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Abstract: The U(3)×U(3) chiral symmetric NJL model describing pseudoscalar, vector, and axial-
vector mesons in both the ground state and first radially excited states is shortly presented in this
review. In this model, it is possible to describe a large number of low-energy interactions of mesons,
τ lepton decays into mesons, and processes of meson production in electron–positron annihilations
in satisfactory agreement with the experiments. In describing a number of processes, it turned out to
be necessary to take into account the interactions of mesons in the final state.

Keywords: chiral Lagrangians; radial excited mesons; τ lepton decays; hadron production in e+e−
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1. Introduction

Studies of meson interactions at low energies are of great interest for investigations
of both the nature of the intrinsic properties and their interaction with each other. Such
studies are carried out from both the theoretical and experimental points of view. Among
the experimental centers, we can note world scientific centers such as VEPP-2000 (Budker
INP, Novosibirsk), UNK (IHEP, Protvino), BaBar (SLAC, USA), Belle (KEK, Japan), BES III
(BEPC II, China), LEP (CERN), etc.

For a theoretical description of processes in the interested energy region below∼2 GeV,
use of the well-developed QCD perturbation theory is unfortunately impossible due to
a large value of the coupling constant. Therefore, as a rule, various phenomenological
theories are applied here. These theories are based on the use of characteristic symmetries
to which the corresponding interactions of elementary particles conform. One of the main
symmetries of this kind is chiral symmetry. These symmetries were widely used even
before the construction of the fundamental QCD theory [1–8].

Among various models closely related to internal symmetries of strong interactions,
the Nambu–Jona-Lasinio model, proposed in 1961 [9], can be considered very successful.
In the quark language, this model was first formulated in [10,11]. Later, it was actively
developed by many authors since the 1980s, e.g., in [12–24]. All these works are quite
similar and differ mainly in different definitions of the internal parameters. In this review,
we will use the version of the NJL model, described in [13,16,20,22,24].

In the low-energy region, an important role in addition to the ground states of mesons
is also played by the first radial excitations. This especially concerns the processes of meson
production in colliding e+e− beams as well as τ lepton decays. An important role in the
description of these processes is played by channels containing mesons in both the ground
and first radially excited states. Therefore, for a satisfactory description of these processes,
the U(3) ×U(3) symmetric extended NJL model was formulated in 1997 [25,26]. This
model was used to describe many processes involving radially excited mesons. However,
this model turned out to be especially useful for describing τ lepton decays. Note that
taking into account intermediate mesons with higher powers of excitation in τ decays can
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only lead to insignificant corrections within the accuracy of the model. The masses of these
mesons turn out to be much heavier and, as a rule, exceed the value of the τ lepton mass.

The structure of the review is organized as follows. In Section 2, we will present
the U(3) × U(3) chiral NJL model that describes only the ground meson states. The
Lagrangians of the quark–meson interactions will be obtained and the values of the con-
stituent and current masses of the u, d, and s quarks will be found. Taking into account
the t’Hooft interaction, the mixing angle of the η and η′ mesons will be defined. When
describing kaons, the possibility of mixing K1A and K1B mesons will be taken into account.

In Section 3, the extended NJL model will be described, the mixing angles of the ground
and first radially excited states of mesons will be found, and the interaction Lagrangians of
radially excited mesons with quarks will be constructed. In Section 4, a table containing the
decay widths of radially excited mesons, calculated by proposed the extended NJL model
will be given. In this section, a number of meson production processes in e+e− beams will
be considered.

Section 5 will demonstrate the calculations of the τ lepton decays widths with the
production of one meson and two mesons with two pseudoscalar or pseudoscalar and
vector particles. In the last Section 6, a brief discussion of the proposed models and the
results will be given.

2. The Standard Nambu–Jona-Lasinio Model
2.1. The SU(2)× SU(2) NJL Model
2.1.1. Lagrangian for Scalar, Pseudoscalar, Vector, and Axial-Vector Mesons

In this section, we will show the construction of the standard NJL model following the
works [13,16,20,24]. The quark Lagrangian containing the four-quark interaction motivated
by the fundamental QCD theory in the local approximation has the form

L(q̄, q) = q̄(x)(i∂̂x −m0)q(x) +
G1

2

(
(q̄(x)q(x))2 + (q̄(x)iτaγ5q(x))2

)
(1)

−G2

2

(
(q̄(x)γµτaq(x))2 + (q̄(x)γµγ5τaq(x))2

)
,

where q̄(x) = {u(x), d(x)} are the u and d quark fields, m0 is the current quark mass matrix,
G1, G2 are the four-quark coupling constants, and τa are the Pauli matrices.

The meson fields are introduced using functional integrations [27]. After the introduc-
tion of meson fields, the Lagrangian (1) takes the form

L′(q̄, q, σ, π, ρ, a1) = q̄(x)(i∂̂x −m0 + σ(x) + iγ5τaπa(x) + γµτaρ
µ
a (x) (2)

+γµγ5τaa1
µ
a )q(x)− (σ(x))2 + (πa(x))2

2G1
+

(ρ
µ
a (x))2 + (a1

µ
a (x))2

2G2
.

It is easy to verify that in this expression the vacuum expectation of the scalar field
is not equal to zero, which requires a redefinition of the vacuum. This redefinition of the
scalar field is achieved by subtracting from it the nonzero vacuum expectation of the scalar
field < σ >0 6= 0 and adding this value to the current quark mass: σ′ = σ−< σ >0. The
described actions lead to the spontaneous breaking of chiral symmetry. The values of the
current and constituent quark masses are determined by the gap equation

δL′
δσ′

∣∣∣∣
σ′=0

= 0, ⇒ m0 = m(1− 8G1 I1(m)). (3)

In the one-loop quark approximation (Figure 1), we obtain the following free La-
grangian for scalar and pseudoscalar meson fields:
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Lf
σ,π =

(
− 1

2G1
+ 4I1(m) + 2p2 I2(m)

)
(πa(p)πa(−p) + σ′(p)σ′(−p)) (4)

−8m2 I2(m)σ′(p)σ′(−p) =
1
2
(p2 −M2

π)π
R
a (p)πR

a (−p) +
1
2
(p2 −M2

σ)σ
R(p)σR(−p),

πR
a (p) = gππa(p), σR(p) = gσσ(p).

Figure 1. Diagrams describing the mass and renormalization of π and σ mesons.

Similarly, for the free Lagrangian of vector and axial-vector mesons, we obtain

Lf
ρ,a1 =

(
− 1

2G2
+

√
2
3

p2 I2(m)

)
×
(

gµν −
pµ pν

p2

)
(5)

×(ρµ
a (p)ρν

a(−p) + a1
µ
a (p)a1

ν
a(−p)) +

√
6I2(m)a1

µ
a (p)a1

ν
a(−p).

Here, the field renormalization constants are expressed in terms of the logarithmic
divergent integral

gπ = gσ =

√
1

4I2(m)
, gρ = ga1 =

√
3

2I2(m)
. (6)

From the obtained formulas, the connection between the constants gσ and gρ follows

gρ =
√

6gσ. (7)

The mass formulas for the mesons π and ρ have the form

M2
π = g2

π

(
1

G1
− 8I1(m)

)
, M2

ρ =
g2

ρ

4G2
. (8)

The constants of the four-quark interactions G1 and G2 will be determined from these
formulas using the experimental values of the π and ρ mesons masses in Section 2.1.2.

Expressions for quadratically and logarithmically diverging integrals arising when
considering quark loops have the form

I1(m) = −i
Nc

(2π)4

∫ Θ(Λ2
4 + k2)

m2 − k2 · d4k =
Nc

(4π)2

[
Λ2

4 −m2 ln

(
Λ2

4
m2 + 1

)]
, (9)

I2(m) = −i
Nc

(2π)4

∫ Θ(Λ2
4 + k2)

(m2 − k2)2 · d
4k =

Nc

(4π)2

ln

(
Λ2

4
m2 + 1

)
−
(

1 +
m2

Λ2
4

)−1
,

where Nc is the number of colors in QCD and Λ4 is the cutoff parameter. The numerical
values of the model parameters included in these integrals will be indicated below.

Due to the existence of transitions between pseudoscalar and axial-vector mesons,
non-diagonal terms appear in the Lagrangian. This leads to additional renormalization of
the pion field, which is absent in scalar fields. This renormalization has the form

gπ =
√

Zπ gσ, Zπ =

(
1− 6m2

M2
a1

)−1

. (10)
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As a result, for the interaction Lagrangian of quarks with π, ρ, and a1 mesons, we
obtain

∆L = q̄
[

igπγ5
(

τ3π0 + τ+π+ + τ−π−
)
+

gρ

2
γµ
(

τ3ρ0
µ + τ−ρ−µ + τ+ρ+µ

)
+

gρ

2
γµγ5

(
τ3a0

1µ + τ−a−1µ + τ+a+1µ

)]
q, (11)

where τ± = (τ1 ± iτ2)/
√

2.

2.1.2. Numerical Estimates of the SU(2)× SU(2) Model Parameters

Let us now determine the main parameters of the model: the masses of the constituent
light quarks mu ≈ md, the ultraviolet cut-off parameter Λ4, and the constants G1, G2. To
determine the masses of the constituent quarks and the ultraviolet cut-off parameter Λ4
of the quark loops, two equations will be used from the experimental values of the decay
widths π → µν (Fπ = 92.4 MeV) and the strong decay ρ→ ππ (gρ = 6.0) [28].

When calculating quark loops in our model, we will use the lowest order in the
expansion of 1/Nc, and also take into account only terms with minimum powers in external
momenta. Under this condition, is it possible to maintain the chiral-symmetric structure of
the meson interaction Lagrangian at low energies [16].

The decay π → µν in the NJL model with π − a1 transitions is described by the
following amplitudes:

T1
π→µν = iGFVudZπ

mu

gπ
Lµ pµ, T2

π→µν = −6m2
u

M2
a1

T1
π→µν,

Tπ→µν = T1
π→µν + T2

π→µν = iGFVudFπ Lµ pµ. (12)

where GF is the Fermi constant, Vud is the element of the Cabibbo–Kobayashi–Maskawa
matrix and Lµ is the lepton current.

In this case, we obtain the Goldberger–Treiman relation for the weak decay constant

gπ =
mu

Fπ
. (13)

The vector coupling constant gρ will be determined from the strong decay width
Γexp(ρ→ ππ) = (149.1± 0.8) MeV [28,29]

Γρ→ππ =
g2

ρ

48π
Mρ

(
1− 4M2

π

M2
ρ

) 3
2

⇒ gρ = 6.0. (14)

Using the relationship between the constants (7) and (10), we obtain the following
equation for the constituent quark mass:

m2
u =

M2
a1

12

1−

√
1−

(
2gρFπ

Ma1

)2
⇒ mu = 270 MeV. (15)

The cut-off parameter Λ4 = 1265 MeV is found using the constant gρ, which is
expressed through the integral I2(mu) (6). Note that while using the value gρ = 6.0, this
cut-off parameter has turned out to be noticeable more than in other versions of the NJL
model [18,19]. As it will be shown below this allow to include the first radially excited
meson states within the U(3)×U(3) chiral symmetric extended NJL model (see Section 3).
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The values of the constants G1 and G2 are determined from the equations for the
masses of the pion and vector ρ mesons (8)

G1 = 4.743× 10−6 MeV−2, G2 = 14.9× 10−6 MeV−2. (16)

The value of the current quark mass is found from the gap Equation (3), which gives
m0

u = 2.9 MeV.
We now turn to the description of the ω → ππ decay, which will allow us to estimate

the difference between the u and d quark masses. The amplitude of this decay contains
contributions from the strong and electromagnetic transitions ω → ρ [16]

Mω→ππ = [B1 + B2]eµ(pω)(p+ − p−)
µ, (17)

where

B1 =
8(παρ)3/2M2

ω

3(M2
ρ −M2

ω + iMωΓρ)
[I2(mu)− I2(md)], (18)

B2 = −
√

π

αρ

2αem M2
ρ

3(M2
ρ −M2

ω + iMωΓρ)
. (19)

Here, αρ = g2
ρ/4π, αem = 1/137, Mρ, and Mω are vector meson masses and p+, p−

are the momenta of π+ and π− mesons.
The decay width ω → ππ is described by Formula (14) by replacing gρ → (B1 +

B2). Using the experimental value for the branching fraction Br(ω → ππ) = (1.53 +
0.11,−0.13)× 10−2 [29], we can estimate the mass difference between u and d quarks

md −mu = 4 MeV. (20)

2.2. The U(3)×U(3) NJL Model

When extending the model for the group U(3)×U(3), the Pauli matrices τi(i = 1, 2, 3)

are replaced by the Gell–Mann matrices λi(i = 0, . . . , 8), where λ0 =
√

2
3 1 is the matrix

proportional to the identity one. Instead of quark doublets q̄ =
(
ū, d̄
)

we have quark
triplets q̄ =

(
ū, d̄, s̄

)
, and the current mass matrix m0 is replaced by the matrix

m0 =

 m0
u 0 0

0 m0
d 0

0 0 m0
s

. (21)

Pseudoscalar, vector, and axial-vector mesons are introduced into the U(3)×U(3)
model in the same way as it was done in the SU(2)× SU(2) one.

As a result, after bosonization of the quark Lagrangian, we obtain the following mass
formulas for mesons containing s quarks:

M2
K = g2

K

[
1

G1
− 4[I1(mu) + I1(ms)]

]
+ ZK(ms −mu)

2, (22)

M2
K? =

g2
K?

4G2
+

3
2
(ms −mu)

2, M2
φ =

g2
φ

4G2
. (23)

The mass formulas for non-strange mesons remain unchanged.
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The renormalization constants of the vector fields gK? and gφ are defined in terms of
the integrals

gK? =

√
3

2I2(mu, ms)
, gφ =

√
3

2I2(ms)
, (24)

where

I2(mu, ms) = −i
Nc

(2π)4

∫ Θ(Λ2
4 + k2)

(m2
u − k2)(m2

s − k2)
· d4k

=
Nc

(4π)2
1

ms −mu

[
m2

s ln

(
Λ2

4
m2

s
+ 1

)
−m2

u ln

(
Λ2

4
m2

u
+ 1

)]
. (25)

When deriving the free Lagrangian for the kaon, we take into account additional
renormalization of the kaon field (ZK) due to possible transitions between the pseudoscalar
and axial-vector mesons. Here, it is necessary to take into account two physical axial-vector
states K1(1270) and K1(1400). They are the result of mixing of two axial-vector strange
mesons K1A, K1B and related to each other by the following relations:

K1(1270) = sin(β)K1A + cos(β)K1B,

K1(1400) = cos(β)K1A − sin(β)K1B. (26)

In the case of the chiral group SU(2)× SU(2), the axial-vector mesons a1(1260) from
the nonet 3P1 and b1(1235) from the nonet 1P1 do not mix with each other. This is a
consequence of the fulfillment of chiral symmetry and the proximity of the constituent u
and d quark masses. Therefore, when describing the π − a1 transitions, the pion has only
one partner among the axial-vector mesons, namely, a1(1260).

