t) >t=

〈
1
N

N

∑
k=1

∣∣∣ak
n(t)

∣∣∣2〉
t

=
1
N

N

∑
k=1

∣∣∣〈ak
n(t)

〉
t

∣∣∣2 (12)
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Therefore, in TQSM, the time average of the ensemble average and the quantum
mechanical average of any physical quantity f is equal to the value obtained by an appro-
priate measurement on the given system. Thus, these lattice gauge theories, such as the
3D Z2 lattice gauge model, the Abelian U(1) lattice gauge theory, the non-Abelian SU(2)
lattice gauge theory, and the non-Abelian SU(3) lattice gauge theory, should follow the
3D Ising model to be dealt with in the JNW framework and by the time average of the
ensemble average and the quantum mechanical average. For these lattice gauge theories
an additional dimension being time is introduced to satisfy the JNW framework.

With the preliminaries above, we can claim the following corollary:

Corollary 4. As the ergodic hypothesis is violated in the topological quantum statistical mechanics,
the time average of the ensemble average and the quantum mechanical average of any physical
quantity f equals the value one expects to obtain on making an appropriate measurement on the
given system of topological quantum statistical mechanics, which is equal to the ensemble average
and the quantum mechanical average of the time average of the physical quantity f.

Next, we prove the following theorem:

Theorem 3. In models in the topological quantum statistical mechanics, a topological phase
transition occurs near the infinite temperature, which visualizes a symmetrical breaking of time
inverse symmetry, accompanied with emerging of massless gauge bosons.

Proof of Theorem 3. In our previous work [10–13], we revealed that there is a topological
phase transition at/near the infinite temperature with changing temperature. During the
phase transition, the topological phases on the eigenvectors are altered. The states and the
phase transition at/near the infinite temperature can be described in detail as follows.

At the infinite temperature (β = 1/(kBT) = 0, T = ∞), the state is that the system is most
chaotic and disordered, while the interaction is neglected as, compared with the infinite
temperature, no nontrivial topological structure exists. Such an extremely disordered state
with trivial topological structure exists in the temperature region (T = ∞–∞−). This state is
kept until the temperature lowers to near the infinite temperature (β = ε→ 0, i.e., β = 0+,
T = ∞−), where the topological phase transition occurs. At the finite temperature, the state is
that the interaction is not negligible, compared with temperature, and nontrivial topological
structures exist. The topological phase transition at/near the infinite temperature does not
contradict with the Lee–Yang Theorem [60,61] for phase transitions: z = exp

(
− 2H

kBT

)
= 1,

where either the zero magnetic field (H = 0) or the infinite temperature (T = ∞) may satisfy
z = 1. The topological phase transition near the infinite temperature shows a symmetrical
breaking for the time-reversal symmetry. In the temperature region (T = ∞–∞−), the state
of the system at every time is the same, showing the continuous symmetry with time,
which is accounted for only by the ensemble average. However, at the finite temperature,
the state of the system evolves with time, which must be accounted for by both the time
average (from zero to infinite time) and the ensemble average. In this sense, time emerges
spontaneously and naturally, with the time arrow flowing from zero to infinity. A gap exists
in between the initial state and the final state of the system with time evolution, up on the
monodromy representation (or the parallel transport). That is, the time-reversal symmetry
is broken down due to the topological phase transition near the infinite temperature,
which is consistent with the second law of thermodynamics. According to the Noether’s
theorem [62], a symmetry corresponds to a conservation law of a physical quantity. The
breaking of the time-reversal symmetry corresponds to the breakdown of the energy
conservation law with decreasing temperature, due to a topological phase transition near
the infinite temperature, which may illustrate the initial states of our Universe.

