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Abstract: The simplest geometry of the domain, for which internal wave attractors were for the
first time investigated both experimentally and numerically, has the shape of a trapezium with one
vertical wall and one inclined lateral wall, characterized by two parameters. Using the symmetries
of such a geometry we give an exact solution for the coordinates of the wave attractors with one
reflection from each of the lateral boundaries and an integer amount n of reflections from each of the
horizontal boundaries. The area of existence for each (n,1) attractor has the form of a triangle in the
(d,τ) parameter plane, and the shape of this triangle is explicitly given with the help of inequalities or
vertices. The expression for the Lyapunov exponents and their connection to the focusing parameters
is given analytically. The corresponding direct numerical simulations with low viscosity fully support
the analytical results and demonstrate that in bounded domains (n,1) wave attractors can be effective
transformers of the global forcing into traveling waves. The saturation time from the state of rest to
the final wave regime depends almost linearly on the number of cells, n.

Keywords: internal waves; inertial waves; wave attractors

1. Introduction

Internal waves are ubiquitous in the oceans and astrophysical objects. The importance
of taking internal and inertial waves into account is illustrated by their role in supporting
the vertical mixing and energy transport [1]. Vertical mixing due to internal waves [2]
initiates modification of the vertical density profile and, by doing so, impacts the global
currents (along with the other important factors such as deep convection, penetrative
convection, etc. [3]). As a result, the internal wave climate concept [4,5] arises in applications
to geophysical problems.

Internal and inertial waves obey quite a peculiar dispersion relation, which greatly
distinguishes them from convectional acoustic, surface (interfacial) or electromagnetic
waves. Their dispersion relation provokes a completely different mechanism of kinetic
energy accumulation, as compared to conventional waves. For purely geometrical reasons,
the long-time behaviour of sequentially reflected beams displays one-dimensional limit
cycles–wave attractors [6,7], one of the simplest examples is presented in Figure 1. Such
a kind of geometrical billiard can not be found under the traditional rule of specular
wave reflection from walls where the angle of reflection is equal to the angle of incidence,
measured with respect to the normal to the boundary. Instead, internal wave beams retain
their inclination relative to the direction of gravity when reflecting from sloping walls. The
importance of wave attractors reveals itself not only in laminar regimes, but also in turbulent
ones: even when attractors can not be seen with the “bare eye” and the flow regime looks
completely turbulent, the principal pumping of kinetic energy to the system may be realized
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through the geometric wave attractor [8–12]. Two-dimensional analysis of the internal
wave climate over small amplitude random topography [13] shows that in the deep ocean
there can be about 10 wave attractors over a thousand kilometer stretch, and most of them
are of (n,1) type, having n reflections of horizontal type from both the upper and lower
boundary (in which the horizontal direction of the beam does not change upon reflection),
and one reflection of vertical type at the left and right ends of the limit cycle. With proper
filtering, Figure 2 of [14] experimentally shows the appearance of such a (2,1) pattern
after the stratified trapezium has been subject to an impulsive kick. Three-dimensional
sources of internal or inertial waves in trapezoidal domains can demonstrate even more
complicated focusing patterns: a wave beam upon its reflection from the slope slightly
changes the horizontal direction, and accumulative effect of such reflections may result in
additional focusing along the direction transverse to the slope of the trapezium [15,16].

H

L

α

Figure 1. A domain filled either with linearly stratified fluid or homogeneous-density, uniformly
-rotating rotating fluid. The blue dashed line gives the result of ray-tracing of a ray emitted from the
left lower corner, as indicated by the blue arrow. The solid blue line displays the wave attractor and
red dots correspond to coordinates of its boundary reflections.

The next section will be devoted to some of the mathematical features of this phe-
nomenon in 2D setup. Section 3 will give the algorithm for finding the coordinates of the
boundary reflections of (n,1) wave attractors. It also gives analytical expressions for the
areas of their existence in the parameter plane. Section 4 includes some results of direct
numerical simulations of (n,1) attractors in viscous fluids up to n = 6. This addresses
the saturation time-scale under which attractors establish themselves after turning on
the forcing.