At the same time, for the U(3)×U(3) group, due to a large mass difference between ms
and md ≈ mu, chiral symmetry is noticeably broken, and the states K1A and K1B begin to mix
with a coupling constant proportional to the mass difference ms −mu. As a consequence,
physically observed axial-vector mesons begin to have masses MK1(1270) = 1253± 7 MeV
and MK1(1400) = 1403± 7 MeV [29]. The NJL model describes only the meson K1A. Further,
we will denote it just K1. As a result, for the renormalization constant, we obtain

gK =

√
ZK

4I2(mu, ms)
, (27)

where

ZK =

(
1− 3

2
(ms + mu)

2

(
sin2(β)

M2
K1(1270)

+
cos2(β)

M2
K1(1400)

))−1

, (28)

where β = 57◦ [30].
Equation (22) can be used to determine the mass of the s quark ms = 420 MeV, which

leads to agreement of the charged kaon mass with the experimental value [30]. For the s
quark current mass we obtain the value m0

s = 76 MeV.

2.3. The ’t Hooft Interaction

After the introduction of a heavier s quark into our model, in the framework of
the U(3) × U(3) group, ideal mixing occurs between the eighth representative of the
pseudoscalar meson octet and the pseudoscalar singlet meson. Moreover, one of these states
contains only u and d quarks, while the other contains only s quarks, which contradicts
the experimental data. To solve this problem, it is also necessary to take into account the ’t
Hooft interaction, which leads to mixing of the states containing light u, d quarks with the
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heavier s quark [31,32]. Taking into account the ’t Hooft interaction allows us to correctly
describe the masses of the pseudoscalar mesons η and η′. This interaction has the form [33]

LtH = −K(det[q̄(1 + γ5)q] + det[q̄(1− γ5)q]), (29)

where q̄ = {ū, d̄, s̄} are the antiquark fields, m0 is the diagonal matrix of current quark
masses m0

u, m0
d, m0

s (m0
u ≈ m0

d) and K is the ’t Hooft constant.
To describe the U(3)×U(3) NJL model, we can combine the six-quark interaction

with the initial four-quark interaction. In this case, we use the method of separating the
main four-quark interaction from the ’t Hooft six-quark interaction. The details of these
procedures are fairly well described in many papers, in particular in [18,19,24,31]. Therefore,
omitting the details, we write the new Lagrangian in the following form (see the papers
in [24,31]):

L = q̄(i∂̂−m0)q +
1
2

9

∑
i=1

[G(−)
i (q̄λ′ iq)2 + G(+)

i (q̄iγ5λ′ iq)2]

+G(−)
us (q̄λuq)(q̄λsq) + G(+)

us (q̄iγ5λuq)(q̄iγ5λsq) , (30)

where

λ′ i = λi (i = 1, . . . , 7), λ′8 = λu = (
√

2λ0 + λ8)/
√

3,

λ′9 = λs = (−λ0 +
√

2λ8)/
√

3,

G(±)
1 = G(±)

2 = G(±)
3 = G± 4Kms I1(ms),

G(±)
4 = G(±)

5 = G(±)
6 = G(±)

7 = G± 4Kmu I1(mu),

G(±)
u = G∓ 4Kms I1(ms), G(±)

s = G, G(±)
us = ±4

√
2Kmu I1(mu). (31)

For the η and η′ mesons masses, taking into account the mixing of u, d, and s quarks
caused by the ’t Hooft interaction, we obtain the following formulas:

M2
(η,η′) =

1
2

[
MP

ss + MP
uu ∓

√
(MP

ss −MP
uu)

2 + 4(MP
us)

2
]

, (32)

where

MP
uu = g2

ηu

(
1
2
(TP)−1

uu − 8I1(mu)

)
,

MP
ss = g2

ηs

(
1
2
(TP)−1

ss − 8I1(ms)

)
,

MP
us =

1
2

gηu gηs(T
P)−1

us ,

MS
uu = g2

σu

(
1
2
(TS)−1

uu − 8I1(mu)

)
+ 4m2

u,

MS
ss = g2

σs

(
1
2
(TS)−1

ss − 8I1(ms)

)
+ 4m2

s ,

MS
us =

1
2

gσu gσs(T
S)−1

us .

gσu = gσ, gσs = [4I2(ms)]
−1/2, gηu = gπ , gηs = Z1/2gσs ,

TP(S) =
1
2

(
G(±)

u G(±)
us

G(±)
us G(±)

s

)
. (33)
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ηs = η cos(ᾱ) + η′ sin(ᾱ), (34)

ηu = −η sin(ᾱ) + η′ cos(ᾱ), ᾱ = α− α0,

where α0 ≈ 35.5◦ is the ideal mixing angle and α is the singlet-octet mixing angle

tan(2ᾱ) =
2MP

us
−MP

ss + MP
uu

. (35)

The best agreement with the experimental values for the η and η′ mesons masses can
be obtained for the value of the angle α = −19.0◦

Mη = 527 MeV, Mη′ = 1004 MeV. (36)

For the ’t Hooft constant, we get the value K = 13.0 GeV−5. Here, we will not discuss
scalar mesons, as the contribution of scalar mesons to the decays we are considering turns
out to be negligible. In addition, a detailed description of the scalar sector in the NJL model
can be found in our previous works [34,35]. Moreover, finally, at the moment there are
many works describing scalar mesons taking into account their tetraquark state [36–38],
while in the NJL model considered here, tetraquarks are not taken into account.

As a result, in the framework of the U(3)×U(3) NJL model, we obtain the following
interaction Lagrangian of quarks with strange mesons:

∆Lint = q̄
[

gK1

2
γµγ5

(
∑

j=±,0
λK

j K j
1µ + λK̄

0 K̄0
1µ

)
+

gK∗

2
γµ

(
∑

j=±,0
λK

j K∗j
µ + λK̄

0 K̄∗0µ

)

+igKγ5

(
∑

j=±,0
λK

j K j + λK̄
0 K̄0

)
+ i sin(ᾱ)gηu γ5λuη + i cos(ᾱ)gηs γ5λsη

+i cos(ᾱ)gηu γ5λuη′ − i sin(ᾱ)gηs γ5λsη′ +
gφ

2
γµλsφµ

]
q, (37)

where

λK
± =

λ4 ± iλ5√
2

, λK
0 =

λ6 + iλ7√
2

, λK̄
0 =

λ6 − iλ7√
2

, (38)

where matrices λu and λs are defined in (31).
The parameters used in this model, as noted in the introduction, differ markedly from

the parameters used in other versions of the NJL model [19]. This difference causes our cut-
off parameter to significantly exceed the cut-off parameter used in [19]. This circumstance
allows us, within the framework of the U(3)×U(3) chiral symmetric model, to describe
not only the four main mesonic nonets, but also their first radial excitations. Taking into
account intermediate mesons in the ground and first radially excited states in τ lepton
decay turn out to be essential, while higher excitations play a less important role and can
be neglected within the framework of the model’s accuracy. In the next section, we will
show how, using the simplest form factor of the lowest order in momenta, one can describe
the first radial excitations of mesons without going beyond the limits of the admissible
breaking of chiral symmetry allowed by the requirement of the partial conservation of the
axial current (PCAC) theorem.

The precision of the NJL model is determined on the basis of the PCAC. In the case of
U(3) symmetry, it can be determined with the ratio M2

K/M2
Σ ≈ 17% [39]. There are a large

number of other sources of uncertainties. Therefore, we use our previous results to estimate
the error of the model. Without any exotic states, the average uncertainty can be estimated
at the level of 10%. This error obtained from the real calculation covers all possible sources
including PCAC and can be absorbed by it. Therefore, we estimate the uncertainty of this
model at the level of 17%.
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3. The Extended NJL Model

The extended NJL model was formulated in the works [25,26]. As it has been men-
tioned above, due to the fact that the cut-off parameter is close to the masses of the first
radially excited meson states, it turns out possible to include these states to the U(3)×U(3)
chiral symmetric NJL model. To take into account the excited states of mesons, it is more
convenient to rewrite the initial four-quark Lagrangian (1) in terms of the current interac-
tions and redefine them:

Lint(q̄, q) =
9

∑
i=1

2

∑
m=1

{
G1

2

[
js
im(x)jsim(x) + jp

im(x)jp
im(x)

]
−G2

2

[
jv
imµ(x)jvµ

im(x) + ja
imµ(x)jaµ

im(x)
]}

, (39)

where G1, G2 are the four-quark coupling constants and j(x) are the scalar, pseudoscalar,
vector, and axial-vector currents:

jn
im(x) =

∫
d4x1

∫
q̄(x1)Fn

im(x, x1, x2)q(x2)d4x2, (40)

where x1 and x2 are the antiquark and quark coordinates, Fn
im(x, x1, x2), n = s, p, v, a are

the scalar, pseudoscalar, vector and axial-vector form factors. In the case of the standard
NJL model, they are equal to the δ functions in the coordinates that remove the integrals.
For further reasoning, it is convenient to reduce them to momentum representation:

Fn
im(x, x1, x2) =

∫ d4 p

(2π)4

∫
Fn

im(k, p)e
i
2 [(p+k)(x−x1)+(p−k)(x−x2)]

d4k

(2π)4 , (41)

where k and p are the relative and external momenta of the quark–antiquark pair. The
momentum k can be written in the transverse form:

k⊥ = k− (k, p)
p2 p. (42)

In this case, in the rest frame of the meson formed by these quarks, the momentum k
can be represented in the three-dimensional form k⊥ = k.

The form factors F can describe mesons in the ground (m = 1) and first radially excited
states (m = 2) and, in the momentum, representation take the form

Fs
i1(k, p) = 1,

Fp
i1(k, p) = iγ5λi,

Fv
i1(k, p) = γµλi,

Fa
i1(k, p) = γµγ5λi,

Fs
i2(k, p) = cs fi(k),

Fp
i2(k, p) = iγ5λicp fi(k),

Fv
i2(k, p) = γµλicv fi(k),

Fa
i2(k, p) = γµγ5λica fi(k). (43)

Here, cs, cp, cv, and ca are the coefficients of the form factors of the excited meson states.
The functions fi(k) have the form of a quadratic polynomial in the relative momentum of
quarks in the meson:

fi(k) = 1 + dik
2. (44)
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The slope parameter di is unambiguously fixed from the requirement that the intro-
duction of excited states does not change the value of the quark condensate, i.e., so that the
gap Equation (3) remains unchanged. This condition is provided by the requirement

iNcm
∫ fi(k)

m2 − k2 Θ(Λ3 − |k|)
d4k

(2π)4 = 0, (45)

where Λ3 = 1030 MeV is the three-dimensional cut-off parameter. It is fixed by the
four-dimensional cut-off parameter defined for the standard NJL model, based on the
requirement that the values of the integrals I2 do not change. As a result, we obtain three
values for the slope parameters depending on the quark composition of the corresponding
meson:

duu = −1.784 GeV−2, dus = −1.761 GeV−2, dss = −1.737 GeV−2. (46)

The proximity of these parameters to each other contributes to the conservation of
chiral symmetry after the introduction of an excited states.

3.1. Pseudoscalar Mesons

As a result of the bosonization, the free Lagrangian of pion fields in the one-loop
approximation after renormalization takes the form:

L(π1, π2) =
p2

2

(
π2

1 + 2Rππ1π2 + π2
2

)
−

M2
π1

2
π2

1 −
M2

π2

2
π2

2, (47)

where p is the meson momentum,

Rπ =
I f
2 (mu)√

Zπ I2(mu)I f f
2 (mu)

. (48)

The masses of nonphysical mesons are determined as follows:

M2
π1

= g2
π

(
1

G1
− 8I1(mu)

)
,

M2
π2

= g2
π̂

(
1

G1
− 8I f f

1 (mu)

)
, (49)

where gπ , gπ̂ are the pion renormalization constants:

gπ =

√
Zπ

4I2(mu)
, gπ̂ =

√
1

4I f f
2 (mu)

, (50)

where I f f
2 (mu) is the integral of the form (9) with two form factors in the numerator.

Here, for the constant gπ̂ , the π− a1 transitions are not taken into account due to their
small contribution.

The resulting Lagrangian (47) is non-diagonal. Its diagonalization leads to the follow-
ing Lagrangian:

L(π, π̂) =
p2

2

(
π2 + π̂2

)
− M2

π

2
π2 −

M2
π̂

2
π̂2. (51)
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The masses of physical mesons are expressed in terms of non-physical masses as
follows:

M2
π =

1
2
(
1− R2

π

)[M2
π1

+ M2
π2
−
√(

M2
π1 −M2

π2

)2
+ (2Mπ1 Mπ2 Rπ)

2
]

,

M2
π̂ =

1
2
(
1− R2

π

)[M2
π1

+ M2
π2

+

√(
M2

π1 −M2
π2

)2
+ (2Mπ1 Mπ2 Rπ)

2
]

. (52)

In this case, new meson fields were obtained as a result of the transformation

π1 =

√
Zπ

sin
(
2θ0

π

) [π sin
(

θπ + θ0
π

)
− π̂ cos

(
θπ + θ0

π

)]
,

π2 =
1

sin
(
2θ0

π

) [π sin
(

θπ − θ0
π

)
− π̂ cos

(
θπ − θ0

π

)]
. (53)

The mixing angles are defined as follows:

sin θ0
π =

√
1 + Rπ

2
,

tan(2θπ − π) =

√
1

R2
π
− 1

M2
π1
−M2

π2

M2
π1 + M2

π2

. (54)

These formulas lead to the following mixing angles for pions:

θπ = 59.48◦, θ0
π = 59.12◦. (55)

As a result, the quark-meson Lagrangian takes the form:

L(q, π) = q̄iγ5 ∑
i=±,0

λπ
i

(
Aππi + Aπ̂π̂i

)
q, (56)

where

Aπ =
1

sin
(
2θ0

π

) [gπ sin
(

θπ + θ0
π

)
+ gπ̂ fuu(k2) sin

(
θπ − θ0

π

)]
,

Aπ̂ =
−1

sin
(
2θ0

π

) [gπ cos
(

θπ + θ0
π

)
+ gπ̂ fuu(k2) cos

(
θπ − θ0

π

)]
, (57)

where λπ are linear combinations of Gell–Mann matrices:

λπ
± =

λ1 ± iλ2√
2

, λπ
0 = λ3. (58)

Reasoning in a similar way and replacing one light quark with an s quark, one can
obtain the quark-meson Lagrangian for kaons [26]:

L(q, K) = q̄iγ5

[
∑

i=±,0
λK

i

(
AKK j + AK̂K̂ j

)
+ λK̄0

(
AKK̄0 + AK̂

ˆ̄K0
)]

q, (59)

where

AK =
1

sin
(
2θ0

K
) [gK sin

(
θK + θ0

K

)
+ gK̂ fus(k2) sin

(
θK − θ0

K

)]
,

AK̂ =
−1

sin
(
2θ0

K
) [gK cos

(
θK + θ0

K

)
+ gK̂ fus(k2) cos

(
θK − θ0

K

)]
. (60)
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The coupling constants have the form

gK =

√
ZK

4I2(mu, ms)
, gK̂ =

√
1

4I f f
2 (mu, ms)

. (61)

The matrices λK are defined in (38). For the mixing angles of kaons, we get the values

θK = 58.11◦, θ0
K = 55.52◦. (62)

After bosonization and renormalization in the one-loop approximation for the last two
particles of the pseudoscalar nonet and their first radial excitations, taking into account the
’t Hooft interaction, we can obtain the Lagrangian of the following form:

L(ϕ8
1, ϕ8

2, ϕ9
1, ϕ9

2) =
p2

2

((
ϕ8

1

)2
+
(

ϕ8
2

)2
+
(

ϕ9
1

)2
+
(

ϕ9
2

)2
+ 2Ru ϕ8

1 ϕ8
2

+2Rs ϕ9
1 ϕ9

2 + 2
gsgŝ

G+
us

ϕ8
1 ϕ9

1

)
−

M2
ϕ8

1

2
−

M2
ϕ8

2

2
−

M2
ϕ9

1

2
−

M2
ϕ9

2

2
, (63)

where Ru = Rπ , G+
us is defined in (31),

gs =

√
1

4I2(ms)
, gŝ =

√
1

4I f f
2 (ms)

, Rs =
I f
2 (ms)√

I2(ms)I f f
2 (ms)

. (64)

In this case, the diagonalization of the free Lagrangian is performed not analytically
but numerically as four states take part in this.