According to the duality between high- and low-temperature phases [21,22], the
topological phase transition near the infinite temperature (T = ∞−) can be mapped into
a topological phase transition near zero temperature (T = 0+). In the temperature region
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(T = 0–0+), the state is that all the spins are completely orderly aligned, with a trivial
topological structure. At the finite (above zero) temperature, some spins become misaligned
so that nontrivial topological structures emerge. Therefore, besides the quantum phase
transition at zero temperature with change in the magnetic field (or pressure, the electric
field, etc.), a topological phase transition occurs near zero temperature (T = 0+) with
changing temperature. Such a topological phase transition may prohibit the system from
approaching the absolute zero if the system is cooling down by topological protection. It
does not contradict with the third law of thermodynamics.

The spontaneous symmetry breaking was first discovered by Nambu [63,64], which
was inspired by the superconductivity theory developed by Bardeen, Cooper, and Schri-
effer [65], and the apparent violations of gauge invariance were explored on the physical
models. In the 3D Ising model, usually one is interested in the spontaneous symmetry
breaking corresponding to the phase transition at the critical point Tc, where an energy gap
is opened. The results obtained in this work (and our previous work [10–13]) reveal that, be-
sides the phase transition at the critical point Tc, another topological phase transition occurs
near the infinite temperature (or the zero temperature). According to the Nambu–Goldstone
theorem [63,64,66], it will be possible that a massless bosonic particle may generate near
the infinite temperature (or the zero temperature) by such a topological phase transition,
and the dynamics of this particle can be described by Yang–Baxter relations [67]. Because
the topological phase transition near the infinite temperature is accompanied by the acting
of interactions of the systems, the Nambu–Goldstone bosons are the particles that carry the
interactions. Therefore, we expect that the Nambu–Goldstone bosons emerging near the
infinite temperature can be polarized photons in the 3D Z2 lattice gauge theory, photons in
the Abelian U(1) lattice gauge theory for electromagnetism, massless gauge bosons in the
non-Abelian SU(2) lattice gauge theory (without Higgs terms [68–72]) for weak interactions,
and gluons in the non-Abelian SU(3) lattice gauge theory for strong interactions. The mass-
less gauge bosons for the non-Abelian SU(2) lattice gauge theory are generated near the
infinite temperature, which is much higher than the energy for the generation of massive
Higgs bosons. These observations do not contradict with the standard model [68–81]. In the
low-temperature region near zero, the topological phase transition results in the generation
of dislocations (the directions of some spins point oppositely with most spins) in the 3D Z2
lattice gauge theory and quasi-particles (collective excitations, analogous to spin waves) in
other lattice gauge theories. �

Remark 4. The mathematical structures of the TQSM are realized as a result of interplay between
algebra, topology, and geometry.

This remark is evident as a subsequence of our previous work [10–13,16]. In the 3D
Ising model, we have already shown that it can serve as a good platform for interplay
between algebra, topology, and geometry [10–13,16]. The 3D Ising model can be described
by Clifford algebra for representation of transfer matrices [10,11], Knot/Clifford algebra
for representation of knot structures [12,13], Jordan algebra with the JNW framework [11],
quaternion algebra for constructing quaternionic eigenvectors [10–13,16], and Lee algebra
for representing rotations. The nontrivial topologic structures are found to exist in the
3D Ising model, while two kinds of components (spin alignments and braids/knots)
contribute to the partition function and thermodynamic physical properties of the 3D
Ising model [10–13,16]. The Riemann–Hilbert problem method is employed to solve the
differential equation with singularities. The 4D Riemann manifold is introduced to realize
the knots on the Riemann surface, to formulate the representation of the Riemann-Hilbert
problem, to apply the monoidal transformations at the knot intersection (singular) points,
and to produce the trivialization of knots [12,13]. We need to perform a topological
transformation, as well as a gauge transformation [11], or a monoidal transformation with
a monodromy representation and the Gauss–Bonnet–Chern formula [12,13] to trivialize the
nontrivial topological structure and to generalize the topological phases on eigenvectors. A
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detailed discussion about interplay between algebra, topology, and geometry can be found
in [13]. Because other models in TQSM have the basic characters of the 3D Ising model
but with different symmetries, they must be dealt with also by interplay between algebra,
topology, and geometry, with the similar procedures we have performed for the 3D Ising
model [10–13,16].