2. Dynamics of Internal and Inertial Wave Attractors

Let us consider the most simple and typical configurations of a domain filled with a
stratified fluid, suitable for the description of the basic features of internal or inertial waves
that are somehow initiated inside the domain. The first type of geometry which comes to
mind is the horizontally and vertically aligned rectangular domain, and quite naturally
it has been the subject of intensive research since 1950 [17]. However, such geometry can
not reproduce the important property of focusing of the internal waves upon reflection
from the boundary that is inclined with respect to gravity or rotation axis. Meanwhile,
this property can completely and qualitatively change the solution. This is why we will
follow [7] and consider the next most simple configuration: the trapezium with one vertical
wall and one inclined wall. The sketch of this geometry is given in Figure 1. The left wall is
collinear to gravity and the right wall has slope α.

As initial state we will take a static, stable linear density stratification in which density
ρ̄+ ρ(y) consists in a spatio-temporal constant part, ρ̄, plus a part decreasing upwards, ρ(y).
For such a case a displaced particle oscillates with the buoyancy or Brunt-Väisälä frequency:

N =

√
− g

ρ̄
· dρ

dy
,
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here y is the vertical coordinate, directed anti-parallel to gravity acceleration, g.
The external forcing of the system can be a periodic body force of “tidal” origin as

in [7,18], or can be produced with a wavemaker at part of the boundary [19–22]). Numerous
laboratory experiments successfully reproduced the dynamics of the wave attractors with
the help of a wavemaker, located at the left (vertical) wall at x = X(y, t) and having a
half-cosine shape [8–10,23,24]:

X(y, t) = a sin(πy/H) cos(ωt), (1)

where ω = 2π/T0, and T0 denotes the period at which the wavemaker oscillates.
The full boundary-value problem with initial conditions will be presented in Section 4,

numerically solving the incompressible Navier–Stokes equations. In the present and next
section we will focus on geometrical properties of internal wave propagation. This is
dictated by the dispersion relation for plane internal waves in unbounded fluids with linear
stratification. It has a very special form [17]:

ω

N
= sin θ,

where θ is the angle between the phase velocity vector and gravity. A remarkable property
of such a dispersion relation is the orthogonality of the group velocity vector to the phase
velocity vector (their vertical components pointing in the same direction).

In the case of an ideal fluid, the complete set of parameters characterizing the state of
the described system with a uniformly stratified incompressible fluid is:

(ω, N, α, H, L)

Following [7] we can transform coordinates:

x′ =
2x
L
− 1, y′ =

2y
L

√
N2

ω2 − 1

after which the number of independent parameters will be reduced to just two. The first
transformation translates and compresses the horizontal largest base of the trapezium to
the interval [−1,1]. The second transformation scales the vertical coordinate so that the
wave beams propagate at the angle π/4 to vertical and horizontal. As a result, we get only
two dimensionless parameters:

d = 1− 2H
L

tan α, τ =
2H
L

√
N2

ω2 − 1 =
2H
L

cot(θ). (2)

In Figure 1 one can see how the attracting limit cycle can be formed when the beam of
internal waves originates from the lower left corner as indicated by the blue arrow. The
limit trajectory has one reflection from either lateral boundary, and one reflection from
either horizontal boundary, hence the name (1,1) attractor.

The wave beam approaches the limit cycle at a rate that can be characterised with the
help of the Lyapunov exponent. In [7] the diagram of Lyapunov exponents over the (d, τ)
parameter plane was given. It can be seen from this diagram, copied below in Figure 2,
that the area of existence of a (1,1) attractor has the form of a triangle. In Section 3 we show
that it can be easily computed analytically and extended for integer n > 1. On the other
hand, the shape of the area of existence of a more general (n,m) attractor with n horizontal
and m > 1 vertical cells can have a more complex shape [25]. Note that attractors require
m to be odd, as for even m a focusing reflection at inclined walls is exactly balanced by
a defocusing reflection. In this case a regular global mode (with m cells in the vertical)
appears, similar to those in a rectangular domain.
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Figure 2. Areas of the existence of attractors (n,1) according to Equations (7) in the (d, τ) plane.
Blue triangles of (n,1) attractors are depicted over the grey scale image, where lighter grey tones
correspond to greater Lyapunov exponents, defining the rate of conversion to limit trajectories as
in [7].