As a result, the quark-meson Lagrangian for four physical mesons takes the form:

L(q, η) = q̄iγ5 ∑
i=u,s

λi

[
Ai

ηη + Ai
η′η
′ + Ai

η̂ η̂ + Ai
η̂′ η̂
′
]
q, (65)

where

Au
M = gπau

1M + gπ̂au
2M fuu(k2),

As
M = gsas

1M + gŝas
2M fss(k2). (66)

Here, M stands for η, η′, η̂, or η̂′ meson. The values of the mixing (a) parameters are
shown in the Table 1. The η′ meson corresponds to the physical state η′(958) and the η̂, η̂′

mesons correspond to the first radial excitation mesons η and η′.

Table 1. Mixing parameters of η mesons.

η η̂ η′ η̂′

au
1 0.71 0.62 −0.32 0.56

au
2 0.11 −0.87 −0.48 −0.54

as
1 0.62 0.19 0.56 −0.67

as
2 0.06 −0.66 0.3 0.82

The matrices λu and λs are defined in (31).
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3.2. Vector and Axial-Vector Mesons

Let us consider the vector sector of the extended NJL model in the example of ρ
mesons. After renormalization, the free Lagrangian of ρ mesons has a nondiagonal form:

L(ρ1, ρ2) = −
1
2

(
gµν p2 − pµ pν

)(
ρ1µρ1ν + 2Rρρ1µρ2ν + ρ2µρ2ν

)
+

M2
ρ1

2
ρ1µρ

µ
1 +

M2
ρ1

2
ρ2µρ

µ
2 , (67)

where

Rρ =
I f
2 (mu)√

I2(mu)I f f
2 (mu)

. (68)

Non-physical masses are expressed by the formulas

M2
ρ1

=
g2

ρ

4G2
, M2

ρ2
=

g2
ρ̂

4G2
. (69)

The interaction constant gρ is defined in (7),

gρ̂ =

√
3

2I f f
2 (mu)

(70)

The free Lagrangian is diagonalized in the same way as in the pseudoscalar sector
using the mixing angles

sin θ0
ρ =

√
1 + Rρ

2
,

tan
(
2θρ − π

)
=

√
1

R2
ρ
− 1

M2
ρ1
−M2

ρ2

M2
ρ1
+ M2

ρ2

. (71)

For the rest of the vector mesons, the reasoning is similar. In the case of the K∗ meson,
one light quark is replaced by the s quark, and in the case of the φ meson, both light quarks
are replaced by the s quarks.

Then the quark-meson Lagrangian for the vector fields takes the form

L(q, ρ, ω, φ, K∗) = q̄
1
2

γµ

[
∑

i=±,0
λπ

i

(
Aρρi

µ + Aρ̂ρ̂i
µ

)
+ λu

(
Aωωµ + Aω̂ω̂µ

)
+ λs Aφφµ

+λs Aφ̂φ̂µ + ∑
i=±,0

λK
i

(
AK∗Ki∗

µ + AK̂∗ K̂
i∗
µ

)
+ λK̄0

(
AK∗ K̄∗0µ + AK̂∗

ˆ̄K∗0µ

)]
q, (72)

where

AM =
1

sin
(
2θ0

M
) [gM sin

(
θM + θ0

M

)
+ gM̂ fM(k2) sin

(
θM − θ0

M

)]
,

AM̂ =
−1

sin
(
2θ0

M
) [gM cos

(
θM + θ0

M

)
+ gM̂ fM(k2) cos

(
θM − θ0

M

)]
. (73)
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Here, M = ρ, ω, φ, K∗. The mixing angles take the following values:

θρ = θω = 81.8◦, θ0
ρ = θ0

ω = 61.5◦,

θφ = 68.4◦, θ0
φ = 57.13◦,

θK∗ = 84.74◦, θ0
K∗ = 59.56◦. (74)

The matrices λu and λs are defined in (31), the matrices λK are defined in (38), and the
matrices λπ are defined in (58).

For axial-vector mesons, renormalization yields the same I2 integrals as for vector
mesons. These integrals are included in the definition of nonphysical meson masses,
through which, in turn, the mixing angles are determined. This gives grounds to use the
same parameters for axial-vector mesons as in the vector case

L(q, a1, K1) = q̄
1
2

γµγ5
[

∑
i=±,0

λπ
i

(
Aρai

1µ + Aρ̂ âi
1µ

)
+ ∑

i=±,0
λK

i

(
AK∗Ki

1µ + AK̂∗ K̂
i
1µ

)
+λK̄0

(
AK∗ K̄0

1µ + AK̂∗
ˆ̄K0

1µ

)]
q. (75)

In the axial-vector case, we do not consider isoscalar states for two reasons. First, there
are difficulties in describing the mixing of these states. Second, they are not needed to
describe the processes considered in this review.

4. Strong Decays of Radially Excited Mesons and Meson Production in e+e−
Collisions at Low Energies

The formulated extended version of the NJL model made it possible to describe various
low-energy meson interaction processes with the participation of radially excited states.
A number of processes calculated in the extended model were described in detail in the
review [32]. Brief results of these calculations are presented in Table 2.

Table 2. Strong decay widths calculated in the extended NJL model.

Decays Decay Width in the
Extended NJL Model, MeV Experiment, MeV

π̂ → ρπ 220 200–600 [29]
ρ̂→ 2π 22 –
ρ̂→ ωπ 75 52–78 [40]
ω̂ → ρπ 225 174± 60 [40]

K̂∗ → K∗π 90 <95.52 ±8.64 [29]
K̂∗ → Kπ 20 15.3± 3.0 [29]
K̂ → K∗π 90 ∼109 [29]
K̂ → Kρ 50 ∼34 [29]

φ̂→ K∗K 90 –
φ̂→ K̄K 10 –

These results in Table 2 are in satisfactory agreement with the experimental data
within the precision of the model (see Section 2). The dominant decays of the excited
mesons π̂, ρ̂, ω̂, K̂∗, and φ̂ are the decays π̂ → ρπ, ρ̂ → ωπ, ω̂ → ρπ, K̂∗ → K∗π, and
φ̂ → K∗K, which go through the triangle quark loops of the anomaly type. The decays
of the type ρ̂ → 2π, K̂∗ → Kπ and φ̂ → K̄K, going through the other (not anomaly type)
quark diagrams, have smaller strong decay widths. Therefore, one can see that our model
satisfactorily describes not only the weak-decay coupling constants of the radially excited
mesons, but also their decay widths. We would like to emphasize that there were not used
any additional parameter for description of the decays.
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The extended NJL model also makes it possible to describe quite satisfactorily a whole
series of meson production processes in colliding electron–positron beams at low energies
(<2 GeV).

Among other forms of meson interaction with the participation of radially excited
states, the study of τ lepton decays is of particular interest. A more detailed discussion of
these processes in the NJL model will be given in the next Section 5. Here, we will focus on
the description of some meson production processes in colliding electron–positron beams
described in the framework of the proposed extended NJL model.

4.1. Processes e+e− → [π, π(1300)]γ

In the extended NJL model, the processes e+e− → [π, π(1300)]γ (e+e− → πγ and
e+e− → π(1300)γ) were described in [41]. The main role in this process is played by the
channels in both the ground and first radially excited states with vector mesons ρ, ω, φ, ρ̂
and ω̂. The corresponding amplitude takes the form

M = lµe∗λ(pγ)εµλαβ
pα

π pβ
γ

ms
{

Bγ + Bρ+ω+φ + Bρ̂+ω̂

}
, (76)

where s = (p1(e+) + p2(e−))2 and lµ = ēγµe is the lepton current, e∗λ(pγ) is the photon
polarization vector, εµλαβ is an antisymmetric tensor arising from the fact that this process,
like most of the other in this review of e+e− annihilation processes, contains an anomalous
quark triangle in which divergent integrals do not arise.

The contact diagram contribution reads

Bγ = 2Vγ∗π0γ(s). (77)

The sum of the contributions of the ρ and ω mesons has the form

Bρ+ω+φ =

{
Cρ

gρ

s
s−M2

ρ + iMρΓρ
+

Cρ

gρ

s
s−M2

ω + iMωΓω

+
Cφ

gφ

s
√

2 sin θωφ

s−M2
φ + iMφΓφ

}
Vρπ0γ(s), (78)

where the constants Cρ, Cφ describe the transition γ→ ρ(ω, φ) through the quark loop

CM =
1

sin
(
2θ0

M
) [sin

(
θM + θ0

M

)
+ RM sin

(
θM − θ0

M

)]
,

CM̂ =
−1

sin
(
2θ0

M
) [cos

(
θM + θ0

M

)
+ RM cos

(
θM − θ0

M

)]
, (79)

where M denotes the corresponding meson. The mixing angles θ and ratios of integrals R
for the different types of mesons are defined in Section 3.

At the vertex with the φ meson, we take into account mixing ω− φ [41].
The contributions from the channels with the excited ρ̂ and ω̂ mesons take the form

Bρ̂+ω̂ =
Cρ̂

gρ

{
s

s−M2
ρ̂ + iMρ̂Γρ̂

+
s

s−M2
ω̂ + iMω̂Γω̂

}
×Vρ̂π0γ(s). (80)

The explicit expressions for the vertices Vγ∗π0γ(s), Vρπ0γ(s) and Vρ̂π0γ(s) can be found
in [41].
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The cross section of the process under consideration can be calculated by the following
formula:

σe+e−→πγ(s) =
α3

em

24π2s3F2
π

λ3/2(s, 0, M2
π)

1
g2

π
× |Bγ + Bρ+ω+φ + Bρ̂+ω̂ |2, (81)

λ(s, 0, M2
π) = (s−M2

π)
2 − 4M2

π .

The obtained results of model calculations and the comparison with the experimental
data of the SND collaboration [42,43], are presented in the Figure 2. This Figure shows that
theoretical predictions are in good agreement with experiments. The amplitude of the π̂γ
production process has a similar structure; it is obtained by replacing the vertex π → π̂.
The corresponding predictions of the NJL model are given in Figure 3. These predictions
for future experiments can be tested at the e+e− colliders.
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Figure 2. Comparison of NJL predictions with experimental data for the process e+e− → πγ.
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Figure 3. Predictions of the NJL model for the cross sections of the process e+e− → π̂γ.

4.2. Processes e+e− → γ[η, η′, η(1295), η(1475)]

The processes of electron–positron annihilation into ηiγ meson pairs in the framework
of the extended NJL model were described in [44]. The structure of the amplitudes of these
processes is close to the processes e+e− → [π, π̂]γ considered above. In this amplitude,
we take into account the contributions of the contact diagram and diagrams from mesons
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in both the ground and first radially excited states. Note that u, d, and s quark parts of ηi
mesons work here. The calculated amplitude takes the form

M = lµe∗λ(pγ)εµλαβ ·
pα

η pβ
γ

ms
· {Bγ + Bρ+ω + Bφ + Bρ̂+ω̂ + Bφ̂}. (82)

where s = (p+(e+) + p−(e−))2. The expressions for contributions with different interme-
diate states read

Bγ =
2
3

(
5

16
3

π2muVγu +
√

2
16
3

π2msVγs

)
, (83)

Bρ+ω =

(
3s

m2
ρ − s− i

√
sΓρ

+
1
3

s
m2

ω − s− i
√

sΓω

)
·

Cρ

gρ1

(
16
3

π2muVρ

)
, (84)

Bφ = −2
√

2
3

s
m2

φ − s− i
√

sΓφ

Cφ

gφ1

(
16
3

π2msVφ

)
, (85)

Bρ̂+ω̂ =

(
3s

m2
ρ′ − s− i

√
sΓρ̂(s)

+
1
3

s
m2

ω̂ − s− i
√

sΓω̂

)
·

Cρ̂

gρ1

(
16
3

π2muVρ̂

)
eiπ , (86)

Bφ̂ = −2
√

2
3

s
m2

φ̂
− s− i

√
sΓφ̂

Cφ̂

gφ1

(
16
3

π2msVφ̂

)
, (87)

where the coefficients CV describe the photon transitions into vector mesons.

The vertex values Vγ,ρ,φ,ρ̂,φ̂ = Vη,η′ ,η̂,η̂′

γ,ρ,φ,ρ̂,φ̂ can be found in [44]. The standard values for
all masses and widths of mesons are taken from PDG [29].

A number of experimental works have shown that when describing the production
of mesons on colliding e+e− beams additional relative phase factors eiπ can appear in
intermediate states. Such factors are not described by the NJL model and are introduced
here following the experimental work [45].

The cross section of the processes under consideration can be calculated by the follow-
ing formula:

σ(s) =
αem

24π2s3 λ3/2(s, M, 0)|M|2, (88)

where λ(a, b, c) = (a− b− c)2 − 4bc, M = Mη , Mη′ , Mη̂ , Mη̂′ .
The results of numerical calculations for the cross-section are presented in Figures 4–7.

As we can see, the results of the extended NJL model for the process e+e− → γη are
in satisfactory agreement with the experimental data. Figure 4 shows two sharp peaks.
The first peak corresponds to the contributions of the intermediate ρ, ω mesons and the
second to the contribution of the φ meson. Contributions from radially excited states
give an insignificant contribution after 1.5 GeV for the process e+e− → γη. For the rest
of the processes involving η′, η(1295), η(1475) mesons, we give predictions for future
experiments.
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Figure 4. Comparison of the NJL model predictions with the experiment [45] for the e+e− → ηγ

process.