It is worth noting a recent advance [43] in the 3D Ising lattice with the Galois extension
structure of the nonion algebra: Ławrynowicz et al. [43] investigated ternary and binary
structures of su(3) and identified the construction of the collection of two ternaries with
the collection of three binaries by extending aspects of Ising–Onsager crystal statistics [9]
to three dimensions [10], by considering binary and ternary crystalline structures, and
by using the Galois extension structure of the nonion algebra. They highlighted that the
approach developed in [10,11,43] is applicable to quarks and elementary particles, including
introduction of colors, and suggested an analysis of three quaternaries vs. four ternaries,
involving duodevicenion and/or quindenion algebra.

4. Topological Quantum Field Theories

Definition 3. The topological quantum field theories (TQFTs) are specific models in the quan-
tum field theories (QFTs), in which the nontrivial topological structure and the long-range spin
entanglement exist due to the many-body interactions of spins in spacetime.

The quantum field theories are central topics in high-energy physics and nuclear
physics, which serve as fundamental models describing interactions and processes between
elementary particles (or spins). For instance, the λϕ4 scalar field model was developed to
study pion–pion scattering and the π–π interaction [82–89], properties of hadrons [90,91],
etc. The models, which are cataloged into TQFTs, include the ϕ4 scalar field theory, the
Abelian gauge field theory, the Yang–Mills SU(2) gauge field theory, and the Yang–Mills
SU(3) gauge field theory [2–6,92–98]. These gauge field theories with gauge invariance
possess kinetic and potential terms, in which the kinetic terms are pure gauge terms and the
potential terms are Higgs(-like) terms [63,64,68–72,77,78]. The kinetic terms in these gauge
field theories differ in the spin symmetries. We may consider the models with pure gauge
terms only or with additional Higgs terms. In TQFTs [2–6,92–98], the nontrivial topological
structures exist, which are induced by the gauge terms in 3D. Thus, one has to deal with
them by specific algebraic and topological approaches and the topological phases may
emerge, which are similar to Berry phase [2–6,92–98]. For more information about algebra,
geometric, and topological issues of TQFTs, readers refer to [95–109]. The present work
shall reveal that these gauge field theories must be dealt with in the JNW framework and in
the parameter space of complex time (or complex temperature). Moreover, we shall discuss
the contribution of nontrivial topological structures to physical properties of these theories.

We first choose aϕ4 scalar field theory as an example, and then generate our conclusion
to other TQFTs. The Lagrangian of a ϕ4 scalar field theory (or Landau–Ginzburg model) in
D spacetime can be expressed as [21,110]:

L =
∫

d(D−1)x

[
1
2

(
∂φ

∂t

)2
− 1

2
(∇φ)2 − 1

2
µ2

0φ2 − λ0φ4

]
(13)

with a formal expression for the path integral. The Lagrangian consists of kinetic terms and
potential terms. These expressions can be extended to analytically continue to imaginary
time. The theory can be formulated on an anisotropic spacetime lattice by replacing
integrals by sums and derivatives with discrete differences to obtain the theory’s Euclidean
action S on the 4D lattice, the temporal integral of the Lagrangian. The path integral Z of the
lattice theory is obtained from the action S, which can be thought of as the partition function
of a 4D statistical mechanics problem. By the mapping above (see Equations (3.28)–(3.38)
in [21]), we have a statistical mechanics problem on a symmetric lattice and field-theoretic
formulation using operators φ̂(n), π̂(n), and Ĥs defined on a symmetric lattice, which
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provides the theory with an ultraviolet cutoff. The partition function of the ϕ4 model
equals a sum over the possible configurations of the field ϕ [110]:

Z =
∫
[dφ] exp

{
−
∫

d(D−1)x
[

1
2
(∇φ)2 +

1
2

µ2
0φ2 + λ0φ4

]}
(14)

The partition function of a D-dimensional classical model is very much similar to
the generating function of a D space–time dimensional quantum field in the Euclidian
formulism (with ultraviolet cutoff [21]). Thus, both the models have the critical behaviors in
the same universality class. By inspecting the resemblance between the evolution operator
in QFT and the density operator in QSM, and by the mapping of β = (kBT)−1 → it = τ, one
can determine the temperature–time duality in the 3D Ising model [110–113] and other
models in TQFT.