For example in [25] the shape of (1,3) and (2,3) regular modes is given. In the next
section we will give exact expressions for the coordinates of boundary reflections of (n,1)
attractors and areas of their existence on a (d, τ) diagram.

A very peculiar feature of regimes with wave attractors is that in this case a bounded
(and simply connected) hydrodynamic system admits the solution in the form of travelling
waves [26]. This is quite unusual since traditionally the solution for such an enclosed
geometry is looked for in the form of standing waves. Here, however, inside enclosures,
the attractor acts as an ’infinity inside’. It allows the application of a radiation condition,
otherwise applied to open domains only. This condition now allows for phase propagation
under the constraint that the corresponding energy propagation is towards the attracting
limit cycle, and not in opposite direction.

In Figure 3 one can see the typical field of vertical velocity after a (1,1) attractor has
established together with the evolution of the total kinetic energy. The details of numerical
simulation will be covered in Section 4, the parameters correspond to the laboratory
experiments with the wavemaker located at the vertical wall as in [8,27]. The total kinetic
energy E is normalized by the maximum kinetic energy of the wave maker oscillating at
amplitude a in Equation (1). The exact definition of E corresponds to the one given in [28].

In the case of standing waves, the kinetic energy would periodically approach zero, just
as for a pendulum, but here we observe the accumulation of kinetic energy into travelling
waves. An important characteristic of this kind of motion is the time needed to establish the
final wave regime. We will refer to this time as the saturation time. In natural or laboratory
conditions, the time needed for the system to change from one state to another may be too
long compared to other characteristic changes in the system, hence the practical importance
of this time interval.
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Figure 3. Typical behaviour of the vertical component of velocity in the vertical x, y plane with red
color for positive and blue for negative values (left), and oscillations of the total kinetic energy (right).
Dimensions correspond to the quasi-2D laboratory experiments. The saturation time is 24.8 T0.

Here we define the saturation time as the time when the difference between the
averaged kinetic energy over the next 10 external forcing periods (T0) and the final value of
the averaged kinetic energy becomes smaller than 0.001.

3. The Algorithm for Calculation of the Coordinates of an (n,1) Attractor

By coordinates of an (n,m) attractor we mean the coordinates of the points of intersec-
tion of the rays with the boundary of the domain.

A concise system of notation for the coordinates is presented in Figure 4. The coordi-
nates of the point at the right wall are denoted (x0, y0), this point is chosen as the beginning
for the wave beam cycle, and an alternative notation for this point is (x0, y0) ≡ (xR, yR).
The next points are given following the direction of energy propagation: the second point
has the coordinates (x1, τ), the third (x2, 0) and so on. The n + 1-th point will lie on the left
wall, so below we use also the alternative notation for this point (−1, yn+1) ≡ (−1, yL).

Figure 4. Notation of the coordinates for the (n,1) attractor.

The coordinates in Figure 4 are calculated with the help of Formulae (6) given below.
It seems that the expressions for the exact coordinates of (1,1) attractor first appeared

in [29], but we reproduce here a different approach, which is based on the non-smooth
continuations [30], since such an approach allows generalisations and description of an
algorithm for the exact computation of the coordinates of (n,m) attractors.

The basic idea of obtaining the exact expression for the coordinates of the (n,1) attractor
is the application of the method of non-smooth transformation. We will first demonstrate it
on the (1,1) attractor, and next give the general formulas for the (n,1) attractor.

Figure 5 shows the application of this idea. See also a discussion on unfolding in [25,31]
which is used to find the coordinates of the (1,1) attractor. First, we reflect the trapezium
with respect to the left vertical boundary. Next the upper half-plane is reflected with respect
to the horizontal lower boundary. After that we emit the ray from some point at the right
vertical boundary downwards, and follow its intersections with the reflected trapeziums. It
can be easily seen that if we follow the straight line through the reflected trapeziums the
fourth point may return again to the right wall. To get the closed loop of rays with one
reflection at each wall, in other words to get the (1,1) attractor, the fourth point has to fall
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onto the initial point at the right wall. Let us write the conditions that all the points belong
to the same line:

y0

x0 − x3
=

τ

x0 + 1
=

y0 + τ

x0 + x1 + 2
=

τ − y2

x1
= 1. (3)

Finally, we add the condition that (x0, y0) lies on the right wall:

y0

1− x0
=

τ

1− d
(4)

Figure 5. Calculation of the coordinates of (1,1) attractor.