Figure 5. Predictions for the e+e− → η′γ process given by the extended and standard NJL models.

Figure 6. Predictions for the e+e− → η(1295)γ process given by the extended NJL model.



Symmetry 2022, 14, 308 19 of 53

Figure 7. Predictions for the e+e− → η(1475)γ process given by the extended NJL model.

The process e+e− → π+π− will be described in Section 5 devoted to the τ lepton
decays, therefore, consider the process e+e− → K+K− in the next.

4.3. Process e+e− → K+K−

Consider the process e+e− → K+K− following the work in [46]. This process was
experimentally studied at the accelerator of the SLAC laboratory by the BaBar collaboration
at Stanford [47] and at the VEPP-2000 collider at the Budker Institute of Nuclear Physics
in Novosibirsk [48,49] at low energies (< 2 GeV). In the extended NJL model, we calculate
this process by considering channels containing intermediate mesons φ, φ̂, ρ, ρ̂, ω, and
ω̂. For the corresponding amplitude in the extended NJL model, we obtain the following
expression:

M =
16παem

s
lµ

[
B(γ) + B(ρ+ρ̂) + B(ω+ω̂) + eiπ B(φ+φ̂)

]
µν

(pK+ − pK−)
ν , (89)

where s = (p(e−) + p(e+))2, lµ = ēγµe is the lepton current. The contribution from the
diagram with an isolated photon reads

B(γ)µν = gµν IKK
11 , (90)

The sum of the contributions of the vector mesons V and V̂ has the form

Bµν

V+V̂
= rV

[
CV
gV

gµνq2 − qµqν

M2
V − q2 − i

√
q2ΓV(q2)

IVKK
11

+
CV̂
gV

gµνq2 − qµqν

M2
V̂
− q2 − i

√
q2ΓV̂(q

2)
IV̂KK
11

]
, (91)

where V = ρ, ω, φ and V̂ = ρ̂, ω̂, φ̂ are vector mesons, q is momentum of colliding leptons,
and q2 = s. The numerical coefficients are rρ = 1/2, rω = 1/6, rφ = 1/3. Here, instead of
the constant decay width ΓV , we use Γ(s), following the work in [47]:

ΓV(s) = ΓV
s

M2
V

(
β(s, MK)

β(M2
V , MK)

)3

, (92)

where β(s, MK) =
√

1− 4M2
K/s.
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The integrals I11 appear at the vertices of the intermediate meson decay into final
states

IM1 M2 ...
n1n2 = −i

Nc

(2π)4

∫ AM1 AM2 . . .
(m2

u − k2)
n1(m2

s − k2)
n2

Θ(Λ3 − |k|)d4k. (93)

where AM are the vertices of the extended NJL model Lagrangian, defined for various
mesons in Section 3.

The prediction of the extended NJL model for the cross section of the process e+e− →
K+K− and the comparison with experimental data are shown in Figures 8 and 9. As we
can see, the model describes well the cross section for processes in the energy range 1–1.6
GeV in agreement with the SND, CMD-3, and BaBar experiments. At energies exceeding
1.6 GeV, the second radially excited states of the vector mesons ρ(1700) and ω(1650) play
an important role. As our model does not include these states, we cannot claim correct
descriptions in the region above 1.6 GeV.

 [MeV]c.m.E

1000 1100 1200 1300 1400 1500 1600 1700

 [
n

b
]

σ

1

10

210

310

NJL model

BaBar (2013)

SND (2016)

CMD3 (2018)

Figure 8. Comparison of the NJL model predictions for the process e+e− → K+K− with experimental
data [47–49].
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Figure 9. Contribution of the φ meson resonance to the process e+e− → K+K−. The experimental
points are taken from [47,49].
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4.4. Process e+e− → πω

Consider the process e+e− → πω following the work in [50]. This process was
experimentally studied at energies up to 2 GeV in a number of experiments [43,51–53].

In the NJL model, the process e+e− → πω is described by the channels with an iso-
lated photon and intermediate vector mesons ρ and ρ̂. The process amplitude is calculated
similarly to the process e+e− → πγ described above. The difference will be in the expres-
sion for the triangular vertex of the πω pair production instead of πγ, namely, Vγ∗π0ω(s),
Vρπ0ω(s) and Vρ̂π0ω(s) [50]. The total cross section of the process e+e− → πω in the NJL
model is calculated by the following formula:

σ(s) =
3α2

em
32π3s3 λ3/2(s, M2

ω, M2
π)

g2
ρ

F2
π
|J(3)|2 × Br(ω → π0γ), (94)

λ(s, M2
ω, M2

π) = (s−M2
ω −M2

π)
2 − 4M2

ω M2
π ,

where

J(3) =
(

1− s
s−M2

ρ + iMρΓρ

)
I(3)γ + Rρ

s
s−M2

ρ̂ + i
√

sΓρ̂(s)
I(3)ρ̂ , (95)

where the integrals I(3)γ , I(3)ρ̂ with different degrees of the form factor are defined in [50].
In Figure 10, we present a comparison of model predictions with experimental

data [43,51,54]. We see that the model qualitatively describes the experiment at ener-
gies up to 2 GeV. In this case, the contribution of the channel with ρ̂ mesons in the region√

s∼Mρ̂ dominates. At high energies, it is necessary to take into account the contributions
from the channels with higher-order excited vector meson states.

Figure 10. Comparison of experimental results for e+e− → π0ω with the NJL model prediction
(lines).

From a theoretical point of view, this process has been considered in many works by
other authors. In [43], the Vector Dominance Model (VDM) was used where the contribu-
tions of intermediate mesons ρ, ρ(1450), and ρ(1700) were taken into account. At the same
time, the free parameters of the model were fitted according to the experiment of the same
process.

4.5. Process e+e− → K∗K

In the extended NJL model, this process was described in [55]. The diagrams describ-
ing the process e+e− → K∗K are shown in Figure 11.
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Figure 11. Contact diagram and diagram with intermediate vector mesons of the process e+e− →
K∗K.

The process amplitude includes channels with intermediate mesons ρ, ρ̂, ω, ω̂, φ and
φ̂. In the extended NJL model, for the amplitude of this process, we obtain

M =
8παem

s

{
Bγ + Bρ+ρ̂ + Bω+ω̂ + Bφ+φ̂

}
lµεµλδσe∗λ(pK∗)pδ

K pσ
K∗ , (96)

The contribution from the contact diagram takes the form

B(γ) =
2
3

[
2ms IK∗K

21 −mu IK∗K
12

]
, (97)

where the integrals I21 and I12 are defined in (93).
For contributions from the intermediate vector mesons ρ, ρ̂, ω, and ω̂, we obtain

B(V+V̂) = aV

[
CV
gV

s
M2

V − s− i
√

sΓV(s)
IVK∗K
21

+eiπ CV̂
gV

s
M2

V̂
− s− i

√
sΓV̂(s)

IV̂K∗K
21

]
, (98)

where aρ = ms and aω = ms/3. The constants CV are defined in (79).
The contribution from the mesons φ and φ̂ is obtained by replacing the integral

IVK∗K
21 → IφK∗K

12 , IV̂K∗K
21 → Iφ̂K∗K

12 and constants aφ = −2mu/3. The values of the masses and
widths of mesons are taken from PDG [29].

The calculated cross section of the process e+e− → K∗K in the extended model is
shown in Figure 12. The experimental points are taken from the paper of the BaBar
collaboration [56]. Note that changing the value of the width Γρ̂ = 340 MeV provides
a slight shift to the left and increases the theoretical peak. The corresponding section is
shown with a dashed line. It is also important to note that the results of the NJL model
were obtained without using additional arbitrary parameters.

Figure 12. Cross section of the process e+e− → K∗K in the extended NJL model obtained with six
intermediate meson states. Experimental points are taken from [56].
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4.6. Process e+e− → φη

The amplitude of the process e+e− → φη in the extended NJL model is calculated by
considering the channels only with the mesons φ and φ̂ [55]. This is due to the fact that the
mesons φ and φ̂ consist of s quarks, the η meson contains both u, d, and s quark structures.
The amplitude of the process takes the following form:

M =
4παem

s
8ms

3s

{
Iφη
03 +

Cφ

gφ
Iφφη
03

s
M2

φ − s− i
√

sΓφ

+eiπ
Cφ̂

gφ
Iφ̂φη
03

s
M2

φ̂
− s− i

√
sΓφ̂

lµεµλδσe∗λ(pφ)pδ
η pσ

φ. (99)

Here, the constants Cφ and Cφ̂ are defined in (79); the integrals Iφφη
03 and Iφ̂φη

03 are
defined in (93).

The results of numerical calculations for the cross section of the process under consid-
eration are shown in Figure 13. We compare the model predictions for the cross section
with the data of the Babar [56] and CMD-3 [57] experiments. The plot shows that the main
contribution to the cross section is given by the channel with the first radially excited meson
φ̂. The results obtained show that the extended NJL model allows one to describe the
total cross section of the e+e− → φη process in satisfactory agreement with experiments at
energies up to 2 GeV.

Figure 13. Comparison of the e+e− → φη process total cross section with experiments. The solid
line corresponds to the prediction of the extended NJL model. The BaBar [56] and CMD-3 [57]
experimental data are given as separate points.

4.7. Process e+e− → φπ

Consider the process e+e− → φπ, following the work in [58]. This process in the
NJL model proceeds due to the ω and φ meson mixing. This mixing can be considered as
interactions of the ω and φ mesons through kaon loops. Such a mechanism was described
in the works in [59,60]. Here, we will not consider in detail the nature of mixing of these
mesons. First, we calculate the value of the mixing angle αωφ using the decay φ→ πγ, as it
was done in [61].

The amplitude of the φ→ πγ decay in the NJL model takes the form

M =
3
4

√
αem

π3/2Fπ
gφ sin(αωφ)ε

µνλδeµ(pφ)e∗ν(pγ)pπλ pγδ, (100)

where αem is the electromagnetic interaction constant, e∗µ(pφ) and e∗ν(pγ) are the polarization
vectors of the φ(1020) meson and the photon. A similar amplitude has already been
obtained earlier in the NJL model for the ω → πγ process in [16]. Using the experimental
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value of the width Γ(φ→ π0γ)exp = 5.5± 0.2 keV [29], we can fix the mixing angle which
equals to αωφ = 3.1◦.

The structure of the amplitude of the process e+e− → φπ is close to the process
e+e− → ωπ described in the NJL model [50]. Only ρ and ρ̂ mesons will participate as
intermediate mesons (along with the photon). The corresponding amplitude has the form

M(e+e− → φπ) =
8παem

s
mu sin(αωφ)(Bc + Bρ + Bρ̂)lµεµνλδe∗ν(pφ)pλ

φ pδ
π , (101)

The terms corresponding to the contributions from the contact diagram and the
intermediate ρ meson diagram are

Bc = gπ Iω
30, (102)

Bρ =
Cρgπ Iρω

30
gρ

s
M2

ρ − s− i
√

sΓρ(s)
. (103)

The contribution to the amplitude from the intermediate ρ̂ meson reads

Bρ̂ =
Cρ̂gπ I ρ̂ω

30
gρ

s
M2

ρ̂ − s− i
√

sΓρ̂(s)
. (104)

Here, the constants Cρ and Cρ̂ are defined in (79). The integrals I30 with different
meson vertices are defined in (93).

A comparison of the total cross section of the process e+e− → φπ with experimental
data is shown in Figure 14. As we can see, the results are in satisfactory agreement with the
experimental data.
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Figure 14. The total cross section of the process e+e− → φπ. The experimental points are taken from
the work of the BaBar collaboration [56].

4.8. Processes e+e− → γa1, γ f1

In conclusion of the section devoted to the processes of e+e− annihilation, we consider
the processes e+e− → γ[a1(1260), f1(1285)].

Note that processes with the participation of axial-vector mesons have been insuffi-
ciently studied. The processes under consideration in the NJL model go through anomalous
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quark loops. First of all, let us describe radiative decays with the participation of axial-
vector mesons [ρ̂, ω̂]→ γ[a1, f1]. The decay width ρ̂→ γ f1 takes the form

Γ(ρ̂→ γ f1) =
αem

54

(M2
ρ̂ + M2

f1
)(M2

ρ̂ −M2
f1
)3

Mρ̂ M2
f1

[
−I( f1 ρ̂)

3 + 2m2
u I( f1 ρ̂)

4 −m4
u I( f1 ρ̂)

5

]2
, (105)

where the explicit forms of the integrals I( f1 ρ̂)
3 , I( f1 ρ̂)

4 and I( f1 ρ̂)
5 can be found in [62]. Similarly,

one can obtain the widths of the related decays ω(1420)→ f1(1285)γ, ρ(1450)→ a1(1260)γ
and ω(1420) → a1(1260)γ. The results obtained for radiative decays are presented in
Table 3.

Table 3. The predictions of the extended NJL model for radiative decay widths

f1(1285)γ a1(1260)γ

ρ(1450)→ 1.43 keV 0.33 keV
ω(1420)→ 0.07 keV 1.63 keV

The amplitudes of the processes e+e− → γa1, γ f1 contain contributions from the
contact diagram and the diagram with intermediate mesons ρ and ω both in the ground
and first radially excited states. The corresponding amplitude has the form

M(e+e− → f1(1285)γ) =
e3

s
lν
{

Mµνλ
f1ρ + Mµνλ

f1ω

}
e(p f1)µe(pγ)λ,

M(e+e− → a1(1260)γ) =
e3

s
lν
{

Mµνλ
a1ρ + Mµνλ

a1ω

}
e(pa1)µe(pγ)λ, (106)

where

Mµνλ
f1ρ =

1
2

{
Iµνλ

( f1)
+

Cρ

gρ

s
M2

ρ − s− i
√

sΓρ
Iµνλ

( f1ρ)
+

Cρ̂

gρ

s
M2

ρ̂ − s− i
√

sΓρ̂
Iµνλ

( f1 ρ̂)

}
,

Mµνλ
f1ω =

1
18

{
Iµνλ

( f1)
+

Cω

gω

s
M2

ω − s− i
√

sΓω
Iµνλ

( f1ω)
+

Cω̂

gω

s
M2

ω̂ − s− i
√

sΓω̂
Iµνλ

( f1ω̂)

}
,

Mµνλ
a1ρ =

1
6

{
Iµνλ

(a1)
+

Cρ

gρ

s
M2

ρ − s− i
√

sΓρ
Iµνλ

(a1ρ)
+

Cρ̂

gρ

s
M2

ρ̂ − s− i
√

sΓρ̂
Iµνλ

(a1 ρ̂)

}
,

Mµνλ
a1ω =

1
6

{
Iµνλ

(a1)
+

Cω

gω

s
M2

ω − s− i
√

sΓω
Iµνλ

(a1ω)
+

Cω̂

gω

s
M2

ω̂ − s− i
√

sΓω̂
Iµνλ

(a1ω̂)

}
, (107)

where the constants C for different mesons are defined in (79). The explicit form for integrals
over the quark loops Iµνλ for different mesons can be found in [62].