The kinetic terms in the (3+1)D ϕ4 scalar field theory can be mapped to the exchange
terms in the 3D Ising model (and the 3D Z2 lattice gauge theory), which show the nontrivial
topological structures in 3D, as caused by the many-body interactions in a 3D lattice [10–13].
The potential terms, namely, the Higgs-like terms, have the Z2 symmetry that is the same
as the symmetry of Ising spins. One may visualize that the Ising model consists of a
double-well potential at each site [21], while nearest-neighbor sites are coupled together
in the usual way. The Hamiltonian of Ising systems is invariant under the operation
x→−x. So, the (3+1)D ϕ4 scalar field theory is in the same class of the 3D Ising model
(and the 3D Z2 lattice gauge theory), which is also topologically nontrivial, as induced
by the many-body interactions in 3D space. Analogously, in other topological quantum
field theories, such as the Abelian gauge field theory, the Yang–Mills SU(2) gauge field
theory, and the Yang–Mills SU(3) gauge field theory, the kinetic (i.e., pure gauge) terms
have the similar characters to those of the 3D Ising model and the Z2 gauge field theory. For
instance, for weak coupling, the action of Abelian U(1) lattice gauge theory (Equation (6.2)
in [21]) can be reduced to the Euclidean action of electromagnetism (Equation (6.15) in [21]):
S ≈ 1

4

∫
d4xFµνFµν. For classical smooth fields, the action of non-Abelian SU(2) lattice

gauge theory (Equation (8.3) in [21]) can be reduced to the classical Euclidean action of

pure Yang–Mills SU(2) fields S = 1
4

∫
d4x
(

Fi
µν

)2
with Fi

µν = ∂µ Ai
ν − ∂ν Ai

µ − gεijk Aj
µ Ak

ν

(see Equations (8.13a) and (8.13b) in [21]). The same reduction can be carried out for
pure Yang–Mills SU(3) fields. Clearly, the kinetic (i.e., pure gauge) terms in TQFTs can
be reduced from the exchange terms in the corresponding lattice gauge theories. The
TQFTs inherit the basic characters of lattice gauge theories, such as the noncommutative
operators (of Clifford algebras), nonlocality, and nontrivial topological structures (caused
by dimensionality and many-body interactions), which also require the time average with
monodromy representation, violating the ergodic hypothesis.

According to Corollary 1, the TQSM must take into account the contribution of non-
trivial topological structures to physical properties of the system by performing a gauge
transformation in higher dimensions. The nontrivial topological structures observed in
the Hamiltonian and the partition function of TQSM models (such as the 3D Ising model,
the 3D Z2 lattice gauge theory, etc.) can be found to be hidden in the Lagrangian and the
partition function of corresponding TQFTs. Performing the integrals of these field theories
actually involves the interchange of many-body interacting particles, which should account
for the contribution of nontrivial topological structures and generate the topological phases
in the systems for calculations of physical properties. From the facts above, and as the
immediate consequence of Corollary 1, the following corollary is validated:

Corollary 5. The topological quantum field theories must take into account the contribution of
nontrivial topological structures by performing a gauge transformation or a monoidal transformation
in one-dimensional higher space, while topological phases are generated in field operators [11–13].
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According to Definition 3, TQFTs are specific models in QFTs, in which the non-
trivial topological structure and the long-range spin entanglement exist, which should
be set up within the framework of QM. The JNW theorem has been applied to various
QM theories [36–39] and QFTs [114–117]. The logic flow can be represented as follows:
QM ⊃ ⋂ QFT ⊃ ⋂ TQFT and, because JNW for QM, we have JNW for QM → JNW for
QFT→ JNW for TQFT. Clearly, the JNW framework as the mathematical basis of quantum
mechanics provides the sufficient condition that it is the mathematical basis of topological
quantum field theories.