The solution of this system of equations reads:

(x1, x3, x0, y0, y2 ≡ yL) =(
−τ2 + 2τ

1− d
− 1,

τ2 − τd− τ

1− d
− 1, τ − 1,

−τ2 + 2τ

1− d
,

τ2 − τd− τ

1− d

)
. (5)

The advantage of such an algorithm as compared to the one described in [29] is the
possibility of its application to a more general (n,1) or even (n,m) cases (for odd m). For the
(n,1) case, the attractor is either symmetric with respect to its central vertical axis in case
of even n, or anti-symmetric with respect to its center (the graph remains unchanged
after rotation by π about its center) for n odd. This is why yL = yR in the case of even n,
and yL = τ − yR in the case of odd n. (These symmetries allow to generalize the ray model
solutions for a trapezium under consideration to the corresponding symmetrical domains
which are shown in Figure 6 with dashed lines.) Following the same procedure as with the
(1,1) attractor we get the expressions for the coordinates of a (n,1) attractor:

xR = nτ − 1, yR =
−nτ2 + 2τ

1− d
;
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xL = xn+1 = −1,

for odd n : yL ≡ yn+1 =
nτ2 − τd− τ

1− d
,

for even n : yL ≡ yn+1 = yR;

xk =
−nτ2 + 2τ

1− d
− (k− n)τ − 1, yk =

(−1)k+1 + 1
2

τ, k = 1 . . . n;

xk =
nτ2 − 2τ

1− d
+ (k− n− 1)τ − 1, yk =

(−1)k + 1
2

τ, k = n + 2 . . . 2n + 1. (6)

Figure 6. Examples of (2,1) and (3,1) attractors computed according to Equations (6). Attractor (2,1) is
symmetric with respect to the central vertical line, as well as all the attractors with n even. Attractor
(3,1) has rotational symmetry with period π, as all the (n,1) attractors with n odd. Dashed lines
correspond to the geometries of the domain, for which all the ray analysis is also applicable, with
Lyapunov exponents (9) being doubled.

Expressions for x0, y0, yL in (6) give the constraints for the area of existence of (n, 1)
attractor, since d− 1 < 0, d < x0 ≡ xR < 1, 0 < yn+1, y0 < τ:

τ >
d + 1

n
; τ <

2
n

; τ > 1− d. (7)

These inequalities define triangles in the (d, τ) plane with three vertices:(
1− 2

n
,

2
n

)
,
(

n− 1
n + 1

,
2

n + 1

)
,
(

1,
2
n

)
. (8)

The corresponding areas of the existence of (n,1) attractors are plotted in Figure 2
over the diagram of Lyapunov exponents, which were computed according to a method
described in [7].

Expression for xR in (6) allows to give exact formulae for the Lyapunov exponents λ in
case of (n,1) attractors. Since the perimeter of the (n,1) attractor is equal to 2

√
2(xR + 1) and

the beams after reflections from the slope get closer by the focusing parameter q = 1/γ [24]:

λ =
1

2
√

2(xR + 1)
ln q =

1
2
√

2(xR + 1)
ln

1− tan(α)
1 + tan(α)

=
1

2
√

2nτ
ln

τ + d− 1
τ + 1− d

. (9)

4. Direct Numerical Simulation

The boundary value problem of the laboratory setup given in Section 1 can be de-
scribed with the following system of Navier–Stokes equations in Boussinesq approxima-
tion [8], which consists of momentum equations, equations of transport and diffusion of
salt, and continuity equation:

∂~v
∂t

+ (~v · ∇)~v = − 1
ρm
∇ p̂ + ν∆~v + ~f , (10)