Here, we have divided the amplitudes into the ρ and ω meson channels combining
the corresponding parts of the contact diagram with other components.

As a result, the resulting cross section of the processes e+e− → γ[a1, f1], depending on
the energy in the center-of-mass system of colliding leptons, is shown in Figures 15 and 16.
The dashed lines correspond to the channel with the ρ meson and the thin lines correspond
to the ω meson channel. The bold lines show the total contribution. The channel from
the ω mesons is two orders of magnitude lower and is almost invisible in the process
e+e− → f1γ.
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Figure 15. Cross section of the process e+e− → γa1. The thick line corresponds to the total cross
section, the dashed line corresponds to the ρ meson channel (diagram with intermediate ρ mesons +
appropriate part of the contact diagram), the thin line corresponds to the ω meson channel (diagram
with intermediate ω mesons + appropriate part of the contact diagram).
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Figure 16. Cross section of the process e+e− → f1γ. The bold line corresponds to the total cross
section, the dotted and thin lines correspond to the contributions of the ρ and ω mesons with a contact
diagram.

Our calculations show that the channels with the ρ and ω mesons make the same
contributions to the process e+e− → γa1, whereas in the process e+e− → γ f1 the channel
with the ρ mesons dominates.

In the absence of the corresponding experimental data, our theoretical predictions can
serve as a guide for future experiments and can be used to determine a physical program
for further experimental studies at modern e+e− colliders. Such experiments will allow a
deeper understanding of the anomalous nature of hadronic interactions.

5. τ Lepton Decays

This section describes some of the main τ lepton decays. The extended NJL model,
which allows one to take into account the first radial excites meson states, turned out to
be especially useful in the study of such processes. This is due to the value of the τ lepton
mass (mτ = 1777 MeV), which sets the energy limit for these decays. Higher excitations of
mesons are, as a rule, above this energy limit, and their contributions can be neglected.

An interesting feature of the processes with two pseudoscalar mesons in the final state
is the need to take into account the corrections associated with the final state interactions.
This requires going beyond the lower order of the 1/Nc expansion in which the NJL model
is formulated. However, this interaction is not always significant. For example, in the
process e+e− → K+K− considered above, there was no need to take into account the final
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state interactions. Such interactions will be considered in more detail in the section devoted
to the τ lepton decay with two pseudoscalar particles in the final state.

5.1. Two-Particle τ Lepton Decays
5.1.1. The Decays τ → [π, π̂]ντ

Lets consider the simplest τ → [π, π̂]ντ decays.
Diagrams describing the τ → P(P̂)ντ decays, where P = π, K are shown in Figure 17.

As a result, using the quark-meson Lagrangians, we obtain the following expression for the
decay amplitude τ → πντ :

Mτ→πντ = GFLµVud
mu

gπ

[
Zπ − Zπ

6m2
u

M2
a1

]
pµ = GFVudFπ Lµ pµ. (108)

The first term in the amplitude describes the contribution from the contact diagram.
The second term corresponds to the contribution from the intermediate channel with the
a1 meson. For the weak interaction constant, we obtain the value Fπ = mu/gπ = 92.5
MeV. This leads to full agreement of the τ → πντ decay width with the experiment
Γexp(τ → πντ) = (2.46± 0.01)× 10−10 [29].

Figure 17. Contact diagram and diagram with intermediate mesons describing decays τ → P(P̂)ντ .

In the extended NJL model, we obtain the following three terms for the considered
decay amplitude corresponding to the contact channel and channels with the intermediate
a1 and â1 mesons:

Mτ→πντ = GFLµVud

[
Zπmu

gπ

[
1− 6m2

u
M2

a1

[
sin(θ + θ0)

sin(2θ0)
+ Rρ

sin(θ − θ0)

sin(2θ0)

]2]
(109)

−Zπmu

gπ

6m2
u

M2
â1

[
cos(θ + θ0)

sin(2θ0)
+ Rρ

cos(θ − θ0)

sin(2θ0)

]2]
pµ,

where the mixing angles θ and Rρ are defined in Section 3.
The weak decay constant in the extended model takes the value Fπ = 94.1 MeV. Using

this value for the decay width τ → πντ , we obtain Γ(τ → πντ) = 2.52× 10−10 MeV. As
we can see, the result is in satisfactory agreement with the experiment.

Similar calculations can be performed using the vertices of the quark-meson La-
grangian for the decay τ → π̂ντ . As a result, we obtain the following amplitude:

Mτ→π̂ντ = GFVudFπ̂ Lµ pµ, (110)

where the constant Fπ̂ in the extended NJL model takes the form

Fπ̂ = Cπ̂
Zπmu

gπ
−

Cρ

gρ
4mu Ia1π̂

20
6m2

u

M2
a1
−M2

π̂ − iΓa1 Ma1

(
1−

M2
π̂

M2
a1

)
(111)

−
Cρ̂

gρ
4mu I â1π̂

20
6m2

u

M2
â1
−M2

π̂ − iΓâ1 Mâ1

(
1−

M2
π̂

M2
â1

)
≈ 5 MeV,

where Cπ̂ , Cρ, Cρ̂ are the constants describing the transitions of the W boson to inter-
mediate mesons (79). In the propagators of axial-vector mesons, we take into account



Symmetry 2022, 14, 308 28 of 53

the gauge-invariant form and widths of intermediate mesons Γa1 = 250–600 MeV, Γâ1 =

254 ± 40 MeV [29]. The integrals Ia1π̂
20 , I â1π̂

20 correspond to the quark loops of the transitions
a1 → π̂, â1 → π̂ and defined in (93). As a result, for the decay width and weak decay
constant we obtain ΓNJL(τ → π̂ντ) = 1.04× 10−13 MeV, Fπ̂ = 5 MeV. This value does
not exceed the experimentally established bound for the width Γexp(τ → π̂ντ) < 4.31×
10−13 MeV obtained in the work [63].

5.1.2. The Decays τ → [KK̂]ντ

The τ lepton decays into neutrino and strange mesons K and K̂ are similar in structure
to the processes τ → [π π̂]ντ . Only here the roles of intermediate mesons are played by
strange mesons K1, K̂1. The corresponding amplitude in the standard NJL model, taking
into account the K− K1A transitions takes the form:

Mτ→Kντ =
GF√

2
LµVus

(
Bc + BK1

)
pµ, (112)

where

Bc =
√

2ZK
ms + mu

2gK
, (113)

BK1 =
√

2ZK
ms + mu

2gK
(1− ZK). (114)

Representing the hadronic current in the form
√

2FK pµ, for the weak decay constant
FK we obtain the following expression:

FK =
ms + mu

2gK
. (115)

As a result, for the decay width τ → Kντ and the weak interaction constant, we
obtain Γ(τ → Kντ) = 1.19× 10−11 MeV and FK = 95 MeV. The experimental data are
Γexp(τ → Kντ) = (1.58± 0.02)× 10−11 MeV and FK = 110.2 MeV [29].

The calculated amplitude of the decay τ → Kντ in the extended NJL model takes the
form

Mτ→Kντ =
GF√

2
LµVus

[
ZK

ms + mu

2gK
CK (116)

−6(ms + mu)3

2M2
K1A

CK1

gK1

IK1K
11 − eiφ 6(ms + mu)3

2M2
K1(1650)

ĈK1

gK1

IK̂1K
11

]
pµ,

where the integrals IK1K
11 , IK̂1K

11 describe the transitions of intermediate mesons to the
kaon [30]. The value M2

K1A
is defined as follows:

M2
K1A

=

(
sin2(β)

M2
K1(1270)

+
cos2(β)

M2
K1(1400)

)−1/2

, (117)

where the angle β is defined in Section 2.2.
The extended NJL model does not claim to correctly describe the relative phases be-

tween the ground and excited states of intermediate mesons. Therefore, we are considering
several versions for choosing the phase.

Using the obtained hadronic current, similar calculations can be performed for the
decays τ → K̂ντ , K → µνµ, and K̂ → µνµ. The obtained theoretical estimates for the decay
widths and weak decay constants are given in the Table 4.
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Table 4. Predictions of the extended NJL model for decay widths and weak constants.

Decay
Decay Width in the Extended NJL Model, MeV

φ = 0◦ φ = 180◦ φ = 102◦

τ → Kντ 1.30× 10−11 1.77× 10−11 1.59× 10−11

τ → K̂ντ 2.09× 10−14 2.16× 10−13 1.42× 10−13

K → µνµ 2.76× 10−14 3.75× 10−14 3.37× 10−14

K̂ → µνµ 1.14× 10−15 1.18× 10−14 7.81× 10−15

FK 100 116 110.14
FK̂ 11.3 36.3 29.54

Our calculations in the NJL model show that the dominant contribution in deter-
mining FK comes from the contact diagram and, accordingly, smaller contributions from
intermediate axial-vector mesons.

In determining the decay width τ → K̂ντ and the constant FK̂, the contribution from
the intermediate channel K1(1650) becomes commensurate with the contribution of ground
states K1(1270) and K1(1400). Consequently, the phase of the excited K1(1650) meson
plays an essential role. The best agreement with the experimental data was obtained in
the extended NJL model with the phase φ = 102◦ of the intermediate axial-vector meson
K1(1650).

5.1.3. The Decays τ → [V, V̂]ντ , τ → [A, Â]ντ

We now turn to the description of τ lepton decays into a neutrino and one vector or
axial-vector mesons both in the ground state and first radially excited states. These decays
are described by the quark loop describing the transition of the W boson into a meson
(Figure 18).

Figure 18. Diagram, describing decays τ → V(V̂)ντ and τ → A(Â)ντ .

The obtained amplitude in the extended NJL model has the form [64]

Mτ→M(M̂)ντ
= GFLµVud(s)

CM(M̂)

gM

(
gµν(p2 − aM)− pµ pν

)
eM

ν , (118)

where M denotes the corresponding meson. The constants aM read

aρ(ρ̂) = 0, aa1(â1)
= 6m2

u, (119)

aK∗(K̂∗) =
3
2
(ms −mu)

2, aK1(K̂1)
=

3
2
(ms + mu)

2. (120)

Here, the constants CM(M̂) are defined in (79).
The obtained theoretical values for the decay widths and their experimental values

are given in Table 5.
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Table 5. Predictions of the extended NJL model for τ lepton decays into vector and axial vector
mesons.

Decay Decay Width in the NJL
Model, MeV Experiment PDG [29], MeV

τ → ρντ 4.19× 10−10 –
τ → ρ(1450)ντ 4.79× 10−11 –
τ → a1(1260)ντ 2.94× 10−10 –
τ → a1(1640)ντ 6.96× 10−11 –
τ → K∗(892)ντ 2.07× 10−11 (2.72± 0.15)× 10−11

τ → K∗(1410)ντ 3.67× 10−12 3.4(+3.17,−2.27)× 10−12

τ → K1(1270)ντ 0.57× 10−11 (1.06± 0.24)× 10−11

τ → K1(1400)ντ 2.4× 10−12 (3.86± 5.90)× 10−12

τ → K1(1650)ντ 3.34× 10−13 –

As a result, in the NJL model, τ lepton decays into a neutrino and one meson (pseu-
doscalar, vector, axial-vector) were described both in the ground and radially excited states.
The obtained results taking into account the model accuracy can be considered quite sat-
isfactory. Note that the accuracy of the U(3)×U(3) model is ±17%. In more complex τ
decays, where the final products are neutrino and two mesons intermediate channels with
the meson states described above, play a decisive role.

5.2. The Decays τ → PPντ

5.2.1. The Processes τ → ππντ and e+e− → π+π−

The process τ → ππντ is the most probable decay mode of the τ lepton. In many
theoretical works, the agreement with the experiment is achieved by the phenomenological
parameterization of the pion form factor and by fitting the results with experimental
data [65–68].

The diagrams of the process τ → ππντ are shown in Figure 19.

Figure 19. Contact diagram and diagram with intermediate ρ meson of the process τ → ππντ .

The threshold of the final pions production is lower than the value of the intermediate
ρ meson mass. That is why the diagram with the pointed meson gives the main contribution.
The contribution of the diagram with the excited meson state is negligible. This allows us
to restrict ourselves to the standard NJL model when considering this process.

The calculation result of the process τ → ππντ in the framework of the NJL model
is 30% lower than the experimental value [69]. The discrepancy of the theoretical and
experimental results indicates the need to take into account additional effects such as the
interactions of mesons in the final state. This interaction is beyond the NJL model because
it leads to higher degrees of 1/Nc than the NJL model allows.

In this section, we present the results of studying the possibility of considering such
contributions in addition to the results obtained in the standard NJL model for a number of
processes.

Those interactions in the final state for the process τ → ππντ can be represented as a
triangle shown in Figure 20.
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Figure 20. Diagram describing mesons interactions in the final state.

This triangle can be described with the integral of the following form [69]:

g3
ρ

∫
(k− 2p0)

λ(k + 2p−)
ν(2k + p− − p0)

µ[
k2 −M2

ρ

][
(k− p0)2 −M2

π

][
(k + p−)2 −M2

π

]
(

gνλ −
kνkλ

M2
ρ

)
d4k

(2π)4 . (121)

Expanding this integral in external momenta and leaving only divergent terms similar
to the method applied to the quark loops in the NJL model, one can obtain the following
results:

ig3
ρ

[
Iρ

M2
ρ
+ Iρπ

]
(p− − p0)

µ, (122)

where Iρ and Iρπ are the quadratic and logarithmic divergent integrals, respectively. This
integrals are given in (A1) in Appendix A.

Then, the amplitude of the considered decay takes the form

M(τ → ππν) = −GFVud

[
1 +

s
M2

ρ − s− i
√

sΓρ

]
(123)

×
{

1 + g2
ρ

[
Iρ

M2
ρ
+ Iρπ

]}
Lµ(p− − p0)

µ.