Then, we show that it is necessary to use the JNW framework for TQFTs. We first take
a ϕ4 scalar field theory as an example. As mentioned above, the kinetic (i.e., pure gauge)
terms in the ϕ4 quantum field theory in (3+1)D space–time with ultraviolet cutoff can be
mapped to the 3D Ising model (and the 3D Z2 lattice gauge theory) [21,110]. The lattice
theories with ultraviolet cutoff can approach the continuous limit with the lattice space
a→ 0. The potential terms (for instance, ϕ2 and ϕ4 in the ϕ4 scalar field theory) can be
treated as Higgs-like terms [63,64,68–72,77,78]. The kinetic (i.e., pure gauge) terms possess
the anti-communicative relations between spinor operators, which require the use of Jordan
algebra within the JNW framework. In the previous work [11], we have already shown
that the 3D Ising model must be dealt with in the (3+1)D JNW framework. Therefore, a ϕ4

quantum field theory in (3+1)D space–time must be investigated in a (3+2)-dimensional
space–time. For the (3+1)D ϕ4 quantum field theory, an additional time dimension is
added, together with the imaginary time, to form the complex time, in order to fit the JNW
framework. Similarly, the (3+1)D Yang–Mills quantum field theory with gauge symmetry
SU(2) or SU(3) [2–6,92–98] must be studied also in the (3+2)D space–time. When we study
TQFTs, no matter whether we need to consider the gauge terms with/without Higgs(-like)
terms, we have to deal with noncommutative relations (Γ-matrices of Clifford algebra,
non-Abelian of spin operators), which can be solved by Jordan algebra. The commutativity
of field operators with Jordan algebra and generalized Yang–Baxter equation together
ensure the integrability of TQFT models [11,16,67]. According to Corollary 2, the TQSM
must be set up on the JNW framework. From the observations above, and as the immediate
result of Corollary 2, the following corollary is held:

Corollary 6. The topological quantum field theories must be set up on the Jordan–von Neumann–
Wigner framework, with application of Jordan algebras for multiplication of field operators, which
ensures the integrability of the system.

In brief, according to Corollary 3, the ergodic hypothesis is violated at the finite
temperature in TQSM. In TQFTs with kinetic terms (i.e., pure gauge terms) mapped from
the models in TQSM, the ergodic hypothesis is violated also at the finite temperature.
This conclusion is validated for TQFTs with/without Higgs(-like) terms. Thus, we have
demonstrated the following corollary:

Corollary 7. The ergodic hypothesis is violated at the finite temperature in the topological quantum
field theories.

Remark 5. Corollaries 6 and 7 are complementary in a sense that the JNW framework provides
the mathematical basis of TQFTs, while it actually performs a time average for a physical quantity,
violating the ergodic hypothesis.

According to Corollary 4, the time average of the ensemble average and the quantum
mechanical average of any physical quantity f equals the value obtained by an appropriate
measurement on the given system. Besides the mapping β = (kBT)−1→ it = τ by performing
the Wick rotation, the temperature–time duality has a new insight, with the symmetric
formulations for the time average and the temperature average [97]. According to our
previous results [10–13], the time averaging must be used in the 3D Ising model to address
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it in (3+1) dimensions, and a temperature–time duality exists. The time averaging of a
function ϕ(x(t, τ)) is obtained by evaluating the integral:

〈φ, (x(t, τ))〉t =
1

∆t

t0+∆t∫
t0

dtφ(x(t, τ)) (15)

where τ represents a real variable going from 0 to β. The experiment can be performed
over a period of time t0 < t < t0 + 9∆t. In the systems like the 3D Ising model, the
contributions of the nontrivial topological structures to the partition function (and the
correlation functions and other physical quantities) cannot be neglected. The time necessary
for the time averaging must be infinite, which is comparable with or even much larger
than the time of measurement of the physical quantity of interest. Therefore, the ergodic
hypothesis may be invalid, ∆t → ∞. With the mapping of t ↔ -iτ (or τ ↔ it) and a
transformation of variances (-iτ↔ τ’ and it↔ t’), the time averaging is equivalent to the
temperature averaging, which can be written as [112]:

〈
φ,
(
x
(
τ′, t′

))〉
τ′ =

1
∆τ′

τ′0+∆τ′∫
τ′0

dτ′φ
(
x
(
τ′, t′

))
(16)

In Equation (16), the imaginary unit i does not explicitly appear because it is rescaled by
the variance transformation. It is worth noting that the temperature averaging is performed
somehow in the imaginary time-parametric space. The temperature–time duality is clearly
seen from Equations (15) and (16). However, we should remember that, besides the
temperature average for τ = it, we also have to account for the time average for t (according
to Corollaries 3 and 4). In TQSM, the 3D Z2 lattice gauge theory is a dual model of the 3D
Ising model, which must be dealt with in the parameter space of complex time (t + it) (or
complex temperature (τ–iτ)). Other Abelian U(1) and non-Abelian SU(2) or SU(3) lattice
gauge theories are the generalizations of the 3D Z2 lattice gauge theory, which, thus, should
follow this role. Because the actions of these lattice gauge theories can be mapped to the
kinetic (i.e., pure gauge) terms in TQFTs, the parameter space of complex time (or complex
temperature) must be used also in these field theories. This means that the (3+1)D TQFTs
must be investigated in (3+2)D dimensions.

Therefore, in consideration of both the temporal integral in the imaginary time of the
Lagrangian of TQFTs (including the ϕ4 scalar field theory, the Abelian gauge field theory,
the Yang–Mills SU(2) or SU(3) gauge field theory) and the addition of the time dimension
for time average to deal with the nontrivial topological structure, the TQFTs must deal with
the parameter space of complex time (t, τ), with the twofold temporal integrals of t and τ.
It is clear that, for TQFTs, the complex time averaging of a function ϕ(x(t, τ)) is expressed
by evaluating the integrals:

〈〈φ, (x(t, τ))〉τ〉t = 〈〈φ, (x(t, τ))〉t〉τ =
1

∆t

t0+∆t∫
t0

1
∆τ

τ0+∆τ∫
τ0

dtdτφ(x(t, τ)) (17)

Equation (17) is validated for the functions satisfying Fubini’s theorem and it is true
for the Lagrangian of TQFTs. According to the temperature–time duality, the parameter
space of the complex time (t, τ) can be dual to the parameter space of complex temperature
(τ, t). In the ϕ4 quantum field theory and also other TQFTs, the real-time average of
the temperature (or imaginary time) average of a function ϕ(x(t, τ)) is identical to the
temperature (or imaginary time) average of the real-time average of the function ϕ(x(τ,t)).

With the preliminaries above, we can claim the following corollary:
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Corollary 8. The topological quantum field theories must deal with the parameter space of complex
time (or complex temperature). The real-time average of the temperature (or imaginary time) average
of a function ϕ(x(t, τ)) is identical to the temperature (or imaginary time) average of the real-time
average of the function ϕ(x(t, τ)).

Finally, we prove the following theorem:

Theorem 4. In models in the topological quantum field theories, a topological phase transition
occurs near the infinite temperature, which shows a symmetrical breaking of time inverse symmetry.
It corresponds to the change in the parameter space from imaginary time (real temperature) to
complex time (or complex temperature).