∂ρs

∂t
+~v · ∇ρs = ∇

ν

Sc
(∇ρs), (11)
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∇ ·~v = 0. (12)

where ~v is the velocity, p̂ is the difference between the pressure and hydrostatic (unper-
turbed) pressure, ρm is the minimal density, ~f is the mass force which is ρ′~g in case of
internal waves, and Coriolis force in case of a homogeneous rotating fluid. ρs is the density
of salt in the fluid, Sc = ν/κ—the Schmidt number. On the vertical boundary the hori-
zontal velocity corresponds to the time-derivative of its position given by Equation (1);
on the other boundaries the velocity vanishes. The boundary conditions for salinity is the
absence of flux through the boundary, i.e., equality to zero of its normal gradient at all
the boundaries. Direct numerical simulation (DNS) was performed with the help of the
spectral element approach and open code nek5000 [32,33]. We have thoroughly tested and
validated this numerical approach in [8,9] where the results of numerical simulation were
compared with laboratory experiments on internal wave attractors both in laminar and
turbulent regimes. Not only qualitative but also quantitative agreement (to about 10% of
discrepancy) was shown in three-dimensional simulations.

Figures 7–9 show the vertical velocity field in the cases of (1,1), (2,1) and (6,1) attractors.
For the sake of clarity of these images the viscosity in DNS was decreased by a factor
of 100 as compared to the experiments [8,23], which corresponds to increasing spatial
dimensions. Such a scaling allows to analyse the general structure of (n,1) attractors in
viscous fluids, and underlines major differences in its behaviour with (1,1) attractors, which
were thoroughly studied in a number of publications. In particular, the saturation time
increases almost linearly with the number of reflections (in the present numerical study,
the number of reflections is also proportional to the horizontal dimension). For a (1,1)
attractor it is 96.1 T0, for a (2,1) attractor it is 154 T0, and for a (6,1) attractor-368.6 T0, where
T0 is the period of external perturbations, the Figure 10 shows the linear approximation
of the saturation times on number of cells, n. In the asymptotic state, a balance is reached
between geometric focusing and viscous/diffusive broadening of the beam. The scale at
which this state saturates corresponds to a certain group velocity with which the energy
propagates around the limit cycle. The length of the attractor divided by that group speed
sets the duration time taken by travelling once around the attractor in its saturated state.
This time obviously must increase linearly with n. Each additional cell gives an extra time
increment equal to the time taken to propagate along the four sides of that cell. However,
Figure 10 also displays an offset: the time needed to get focusing in the first place, namely
from the global scale τ at which the forcing along the left wall acts, to the small viscous
scale—the beam thickness at which the beam saturates. Figure 10 demonstrates both linear
dependence of the saturation time on the number of cells and the offset at n = 0.

Figure 7. Direct numerical simulation of the (1,1) attractor. On the left: the instantaneous vertical
component of velocity (red is upward, blue-downward), on the right: oscillations of the total kinetic
energy. The time of saturation is 96T0.
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Figure 8. Direct numerical simulation of the (2,1) attractor. On the left: the instantaneous vertical
component of velocity, on the right: oscillations of the total kinetic energy. The time of saturation is
154 T0.

Figure 9. The instantaneous vertical component of velocity after direct numerical simulation of the
(6,1) attractor. The time of saturation is 367 T0.

Figure 10. Linear approximation of saturation time in TS, given in terms of oscillation periods T0,
needed to establish a stationary wave regime of an (n,1) attractor, on number of cells, n.

5. Conclusions

We derived the exact expressions for the calculation of the coordinates of wave at-
tractors with one reflection from a lateral wall and n reflections from a horizontal wall.
The geometry of the tank corresponds to the setup described in [7]. The areas of existence
of (n,1) wave attractors have the shape of a triangle in the (d, τ) parameter plane and are
given with the help of inequalities. The expression for the Lyapunov exponents and their
connection to the focusing parameters is given analytically.

Direct numerical simulation of the stratified fluid subject to external forcing at a
boundary fully supports the theory and shows that (n,1) attractors can be effective in
translating global forcing to travelling waves.

The time of saturation, needed for the wave regime to develop from the state of rest to
the final steady wave motion, increases almost linearly with the growth of n.

This paper can be considered as the first part of a three-step analysis of the internal
waves mixing and energetics in the case of (n,1) attractors. The second part will be devoted
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to mixing, and the third will combine ray-tracing, DNS and neural networks for the
prediction of the average mixing efficiency.
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