The first term in the squared brackets describes the contact diagram. The second term
describes the diagram with the intermediate ρ meson. The first term in the curly brackets
corresponds to the amplitude obtained in the standard NJL model. The second term is a
correction taking into account the interactions in the final state. Without this correction, the
result for the considered process is

Br(τ → ππν) = (17± 0.85)%. (124)

It is 30% lower than the experimental value [29]:

Br(τ → ππν)exp = (25.49± 0.09)%. (125)

For calculation of the correction from the interactions in the final state in this process,
it is necessary to know the value of the new cut-off parameter appearing in the meson
loop Λππ . For its fixation, one can consider the process e+e− → π+π−, whose structure is
close to the structure of the process τ → ππντ . The hadron currents in these processes are
related to each other by the rotation in the isotopic space. This gives grounds to use the
same set of parameters for both processes including the parameter Λππ .
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The amplitude of the process e+e− → π+π− takes the form [69]

M(e+e− → ππ) = −4παem

s

[
1 +

s
M2

ρ − s− i
√

sΓρ

+
s2

9

g2
ρ[I2(u)− I2(d)][

M2
ρ − s− i

√
sΓρ

][
M2

ω − s− i
√

sΓω

] ]

×
{

1 + g2
ρ

[
Iρ

M2
ρ
+ Iρπ

]}
lµ(p+ − p−)µ. (126)

The third term in the squared brackets describes the diagram with the intermediate ω
meson. By the known dependence of the cross section of this process on the energy of the
colliding leptons, one can fix the cut-off parameter of the meson loop Λππ = 740 MeV [69].
The appropriate diagram is shown in Figure 21. One can see that taking into account the
interaction in the final state is especially important near the resonance.
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Figure 21. Cross section for the process e+e− → π+π− versus the c.m. energy. The experimen-
tal points are taken from [70,71]. The solid and dashed lines are obtained with and without the
contribution of interactions in the final state, respectively.

By using the obtained value of Λππ , the branching fraction of the decay τ → ππντ

has been calculated [69]:

Br(τ → ππν) = (25.1± 1.2)%. (127)

This result is in satisfactory agreement with the experimental data presented in (125).

5.2.2. The Processes τ → [η, η′]πντ

The processes τ → [η, η′]πντ refer to the decays that include the second-class currents.
These decays are suppressed by G-parity violation and can occur only due to the mass
difference between light u and d quarks. These processes were researched within different
phenomenological models [72–81].

For the description of the process τ → ηπντ , one can use the results obtained for
the process τ → ππντ described above by adding the transition π0 − η to it. Then, the
amplitude takes the form
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M(τ → πηντ) = GFVudTπη Lµ M2
ρ

(
1−

i
√

sΓρ

M2
ρ

)
BWρ

×
[
(pη − pπ)

µ + g2
ρ

(
a(s)pµ

η − b(s)pµ
π

)]
, (128)

where the functions a(s) and b(s) are defined in (A2) and (A3).
The Breit–Wigner propagator takes the standard form

BWρ =
1

M2
ρ − s− i

√
sΓρ

. (129)

The process τ → πηντ differs from the process τ → ππντ by the fact that it has
mesons with different masses in the final state. This leads to the necessity of taking into
account additional terms with the convergent integrals for the elimination of uncertainties.

The factor Tπη describes the transition π0 − η

Tπη(η′) = 2g2
π

[(
2I1(md) + M2

η(η′) I2(md)
)
−
(

2I1(mu) + M2
η(η′) I2(mu)

)] sin(ᾱ)(cos(ᾱ))
M2

π −M2
η(η′)

, (130)

By using the same cut-off parameter as in the case of the process τ → ππντ , one can
obtain the following result:

Br(τ → πηντ) = 1.87× 10−5. (131)

It is not beyond the experimental restrictions [82–84]:

Br(τ → πηντ)exp < 9.9× 10−5,

Br(τ → πηντ)exp < 7.3× 10−5 (132)

While describing the process τ → η′πντ , it is necessary to apply the extended NJL model
for taking into account the excited mesons in the intermediate state because of the higher
value of the threshold of the final meson production.

Then, after taking into account the interactions in the final state the amplitude takes
the form

M(τ → πη′ντ) = GFVudZπTπη′Lµ

{[
Mc +Mρ +Mρ̂

]µν(pη − pπ

)
ν

+
[
Mc(loop) +Mρ(loop) +Mρ̂(loop)

]µν(
a(s)pη − b(s)pπ

)
ν

}
. (133)

Here, the functions a(s) and b(s) have been constructed by the exchange M2
η → M2

η′

in the definitions (A2) and (A3). The terms in the squared brackets in the amplitude (133)
describe the contact diagram and the diagram with the intermediate ρ mesons in the ground
and first radially excited states:

Mµν
c =

[
1− C2

ρ
6m2

u
M2

a1

]
gµν,

Mµν
ρ = C2

ρ

[
1− 4Iρa1

20
m2

u
M2

a1

]
gµνq2 − qµqν

M2
ρ − q2 − i

√
q2Γρ

,

Mµν
ρ̂ = eiπC2

ρ̂

[
1− 4I ρ̂a1

20
Cρ

Cρ̂

m2
u

M2
a1

]
gµνq2 − qµqν

M2
ρ̂ − q2 − i

√
q2Γρ̂

,
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Mµν

c(loop) = g2
ρZ2

πC2
ρ

[
1− C2

ρ
6m2

u
M2

a1

][
1− 4Iρa1

20
m2

u
M2

a1

]2

gµν,

Mµν

ρ(loop) = g2
ρZ2

πC4
ρ

[
1− 4Iρa1

20
m2

u
M2

a1

]3
gµνq2 − qµqν

M2
ρ − q2 − i

√
q2Γρ

,

Mµν

ρ̂(loop) = eiπ g2
ρZ2

πC2
ρ̂C2

ρ

[
1− 4I ρ̂a1

20
Cρ

Cρ̂

m2
u

M2
a1

][
1− 4Iρa1

20
m2

u
M2

a1

]2
gµνq2 − qµqν

M2
ρ̂ − q2 − i

√
q2Γρ̂

,

where q is the momentum of the intermediate meson; the integrals over quark loops Iρa1
20

and I ρ̂a1
20 are defined in (93).
The branching fraction of this process takes the value

Br(τ → πη′ντ) = 1.25× 10−7. (134)

It is also within the experimental restrictions [82,83]:

Br(τ → πη′ντ)exp < 40× 10−7. (135)

The Belle II experimental collaboration presented the research program in recent
works [85,86]. The upcoming experiment will allow us to study the second class current
decays more accurately. We hope that our results will receive experimental confirmation.

5.2.3. The Process τ → Kπντ

Interest in the process τ → K−πντ is as it is applied in studying the vacuum polariza-
tion and that it includes strange and non-strange particles simultaneously. This process
was investigated in different theoretical works [87–89].

The diagrams of this process are shown in Figure 22.

Figure 22. Contact diagram and diagram with the intermediate meson of the process τ → K−π0ντ .

Due to the low energy threshold of the meson production in the process τ → K−πντ

the contribution of the excited mesons state is negligible and one can use the standard NJL
model.

The amplitude of this process in the standard NJL model takes the form

M(τ → K−π0ντ)tree = −3G f Vus
gKgπ

g2
K∗

Lµ

[
gµν

+
gµνq2 − qµqν

M2
K∗ − q2 − i

√
q2ΓK∗

]
·(TK pKν − Tπ pπν), (136)
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where the factors TK and Tπ describe the a1 − π and K1 − K transitions:

Tπ = 1− 3
mu(3mu −ms)

M2
a1

, (137)

TK = 1− 3
ms(mu + ms)

M2
K1A

. (138)

Here, the value MK1A is determined in (117).
This amplitude leads to the following value of the branching fraction:

Br(τ → K−π0ντ)tree = 2.92× 10−3. (139)

This result is significantly lower than the experimental data [29]:

Br(τ → K−π0ντ)exp = (4.33± 0.15)× 10−3. (140)

This may be caused by the necessity of taking into account the interactions in the final
state.

To take into account the interactions in the final state, one can consider three possible
diagrams of the meson exchange given in Figure 23.

Figure 23. The interactions of the kaon and pion in the final state.

These meson triangles lead to the following integrals [90]:

FK∗±
µ =

∫
(TKk− (TK + Tπ)pπ)λ(Tπk + (TK + Tπ)pK)ν[
k2 −M2

K∗
][
(k + pK)2 −M2

π

][
(k− pπ)2 −M2

K
]

×((TK + Tπ)k + Tπ pK − TK pπ)µ

(
gνλ − kνkλ

M2
K∗

)
d4k

(2π)4 , (141)

Fρ
µ =

∫ (k− 2pπ)λ(k + 2pK)ν((TK + Tπ)k + TK pK − Tπ pπ)µ[
k2 −M2

ρ

][
(k + pK)2 −M2

K
][
(k− pπ)2 −M2

π

]
×
(

gνλ − kνkλ

M2
ρ

)
d4k

(2π)4 , (142)

FK∗0
µ = FK∗±

µ . (143)

These integrals are divergent and can be regularized with the cut-off parameter ΛKπ .
The expressions for the integrals (141) and (142) are presented in [90].
As a result, the correction to the amplitude from these triangles takes the form

M(τ → K−π0ντ)loop = −3iG f Vus
gKgπ

g2
K∗

Lµ

[
gµν +

gµνq2 − qµqν

M2
K∗ − q2 − i

√
q2ΓK∗

]

×
{
−
(

3
gKgπ

gK∗

)2
FK∗±

ν + g2
ρFρ

ν + 2
(

3
gKgπ

gK∗

)2
FK∗0

ν

}
. (144)
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The comparison of the branching fraction calculated by using this amplitude with the
experimental value [29] leads to the cut-off parameter ΛKπ = 950 MeV. The obtained result
is higher than the result obtained for the process τ → π−π0ντ (Λππ = 740 MeV). This may
be caused by the replacement of the pion with a more massive kaon.

The meson triangles with the exchange of the scalar state give the result lower by
orders of magnitude and it can be neglected.

As one can see, in this process, in the absence of radially excited mesons in the
intermediate state, the interaction of mesons in the final state plays an important role.

5.2.4. The Process τ → K−ηντ

In this process, the energy threshold of meson production is higher than the mass of
the ground state K∗(892). That is why the first radially excited mesons in the intermediate
state give a significant contribution and they may not be neglected. This leads to the
necessity of applying the extended NJL model.

In the extended NJL model the amplitude of the process τ → K−ηντ takes the form

M(τ → K−ηντ)tree = −2G f Vus

(
IKηu

11 +
√

2IKηs

11

)
Lµ

[(
T(c)

K pK − T(c)
η pη

)µ

+
CK∗

gK∗

IKK∗ηu

11 +
√

2IKK∗ηs

11

IKηu

11 +
√

2IKηs

11

gµνq2 − qµqν

M2
K∗ − q2 − i

√
q2ΓK∗

(
T(K∗)

K pK − T(K∗)
η pη

)
ν

+
CK̂∗

gK∗

IKK̂∗ηu

11 +
√

2IKK̂∗ηs

11

IKηu

11 +
√

2IKηs

11

gµνq2 − qµqν

M2
K̂∗
− q2 − i

√
q2ΓK̂∗

(
T(K̂∗)

K pK − T(K̂∗)
η pη

)
ν

, (145)

where the integrals over quark loops I11 are defined in (93), the constants C are determined
in (79), and the factors T are given in (A5).

As a result, for the branching fraction of this process one can obtain the value

Br(τ− → K−ηντ)tree = 1.35× 10−4. (146)

It is 13% lower than the experimental result [29]:

Br(τ− → K−ηντ)exp = (1.55± 0.08)× 10−4. (147)

Therefore, it likely takes into account the interactions in the final state matters in this
process as well. This interaction can be considered through the exchange of the meson K∗

between the final particles. This leads to the meson triangle presented in Figure 24.

Figure 24. Interactions of the kaon and η meson in the final state.

This meson triangle can be described by the integral [91]

Fµ =
∫ (

T(K∗)
K k−

(
T(K∗)

K + T(K∗)
η

)
pη

)
λ

(
T(K∗)

η k +
(

T(K∗)
K + T(K∗)

η

)
pK

)
ν[

k2 −M2
K∗
][
(k + pK)2 −M2

η

][
(k− pη)2 −M2

K
]

×
((

T(K∗)
K + T(K∗)

η

)
k + T(K∗)

η pK − T(K∗)
K pη

)
µ

(
gνλ − kνkλ

M2
K∗

)
d4k

(2π)4 . (148)
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This integral is of a similar structure as the respective integral for the process τ → Kπντ

described above.
The correction to the amplitude describing the interaction in the final state takes

the form

Mloop(τ → Kηντ) = 8iG f Vus

(
IKηu

11 +
√

2IKηs

11

)3
Lµ

×
[

gµν +
CK∗

gK∗

(
IKK∗ηu

11 +
√

2IKK∗ηs

11

IKηu

11 +
√

2IKηs

11

)3
gµνq2 − qµqν

M2
K∗ − q2 − i

√
q2ΓK∗

+
CK̂∗

gK∗

 IKK̂∗ηu

11 +
√

2IKK̂∗ηs

11

IKηu

11 +
√

2IKηs

11

3
gµνq2 − qµqν

M2
K̂∗
− q2 − i

√
q2ΓK̂∗

]
Fν. (149)

While using the cut-off parameter obtained in the process τ → Kπντ (ΛKπ = 950 MeV),
the result for the process τ− → K−ηντ is consistent with the experimental data:

Br(τ− → K−ηντ) = 1.56× 10−4. (150)

As one can see, the excited meson in the considered process plays a significant role,
but the contribution of the interactions in the final state has decreased noticeably compared
to the previous cases.

This process was studied in other theoretical works by using the Vector Dominance
Model, Chiral Perturbation Theory with Resonances, and others [92,93].

5.2.5. The Process τ → K−K0ντ

Similarly to the previous case, in the process τ → K−K0ντ , it is necessary to take into
account the first radially excited mesons in the intermediate states and, thus, to apply the
extended NJL model.

The diagrams of this process are presented in Figure 25.

Figure 25. Contact diagram and diagram with the intermediate mesons of the process τ → K−K0ντ .

To take into account the interaction in the final state in this process, one can consider
the exchange of the neutral vector mesons between the final kaons. The appropriate
diagrams are given in Figure 26.

Figure 26. Interactions of the kaons in the final state.



Symmetry 2022, 14, 308 38 of 53

These diagrams can be described with the integrals [94]

F(ρ)
µ =

∫ (k− 2pK−)λ(k + 2pK0)ν(2k + pK0 − pK−)µ

(
gνλ − kνkλ

M2
ρ

)
[
k2 −M2

ρ

][
(k + pK0)2 −M2

K
][
(k− pK−)

2 −M2
K
] d4k

(2π)4 , (151)

F(ω)
µ =

∫ (k− 2pK−)λ(k + 2pK0)ν(2k + pK0 − pK−)µ

(
gνλ − kνkλ

M2
ω

)
[k2 −M2

ω ]
[
(k + pK0)2 −M2

K
][
(k− pK−)

2 −M2
K
] d4k

(2π)4 , (152)

F(φ)
µ =

∫ (k− 2pK−)λ(k + 2pK0)ν(2k + pK0 − pK−)µ

(
gνλ − kνkλ

M2
φ

)
[
k2 −M2

φ

][
(k + pK0)2 −M2

K
][
(k− pK−)

2 −M2
K
] d4k

(2π)4 . (153)

These integrals are similar to the respective integral obtained for the process τ → ππντ

and given in (A11).
The full amplitude taking into account the interaction in the final state takes the

form [94]

M(τ → K−K0ντ)tot = −2
√

2G f Vud IKK
11

[
T(c)

K +
Cρ

gρ

IKKρ
11
IKK
11

T(ρ)
K

q2

M2
ρ − q2 − i

√
q2Γρ

+
Cρ̂

gρ

IKKρ̂
11
IKK
11

T(ρ̂)
K

q2

M2
ρ̂ − q2 − i

√
q2Γρ̂

]{
1− 4

(
IKKρ
11

)2(
T(ρ)

K

)2
[

Iρ

M2
ρ
+ IρK

]
+ 4
(

IKKω
11

)2

×
(

T(ω)
K

)2
[

Iω

M2
ω
+ IωK

]
+ 4
(

IKKφ
11

)2(
T(φ)

K

)2
[

Iφ

M2
φ

+ IφK

]}
Lµ(pK0 − pK−)

µ, (154)

where the constants T(ρ)
K , T(ω)

K , and T(φ)
K are given in (A14).