Proof of Theorem 4. The kinetic (pure gauge) terms in QFTs show the nontrivial topological
structure at the finite temperature due to the interactions between spins in 3D (according
to our results in the 3D Ising model [10–13]). Thus, it is easy to accept that a topological
phase transition occurs near the infinite temperature in these field theories, which shows
a symmetrical breaking of time inverse symmetry. Such a topological phase transition is
similar to what happens in models of TQSM, as proven for Theorem 3. The energies needed
to generate these new bosons are much higher than what we need in order to generate
the massive Higgs bosons [63,64,68–72,77,78], since these massless bosons emerge near the
infinite temperature, whereas the Higgs bosons generate at the critical point Tc with Higgs
terms in the Lagrangian or Hamiltonian. Near the infinite temperature, the parameter
space from imaginary time (real temperature) is changed to complex time (or complex
temperature) with decreasing temperature and, as a result, follows Corollary 8. �

Obviously, we have the following remark:

Remark 6. The mathematical structures of TQFTs are realized also as a result of interplay between
algebra, topology, and geometry.

The topological/geometrical phases can be generated during inter-exchanging the par-
ticles in spacetime in TQFTs, which are closely connected to the Jones polynomial [27,118]
with the formulas of Wilson loop [119,120] and Witten integral [95–98] for the action of
the gauge group [2–6]. These phases are analogous to those in the Aharonov–Bohm ef-
fect [121,122], the Berry phase effect [92,105,123], fractional quantum Hall effect [123,124],
etc., with the mathematical basis of Chern’s geometric theory [122,125,126]. A detailed
discussion for the mathematical structures of the 3D Ising model can be found in [13]. It
is worth highlighting that twofold integrations on the curvature of the 3D Ising model
in spacetime result in the Gauss–Bonnet–Chern formula for the Chern number c1(F) of
the first class, from which one can fix some topological invariants, such as the winding
numbers and the topological phases [13]. According to Corollary 8, twofold integrations in
parametric space of complex time (or complex temperature) on the curvature of other TQFT
models will also result in topological invariants in connection with the Chern numbers, the
winding numbers, and the topological phases.

It is worth noting that Zeng [113] proposed a naive but natural idea that time may
emerge as the holographic dimension of gauge systems in Euclidean space, which takes
a statistic model, e.g., the 3D Ising model [10], as concrete implementations. Based on
the so-called statistic/gravity duality, Zeng [113] proposed the idea that the time flow of
(n + 1)D universe is to identify the renormalization group flow (inverse if necessary) of
some nD statistic models at equilibriums. Thus, it makes time emerge naturally from lower
dimensional physic systems without time concepts. For 3D Ising model, the dual universe
with emergent time flow has qualitatively the same evolution history as the real world.
The idea of identifying the renormalization group flow with the cosmic time flow projects
remarkable highlights on the solving of the cosmological constant problem. If this idea
is the case, then the acceleration of (3+1)D universe has relevance only with properties



Symmetry 2022, 14, 323 19 of 22

of some 3D equilibrium statistic models or Euclidean field theories, while the vacuum
energy of (3+1)D quantum field theories could affect dynamics only of some (3+2) or (4+1)D
universes. This is consistent with our results for an emergent time axis in the 3D Ising
model [10,11,16,17,20,59], and also in TQSM and TQFTs.

5. Conclusions

In conclusion, we build the framework of TQSM and TQFTs with respect to the mathe-
matical aspects (topology, algebra, and geometry) and physical features (the contribution
of topology to physics, JNW framework, time average, ensemble average, and quantum
mechanical average) by a generalization of our findings and observations in the 3D Ising
models. We found that, in these theories, the nontrivial topological structures exist, which
contribute to thermodynamic physical properties of the many-body interacting spin (or
particle) systems. It is found also that these theories must be set up within the JNW frame-
work, and the ergodic hypothesis is violated at the finite temperature in these theories. It
is necessary to account for the time average of the ensemble average and the quantum
mechanical average in TQSM and to introduce the parameter space of complex time (and
complex temperature) in the TQFTs. Furthermore, we uncover that, in models in these
theories studied in this work, a topological phase transition occurs near the infinite temper-
ature, with a symmetrical breaking of time inverse symmetry and the emerging of massless
gauge bosons. We also showed that the mathematical structures of TQSM and TQFTs are
realized as a result of interplay between algebra, topology, and geometry.
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