The first term in the curly brackets describes the diagrams in the tree approximation
of the meson fields interaction. The branching fraction of this process in this approximation
takes the value

Br(τ → K−K0ντ) = 13.95× 10−4. (155)

It is in satisfactory agreement with the experimental value [29]:

Br(τ → K−K0ντ)exp = (14.86± 0.34)× 10−4. (156)

Taking into account the interactions in the final state leads to the appearance of the cut-
off parameter in the meson loop. Full agreement with experimental data can be achieved
with the value of this parameter ΛKK = 610 MeV.

As one can see, taking into account the interactions in the final state does not play an
important role in this process and gives the correction within the model uncertainties. The
correction of the same level can be achieved by variation of the width of the intermediate
radially excited meson within the experimental errors. When describing a similar process
e+e− → K+K− in the extended NJL model [46], a satisfactory result was obtained without
taking into account the interactions in the final state. All these facts indicate the decreasing
role of the interactions in the final state, while the role of excited mesons in the intermediate
state increases. They also indicate that there is no need to take into account the interactions
in the final state in the case when the energy threshold of the final meson production is
higher than 1 GeV. For this reason, in Section 5.3, where the τ lepton decays into vector and
pseudoscalar particles, the interactions in the final state will not be taken into account.

The decay τ → K−K0ντ was considered in many theoretical works [68,92,95,96].
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5.3. The Decays τ → PVντ

5.3.1. The Decay τ → πωντ

The decay of τ → πωντ has been repeatedly investigated in various theoretical [97–99]
and experimental works [100,101]. In particular, in [97], a phenomenological model of the
vector dominance type was used, where the channels with intermediate mesons ρ(770),
ρ(1450), and ρ(1700) were considered. Wherein, for good agreement with experimental
data, additional arbitrary parameters were used.

In the NJL model, this decay is described by the diagrams of two types. In the first
diagram, the intermediate W boson directly generates πω meson pairs through the quark
triangle. The second diagram is related to the W boson which transits into vector mesons
and also generates πω meson pair. These diagrams are shown in Figure 27. The amplitude
of the process under consideration takes the form [102]

M(τ → πωντ) = GFLµVud4mugπ

(
Bc + B(ρ+ρ̂)

)
εµνλδe∗ν(pω)pλ

ω pδ
π . (157)

Figure 27. Contact diagram and diagram with the intermediate mesons describing the decay
τ → πωντ .

The corresponding contribution from the contact diagram to the amplitude is
Bc = Iρ

30(mu). The contributions from intermediate mesons are defined as

B(ρ+ρ̂) =
Cρ

gρ
Iρω
30

s
M2

ρ − s− iMρΓρ
+ eiπ Cρ̂

gρ
I ρ̂ω
30

s
M2

ρ̂ − s− iMρ̂Γρ̂(q)
, (158)

where the integrals I30 are defined in (93); the width of the radially excited meson Γρ̂(q) is
taken from [50]. The constants Cρ and Cρ̂ are defined in (79).

As a result, the branching fraction of the decay τ → πωντ turns out to be equal to

Br(τ → ωπντ) = 1.83%. (159)

This is in satisfactory agreement with the experimental data [29]:

Br(τ → ωπντ)exp = (1.95± 0.06)%. (160)

Note that we do not take into account the contribution to the amplitude from the
heavier ρ(1700) meson as its contribution is strongly suppressed due to the phase volume
factor.

5.3.2. The Decay τ → ρπντ

The process τ → ρ0(770)π−ντ is actively investigated theoretically in various phe-
nomenological models [68,99]. In the framework of the NJL model, this process was
considered in the work [103]. Its amplitude in the extended NJL model takes the following
form:

M(τ → ρπντ) = −iFπGFVudgρZπ Lµ

{
Mc +MA +MÂ +MP +MP̂

}µνeν(pρ), (161)
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where the contributions from the contact diagram and the contributions from diagrams
with intermediate mesons are in the curly brackets

Mµν
c = Cρgµν − 2

3
Ca1 Iρa1

20
M2

a1

{
(q2 −M2

ρ)gµν − qµqν
}

, (162)

Mµν
A =

2
3

Ca1 BWa1

[
(q2 − 6m2

u)gµλ − qµqλ

Zπ

]
×
{

Ia1ρ
20 gλδ −

Ca1 Ia1ρa1
20

gρ M2
a1

[
(q2 −M2

ρ)gλδ − qλqδ

]}
gδν

−4m2
uZπCa1

1
M2

a1

M2
a1
− q2

M2
π − q2

BWa1

[
Ia1ρ
20 +

Ca1 Ia1ρa1
20 M2

ρ

gρ M2
a1

]
qµqν, (163)

Mµν

Â
=

2
3

Câ1 BWâ1

[
(q2 − 6m2

u)gµλ − qµqλ

Zπ

]
×
{

I â1ρ
20 gλδ −

Ca1 I â1ρa1
20

gρ M2
a1

[
(q2 −M2

ρ)gλδ − qλqδ

]}
gδν, (164)

Mµν
P = 2ZπCρ

[
1− 4Iρa1

20
m2

u
M2

a1

][
1− 6

m2
uC2

a1

M2
a1

]
BWπqµ pν

π , (165)

Mµν

P̂
= 8

gπ

gρ
Cπ̂ Iρπ̂

20

[
1− 6

Iρa1π̂
20 Ca1

Iρπ̂
20 gρ

m2
u

M2
a1

]
BWπ̂qµ pν

π , (166)

where Ma1 = 1230± 40 MeV, Γa1 = 425 MeV are the mass and total width of the a1(1260)
meson [29]; BWM are the Breit–Wigner propagators defined in (129); q = pρ + pπ . The
amplitude is given with allowance for the a1 − π transitions in all channels.

Taking into account the a1 − π transitions the branching fraction of this process is

Br(τ → ρ0(770)π−ντ) = 1.1%. (167)

If we exclude the a1 − π transitions in the axial-vector channel, we get the following
result:

Br(τ → ρ0(770)π−ντ) = 4.96%. (168)

In the case of the decay into an excited state, the branching fraction, taking into account
the a1 − π transitions, takes the following value:

Br(τ → ρ0(1450)π−ντ) = 1.2× 10−4. (169)

Without taking into account the a1 − π transitions, the decay into an excited state
gives

Br(τ → ρ0(1450)π−ντ) = 1.8× 10−4. (170)

At present there are no satisfactory numerical estimates for the decay width τ →
ρ0(770)π−ντ ; therefore, we can compare our results with the process τ → π−π−π+ντ . The
branching fraction of this process is Br(τ → π−π+π−ντ) = 9.31± 0.05% [29]. The process
τ → π−π−π+ντ was also considered theoretically in the work [104] with the participation
of one of the authors. Due to the fact that this process can also contain channels with a scalar
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meson, as well as channels with a box diagram, there is reason to believe that the process
under consideration τ → ρ0(770)π−ντ should have a width smaller than τ → π−π+π−ντ .

This process was also considered in the NJL model in the paper [105]. There, the a1−π
transitions in the axial-vector channel were taken into account, but a different approach was
used to take into account the excited meson states than the one used in the extended NJL
model. As a result, the branching fraction Br(τ → ρ0(770)π−ντ) = 5.65% was obtained.

5.3.3. The Decays τ → [ω, φ]Kντ

The τ → [ω, φ]Kντ decays will be considered in the extended NJL model, following the
work in [106]. Unlike the previous τ → ρ[π, π̂]ντ decay, this decay is interesting because
all four channels work in it: contact, axial-vector, vector, and pseudoscalar channels. Note
that in the axial-vector channel we take into account the mixing of the mesons K1A and K1B.
The diagrams describing the considered decay are given in Figure 28.

Figure 28. Contact diagram and diagram with intermediate mesons of the decays τ → [ω, φ]Kντ .

The corresponding amplitude in the extended NJL model takes the form

M(τ → Kωντ) = −iGFVusLµ{Mc +MA +MV +MP

+MÂ +MV̂ +MP̂
}µνe∗ν(pω), (171)

where e∗ν(pω) is the polarization vector of the ω meson. The contributions from the dia-
grams with intermediate mesons K1A, K∗, K, K̂1, K̂∗, and K̂ have the form

Mµν
c = (ms + mu)IKω

11 gµν + i2mu

[
IKω
21 + (ms −mu)mu IKω

31

]
εµνλδ pKλ pωδ,

Mµν
A =

CK1

gK1

(ms + mu)IKωK1
11

×


gµν

[
q2 − 3

2
(ms + mu)

2
]
− qµqν

1− 3
2
(ms + mu)2

M2
K1(1270)

BWK1(1270)
sin2 β

+

gµν

[
q2 − 3

2
(ms + mu)

2
]
− qµqν

1− 3
2
(ms + mu)2

M2
K1(1400)

BWK1(1400)
cos2 β

,

Mµν
V = i2mu

CK∗

gK∗

[
IKωK∗
21 + (ms −mu)mu IKωK∗

31

][
q2 − 3

2
(ms −mu)

2
]

BWK∗ ε
µνλδ pKλ pωδ,

Mµν
P = 2(ms + mu)

ZK
gK

CK IωKK
11 qµqνBWK,

Mµν

Â
=

CK̂1

gK1

(ms + mu)IKωK̂1
11

{
gµν

[
q2 − 3

2
(ms + mu)

2
]
− qµqν

[
1− 3

2
(ms + mu)2

M2
K1(1650)

]}
BWK̂1

,
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Mµν

V̂
= i2mu

CK̂∗

gK∗

[
IKωK̂∗
21 + (ms −mu)mu IKωK̂∗

31

][
q2 − 3

2
(ms −mu)

2
]

BWK̂∗ ε
µνλδ pKλ pωδ,

Mµν

P̂
= 2(ms + mu)

ZK
gK

CK̂ IKωK̂
11 qµqνBWK. (172)

Here, the contribution from the contact diagram contains the axial-vector and vector
parts. The transition constants of the W boson to the intermediate mesons CM and CM̂
are defined above. The integrals containing vertices from the quark–meson interaction
Lagrangian of the extended NJL model are defined in (93). Intermediate mesons are
described by the Breit–Wigner propagators. The mixing angle (β) of the mesons K1(1270)
and K1(1400) is defined in Section 2.2.

The decay amplitude τ → φKντ is obtained from (171) by replacing the corresponding
vertices ω → φ in loop integrals, the mass of the light quark mu is replaced by the mass ms
in the vector channel and vector part of the contact diagram; an additional factor of 2 also
appears.

There are different ways to choose the mixing angle β. The PDG gives the value 45◦ [29].
At the same time, in [107], the value of 57◦ was obtained in the NJL model. Therefore,
here we present the results for the partial and differential decay widths depending on two
values of the mixing angle 45◦ and 57◦. The results obtained for the branching fractions
and differential decay widths are given in the Table 6 and Figures 29 and 30.

Figure 29. The differential decay width for the process τ → ωKντ . The solid line corresponds to the
case β = 57◦, the dashed line corresponds to the case β = 45◦, the experimental points are taken from
the work [108].
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Table 6. Predictions of the extended NJL model for the branching fractions of τ → [ω, φ]Kντ . The
contributions of different channels are given with different lines. The lines WA and WV correspond
to the axial-vector and vector parts of the contact channel. The Ground line contains the summed
results of all channels with intermediate mesons in the ground state and contact channel. The Excited
line contains the results for the contributions of all excited intermediate mesons.

Br (×10−4)

τ→ ω(782)Kντ τ→ φ(1020)Kντ

β = 57◦ β = 45◦ β = 57◦ β = 45◦

WA 0.54 0.52 2.02 1.97
A 4.73 4.47 7.49 8.59

WA + A 3.08 3.27 2.12 2.94
WV 0.66 0.64 0.84 0.82
V 1.99 1.94 0.89 0.86

WV + V 0.37 0.36 2.6 × 10−3 2.5 × 10−3

P 0.57 0.53 0.66 0.61
Ground 3.83 3.96 2.57 3.34

Â 5.4 × 10−3 5.2 × 10−3 0.74 0.72
V̂ 0.31 0.3 18.1 × 10−3 17.7 × 10−3

P̂ 8.6 × 10−4 6.1 × 10−4 1.6 × 10−4 1.2 ×10−4

Excited 0.32 0.31 0.76 0.74

Total 3.79 3.95 3.15 4.04

Experiment 4.1± 0.9 [29] 4.4± 1.6 [29]
4.05± 0.51 [109]
3.39± 0.48 [110]

Figure 30. The differential decay width for the process τ → ωKντ . The solid line corresponds to the
case β = 57◦, the dashed line corresponds to the case β = 45◦, the experimental points are taken from
the work [109].

It is interesting to compare the results obtained at different values of the mixing angle
β. The obtained branching fractions of the process τ → ωKντ for β = 57◦ and β = 45◦

are within the errors of experimental values. The obtained branching fractions of the
process τ → φKντ with different mixing angles agree with different experimental results.
Note that the value β = 57◦ leads to better agreement of the form of the invariant mass
distribution of the process τ → ωKντ with the experimental points. However, the invariant
mass distribution of the decay τ → φKντ with β = 45◦ is in better agreement with the
experimental data. In any case, our results are consistent with the experimental data with
allowance for the precision of the model which is expected to be near 17%.
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Note that from a theoretical point of view the τ → [ω, φ]Kντ decays were described
using Resonant Chiral Theories and angular momentum algebra in [68,99].

5.3.4. The Decay τ → K∗ηντ

In the NJL model, the process τ → K∗ηντ was described in the work [111]. The
decisive role in this process is played by the axial-vector channel with the intermediate
K1(1270) and K1(1400) mesons. To describe the considered decay, we will use the quark-
meson Lagrangians of the standard NJL model. Note that due to the participation of the η
meson in this decay, it is necessary to take into account the influence of gluon anomalies to
correctly describe the η and η′ meson masses. This problem was described in Section 2.3 of
this review.

Diagrams, describing the decay of τ → K∗ηντ are shown in Figure 31.

Figure 31. Contact diagram and diagram with intermediate mesons of the decay τ → K∗ηντ .

As a result, for the total decay amplitude in the NJL model, we obtain

M(τ → K∗ηντ) = 2iGFVusLµ

[
Mc +MA(1270)

+MA(1400) +MV +MP

]µν

e∗ν(pK∗), (173)

where e∗ν(pK∗) is the polarization vector of the vector meson K∗(892). In the square brackets,
the contributions of separate channels are given, which have the form

Mµν
c =

3
2gK∗

(
msgηu sin(ᾱ) +

√
2mugηs cos(ᾱ)

)
gµν

−i
[

mugK∗gηu sin(ᾱ)[I21 + mu(ms −mu)I31] (174)

−
√

2msgK∗gηs cos(ᾱ)[I12 −ms(ms −mu)I13]

]
×εµνλδ pηλ pK∗δ,

Mµν

A(1270) =
3

2gK∗

(
msgηu sin(ᾱ) +

√
2mugηs cos(ᾱ)

)
×
[

gµν

[
q2 − 3

2
(ms + mu)

2
]
− qµqν

]
×BWK1(1270) sin2(β), (175)

Mµν

A(1400) =
3

2gK∗

(
msgηu sin(ᾱ) +

√
2mugηs cos(ᾱ)

)
×
[

gµν

[
q2 − 3

2
(ms + mu)

2
]
− qµqν

]
×BWK1(1400) cos2(β), (176)
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Mµν
V = −igK∗

[
mugηu sin(ᾱ)[I21 + mu(ms −mu)I31]

−
√

2msgηs cos(ᾱ)[I12 −ms(ms −mu)I13]

]
×
[

gµξ

[
q2 − 3

2
(ms −mu)

2
]
− qµqξ

]
×BWK∗ εξζλδ pλ

η pδ
K∗g

ζν, (177)

Mµν
P = − 3

2gK∗
(ms + mu)ZK

(
gηu sin(ᾱ) +

√
2gηs cos(ᾱ)

)
×
[

1− 3
2
(ms + mu)

2

(
sin2(β)

M2
K1(1270)

+
cos2(β)

M2
K1(1400)

)
− 3

2
(ms + mu)

×
msgηu sin(ᾱ) +

√
2mugηs cos(ᾱ)

gηu sin(ᾱ) +
√

2gηs cos(ᾱ)
×
(

sin2(β)

M2
K1(1270)

+
cos2(β)

M2
K1(1400)

)]
qµqνBWK, (178)

where q is the momentum of intermediate mesons; β is the mixing angle of the mesons
K1(1270) and K1(1400); pK∗ , pη are the momenta of K∗ and η mesons, respectively; and ᾱ is
the mixing angle of the η and η′ mesons. The values of the loop integrals are taken from
in [111].

The results of numerical calculations of the branching fractions of the considered
decay using the obtained amplitude are given in Table 7. As we can see, in the definitions
of the branching fractions, the dominant contribution is given by the axial-vector channel.
The contribution from the axial-vector channel is noticeably enhanced by taking into
account the two axial-vector poles K1(1270) and K1(1400). The vector channel gives a
small contribution 10−3 compared to the axial-vector channel. The amplitude of the vector
channel is orthogonal and does not interfere with other channels. The contributions of the
pseudoscalar channel are small and interfere only with the axial-vector channel.

Table 7. Branching fractions of the decay τ → K∗ηντ .

Channels Br (τ→ K∗ηντ)×10−4

A 1.21
V 2× 10−3

P 0.04

Total 1.23

Experiment 1.38± 0.15 [29]

In [92], the U(3)×U(3) chiral symmetric model and Vector Dominance Model (VDM)
were used to describe the decay τ → K∗ηντ . As a result, using the mixing angle α = −20◦ of
the η and η′ mesons, the branching fractions Br(τ → K∗ηντ) = 1.01× 10−4 were obtained.

This process was also studied in [68]. However, it was used there to fix the parameters
of the model based on experimental data and calculate other decay modes.

5.3.5. The Decay τ → K∗Kντ

The process τ → K∗0(892)K−ντ will be described within the extended NJL model
following the recent paper [112]. When describing this process, it is also necessary to
consider all four channels. The axial-vector and vector channels play the main role. It
is interesting to note that the existing contribution in the vector channel comes from the
intermediate radially excited meson ρ(1450). The contact diagram and diagram with
intermediate mesons are presented in Figure 32.
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Figure 32. Contact diagram and diagram with intermediate mesons describing the decay τ → K∗Kντ

The corresponding decay amplitude takes the form

M = i
√

2GFVudLµ

[
Mc +Ma1 +Mâ1

+Mρ + eiπMρ̂ +Mπ +Mπ̂

]µν

e∗ν(pK∗). (179)

The terms in the brackets in the amplitude (179) describe the contributions from the
contact diagram and diagrams with different intermediate mesons in the ground and first
radially excited states:

Mµν
c = (3mu −ms)IK∗K

11 gµν

−2i
[

ms IK∗K
21 − (ms −mu)[IK∗K

21 + m2
u IK∗K

31 ]

]
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(
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â1

= (3mu −ms)
Cρ̂

gρ
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(
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Mµν
π̂ = −4

mu

gπ
ZπCπ̂ Iπ̂K∗K

11 qµqνBWπ̂ . (186)

Here, the transition constants of the W boson to the intermediate mesons CM and CM̂
are defined in (79). Intermediate mesons are described by the Breit–Wigner propagators
defined in (129).
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Unfortunately, the extended NJL model cannot describe the relative phase between
the ground and excited states. Therefore, here we will consider two versions of the phase
for the ρ and ρ̂ mesons: the first version is the ei0 phase and the second version is eiπ . The
second version can be justified by the results of the experimental work in [51].

The obtained results for the branching fractions of τ → K∗Kντ are given in Table 8.
It is interesting to note that this decay differs from other τ lepton decay modes by the

dominant contribution of not only axial-vector but also vector channels.
Note that here it is possible to obtain satisfactory agreement with the experimental

data using the phase factor in the ρ̂ meson, similarly to how it was done earlier in the
paper [50].

Similar calculations of the τ → K∗Kντ decay have been carried out in a number
of papers by other authors. In Li’s paper [92], the calculations were carried out within
the U(3) × U(3) chiral-symmetric model where intermediate mesons were considered
only in the ground state. As a result, for the branching fraction of the decay, the value
Br(τ → K∗0(892)K−ντ) = 3.92× 10−3 was obtained. The main contribution came from the
one vector channel with the intermediate ρ meson.

In [99], theoretical value Br(τ → K∗0(892)K−ντ) = 1.5× 10−3 was obtained using
the Chiral Theory with Resonances. Furthermore, the theoretical result for the branching
fraction Br(τ → K∗0(892)K−ντ) = 4.93× 10−3, exceeding the experimental value, was
obtained in [68].

Table 8. Predictions of the NJL model for the branching fractions of τ → K∗Kντ .

Channels Br (τ→ K∗Kντ)× 10−3

A 1.01 1.01
Â 1.18× 10−5 1.18× 10−5

V 0.32 0.32
V̂ 0.24 0.24
P 0.09 0.09
P̂ 3.50× 10−5 3.50× 10−5

The phase φ = 180◦ φ = 0◦

Total 1.99 1.23

Experiment 2.1± 0.4 [29]

6. Conclusions

There are a large number of different phenomenological models for studying interac-
tions of mesons at low energies. Chiral Perturbation Theory is especially popular [113,114].
However, it allows one to describe meson states only in the energy range up to 1 GeV.
Chiral Perturbation Theory with Resonances [115] made it possible to expand the energy
range to 2 GeV and take into account the excited meson states. However, the introduction
of new states each time leads to the appearance of additional parameters, which reduces
the predictive power of the model.

The extended NJL model, used in this review, allows unambiguously describing the
coupling constants of radially excited mesons with quarks. In the form factor introduced
to describe radially excited mesons, the parameter c affects only the values of the meson
masses. The slope parameter is uniquely determined from the condition that the intro-
duction of excited mesons does not affect the quark condensate. After constructing a free
Lagrangian containing both ground and first radially excited states, the mixing angles
occurring after the diagonalization of this Lagrangian are completely determined. As a
result, we obtain the interaction Lagrangian of physical mesons with quarks where cou-
pling constants are uniquely determined. This allows using quark loops to describe the
interactions of mesons with each other without introducing additional parameters in the
tree-level approximation in meson fields corresponding to the lowest order of the 1/Nc
expansion. Namely, in this approximation, the NJL model is formulated.
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A more complicated situation takes place when describing processes such as the
production of mesons on colliding e+e− beams and τ lepton decays. Here, when describing
intermediate radially excited mesons, as the experiment shows (see Section 4), it becomes
necessary some cases to introduce phase factors. Unfortunately, until now, the NJL model
cannot describe such factors. Therefore, those relative phase factors between the ground and
radially excited intermediate meson states should be considered as additional parameters.

The next problem is related to taking into account the interactions in the final state.
In Section 5.2, this was made by considering meson triangle diagrams, leading to the
appearance of additional parameters. Those parameters are not universal and take different
values for different processes. However, for structurally similar processes, such parameters
turned out to be approximately equal to each other. The main problem with this approach is
that these meson triangles are of a higher order in 1/Nc as compared to the approximation
in which the NJL model is formulated. Therefore, such loops can only be considered as
additional corrections to the results obtained in the framework of the NJL model.

It is interesting to note that when considering these effects, a certain correlation
appeared between the role of the final state interactions of mesons and excited mesons in
the intermediate state. Namely, with an increase in the contribution from the diagrams with
the first radial excitations in the intermediate state, the contributions from the corrections
taking into account the interactions in the final state decreased. The existence of such
behaviors, as well as a deeper theoretical substantiation of the possibility of taking into
account the interactions of mesons in the final state by means of meson loops using the NJL
model, can be the subject of further research.
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Appendix A

The integrals Iρ and Iρπ have the form

Iρ =
−i

(2π)4

∫ Θ(Λ2
ππ + k2)

(M2
ρ − k2)

d4k =
1

(4π)2

[
Λ2

ππ −M2
ρ ln

(
Λ2

ππ

M2
ρ
+ 1

)]
,

Iρπ =
−i

(2π)4

∫ Θ(Λ2
ππ + k2)

(M2
ρ − k2)(M2

π − k2)
d4k

=
1

(4π)2
1

M2
ρ −M2

π

[
M2

ρ ln

(
Λ2

ππ

M2
ρ
+ 1

)
−M2

π ln
(

Λ2
ππ

M2
π

+ 1
)]

, (A1)

were Λππ is the cut-off parameter of the meson loop.
The functions a(s) and b(s) appearing as a result of taking into account the interactions

in the final state for the decay τ → π−ηντ take the following form:

a(s) =
Iρ

M2
ρ
+ Iρπ + Iρ2π

M2
π(M2

η −M2
π)

M2
ρ

− Iρ3π

M4
π(−M2

η + 7M2
π + 6M2

ρ + s)
6M2

ρ
(A2)

−Iρ4π

M6
π(23M2

η + M2
π − 5s)

6M2
ρ

+ 4Iρ5π

M8
π(4M2

η + 2M2
π − s)

6M2
ρ

,
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b(s) =
Iρ

M2
ρ
+ Iρπ

M2
η −M2

π + M2
ρ

M2
ρ

− Iρ3π

M4
π(13M2

η − 7M2
π + 6M2

ρ + s)
6M2

ρ
(A3)

−Iρ4π

M6
π(M2

η + 23M2
π − 5s)

6M2
ρ

+ 4Iρ5π

M8
π(2M2

η + 4M2
π − s)

6M2
ρ

.

Here, the integrals over the meson loops are

Iρnπ =
−i

(2π)4

∫ Θ(Λ2
πη + k2)

(M2
ρ − k2)(M2

π − k2)n d4k. (A4)

The factors T describing the transitions between axial-vector and pseudoscalar mesons
for the decay τ → K−ηντ take the form

T(c)
K = 1− 2

ms IK1ηu

11 +
√

2mu IK1ηs

11

IKηu

11 +
√

2IKηs

11

IK1K
11

ms + mu

M2
K1A

, (A5)

T(c)
η = 1− 2

IK f u

11 I f uηu

20

IKηu

11 +
√

2IKηs

11

mu(3mu −ms)

M2
f u
1

− 2
√

2
IK f s

11 I f sηs

02

IKηu

11 +
√

2IKηs

11

ms(3ms −mu)

M2
f s
1

, (A6)

T(K∗)
K = 1− 2

ms IK∗K1ηu

11 +
√

2mu IK∗K1ηs

11

IKK∗ηu

11 +
√

2IKK∗ηs

11

IK1K
11

ms + mu

M2
K1A

, (A7)

T(K∗)
η = 1− 2

IK∗K f u

11 I f uηu

20

IK∗Kηu

11 +
√

2IK∗Kηs

11

mu(3mu −ms)

M2
f u
1

(A8)

−2
√

2
IK∗K f s

11 I f sηs

02

IK∗Kηu

11 +
√

2IK∗Kηs

11

ms(3ms −mu)

M2
f s
1

,

T(K̂∗)
K = 1− 2

ms IK̂∗K1ηu

11 +
√

2mu IK̂∗K1ηs

11

IKK̂∗ηu

11 +
√

2IKK̂∗ηs

11

IK1K
11

ms + mu

M2
K1A

, (A9)

T(K̂∗)
η = 1− 2

IK̂∗K f u

11 I f uηu

20

IK̂∗Kηu

11 +
√

2IK̂∗Kηs

11

mu(3mu −ms)

M2
f u
1

(A10)

−2
√

2
IK̂∗K f s

11 I f sηs

02

IK̂∗Kηu

11 +
√

2IK̂∗Kηs

11

ms(3ms −mu)

M2
f s
1

.

where MK1A is defined in (117); M f u
1

and M f s
1

are the masses of the mesons f1(1285) and
f1(1420).

These integrals F(ρ)
µ , F(ω)

µ , and F(φ)
µ for the decay τ → K−K0ντ read

F(ρ)
µ = i

[
Iρ

M2
ρ
+ IρK

]
(pK0 − pK−)µ, (A11)

F(ω)
µ = i

[
Iω

M2
ω
+ IωK

]
(pK0 − pK−)µ, (A12)

F(φ)
µ = i

[
Iφ

M2
φ

+ IφK

]
(pK0 − pK−)µ. (A13)

where the integrals IV and IVK (V = ρ, ω, φ) are similar to the integrals defined in (A1).
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The constants T describing the transitions between axial-vector and pseudoscalar
mesons for the decay τ → K−K0ντ have the form

T(ρ)
K = 1−

IK1Kρ
11 IK1K

11

IKKρ
11

(ms + mu)
2

M2
K1A

, (A14)

T(ω)
K = 1−

IK1Kω
11 IK1K

11
IKKω
11

(ms + mu)
2

M2
K1A

, (A15)

T(φ)
K = 1−

IK1Kφ
11 IK1K

11

IKKφ
11

(ms + mu)
2

M2
K1A

. (A16)
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