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Abstract: We introduce a novel twin support vector machine with the generalized pinball loss
function (GPin-TSVM) for solving data classification problems that are less sensitive to noise and
preserve the sparsity of the solution. In addition, we use a symmetric kernel trick to enlarge GPin-
TSVM to nonlinear classification problems. The developed approach is tested on numerous UCI
benchmark datasets, as well as synthetic datasets in the experiments. The comparisons demonstrate
that our proposed algorithm outperforms existing classifiers in terms of accuracy. Furthermore, this
employed approach in handwritten digit recognition applications is examined, and the automatic
feature extractor employs a convolution neural network.

Keywords: twin support vector machine; noise sensitivity; sparsity; generalized pinball loss; hand-
written digit recognition

1. Introduction

Support vector machines (SVMs) have evolved as a potent paradigm for pattern
classification and regression during the last decade [1–5]. The SVM has received substantial
attention within a few years after its inception due to its vast application in a wide variety
of fields [6–12]. The standard SVM determines the parallel hyperplanes with the maximum
margin between two classes of samples by minimizing structural and empirical risks,
as determined by the labeled training data. SVM solves a quadratic programming problem
(QPP) using the dual problem to achieve an optimal solution. The standard SVMs also
faces a major challenge: the computational complexity of SVM is approximately of order
O(m3), where m is a number of training samples. As a result, SVM is quite slow when
dealing with large-scale problems [13,14].

For large-scale data learning, Catak [15] combines the ELM algorithm and the Ad-
aBoosting method to overcome large-scale data sets. Moreover, to address the high-
computational complexity of SVM, Jayadeva [16] suggested a novel machine learning
method known as twin SVM (TSVM) to improve the computational complexity of SVM.
For the standard TSVM, the main idea is to find two nonparallel proximal hyperplanes that
are closer to one of the two classes while being at least one distance apart. TSVM solves
two smaller QPPs, instead of solving a large one as in the classical SVM. Therefore, it makes
the computational time of TSVM approximately four times faster than the standard SVM
in theory. In binary classification problems, TSVM not only overcomes the challenges of
training a classifier faster than a standard SVM, but it also deals with exemplar unbalance.
As a result of its excellent performance, TSVM has become one of the most used procedures.
TSVM has received increasing attention due to its wide application in various fields, such
as text categorization [17], text recognition [18], software defects [19,20], scene classifica-
tion [21], image recognition [22], speaker recognition [23,24], human action recognition [25],
pancreatic cancer early detection [26], and so on. Moreover, TSVM has been widely re-
searched and developed in recent years. There have been numerous variations proposed,
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such as twin parametric margin SVM (TPMSVM) [27], twin bounded SVM (TBSVM) [28],
weighted Lagrangian TSVM (WLTSVM) [29], least squares TSVM (LSTSVM) [30–32], large
scale TSVM [33], sparse pinball TSVM [34], and so on. Furthermore, TSVM is very useful
when dealing with datasets that include a large number of data samples, whereas the
standard SVM is ineffective.

Designing a robust machine learning approach, on the one hand, needs the employ-
ment of the appropriate loss function. Different margin-based loss functions have recently
been employed in classification and regression problems, such as 0–1 loss, hinge loss,
squared loss, and so on. The hinge loss controls the penalty on the training data points in
standard SVM and TSVM. There are some problems with the model itself, such as the ob-
jective function in the primal problem is non-differential, has imbalanced class information,
is sensitive to outliers, and is sensitive to feature noise. To address the non-differentiality of
the objective function, a smooth SVM (SSVM) [35] has been proposed, where the SSVM
creates and solves an unconstrained smooth support vector machine reformulation. When
there were outliers, Wu and Liu [36] proposed the robust truncated hinge loss SVM (RSVM)
to overcome this problem. For the imbalanced classification problem, Cao and Shen [37]
demonstrated a re-sampling strategy that balances training data by combining oversam-
pling and under-sampling. In [38], a powerful weighted multi-class least squares TSVM
(WMLSTSVM) method for dealing with multi-class data categorization imbalances was
proposed. In the presence of being sensitive to noise, Huang [39] proposed a SVM model
to deal with noise sensitivity and instability in resampling, where the pinball loss func-
tion (Pin-SVM) is used. The outcome has good properties, such as being less sensitive
to noise and related to the quantile distance. However, sparsity is impossible to attain
using Pin-SVM. In order to maintain the sparsity, they also proposed an ε-insensitive zone
for Pin-SVM. Although this approach improves the sparsity of Pin-SVM, its formulation
necessitates the specification of the value of ε in advance, and hence a poor choice may have
an impact on its performance. As a result of these advances, Rastogi [40] recently proposed
the modified (ε1, ε2)-insensitive zone SVM, which is called the generalized pinball loss
SVM. This generalized pinball loss for the SVM model incorporates previous loss functions
that provide noise sensitivity, sparsity, and approximate stability. Nevertheless, compared
with TSVM, the loss of the generalized pinball SVM is indeed required to solve a single
large QPP, resulting in a higher computational complexity and inability to solve large
scale problems. However, as far as we are aware, no articles dealing with the generalized
pinball loss function in relation to the standard TSVM for classification problems have
been published. As a result, the addition of the generalized pinball loss function to the
standard TSVM for classification problems is worth investigating. Motivated by the above
mentioned models, we introduce the standard TSVM with the generalized pinball loss
function. In addition, the proposed objective function is optimized using the Lagrangian
multiplier approach and the Karush–Kuhn–Tucker (KKT) optimality conditions [41]. Two
smaller quadratic programming problems are solved (QPPs), and we can produce two
nonparallel classification hyperplanes. Finally, thorough experiments were carried out
to evaluate the proposed GPin-TSVM model performance. The following are the main
contributions of the paper:

• For pattern classification, we add a generalized pinball loss function to the standard
TSVM, resulting in a better classifier model that is called a generalized pinball loss
function-based TSVM (GPin-TSVM);

• We demonstrate that the proposed algorithm GPin-TSVM surpasses existing classifiers
in terms of accuracy in numerical experiments. We also examine its characteristics,
such as noise sensitivity and within-class scatter;

• We examine the applicability of the main techniques of GPin-TSVM toward handwrit-
ten digit recognition problems compared with the standard TSVM, Pin-TSVM, and
ε-insensitive zone TSVM (IPin-TSVM). Moreover, we use the automatic feature extrac-
tor by the convolutional neural network (CNN) and TSVM, Pin-TSVM, IPin-SVM, and
GPin-TSVM, which work as a binary classifier by replacing the softmax layer of CNN;
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• We perform numerical testing on a synthetic dataset and datasets from numerous UCI
benchmarks with noise of various variances to illustrate the validity of our proposed
GPin-TSVM. The results also show the robustness of the proposed approach, which is
less sensitive to noise and retains the sparsity of the solution.

In Section 2, we briefly discuss loss functions, SVM, generalized pinball SVM, and TSVM.
In Section 3, we present a new approach called GPin-TSVM. In Section 4, the properties of
the proposed GPin-TSVM are discussed. The efficiency of our proposed GPin-TSVM by
using synthetic datasets and the UCI machine learning repository is compared to standard
TSVM, Pin-TSVM, and IPin-TSVM, and the applications of the proposed GPin-TSVM algo-
rithms in handwritten digit recognition are shown in Section 5. Conclusions and future
recommendations are presented in Section 6.

2. Related Work and Background

In this section, standard SVM, TSVM, loss functions, and generalized pinball SVM
formulations are briefly described. The interested readers are referred to [28,39,40,42] for a
more detailed description.

2.1. Support Vector Machine

The difficulty of the SVM model lies in determining the optimal separating hyperplane,
or maximal margin hyperplane, that best separates the two classes in order to generalize
new data to obtain accurate classification predictions. Consider a two-class dataset of m
data samples, where S = {(x1, y1), (x2, y2), . . . , (xm, ym)} for i = 1, 2, . . . , m, xi ∈ Rn is the
sample with the label yi ∈ {1,−1}. SVM models receive a separating produced decision
function w>x + b = 0, where w ∈ Rn and b ∈ R from the following problem:

min
w,b

1
2
‖w‖2 + C

m

∑
i=1

ξi

s.t. 1− yi(w>xi + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . , m, (1)

where ξi are the slack variables and C is the trade-off parameter. We obtain its dual QPP as
follows by using the Lagrangian multipliers αi:

min
α

1
2

m

∑
i=1

m

∑
j=1

yiyj(x>i xj)αiαj −
m

∑
i=1

αi

s.t.
m

∑
i=1

yiαi = 0, (2)

0 ≤ αi ≤ C, i = 1, . . . , m.

We use the number of support vectors that satisfy 0 < α < C, represented by NSV , and
we obtain the following decision function after optimizing this dual QPP:

y = sign
( NSV

∑
i=1

α∗i yi(x>i x) + b
)

(3)

where α∗ denotes the dual problem solution (2).

2.2. Twin Support Vector Machine

Consider the data set S, in which the matrix A ∈ Rm1×n represents m1 data samples
from class +1, and the matrix B ∈ Rm2×n represents m2 data samples from class −1. The
TSVM [28] is used to determine two nonparallel hyperplanes using the following definitions:

x>w(1) + b(1) = 0 and x>w(2) + b(2) = 0 (4)
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where w(1), w(2) ∈ Rn and b(1), b(2) ∈ R. To obtain the pair of nonparallel hyperplanes,
the hinge loss function-based TSVM yields the following pair of QPPs:

min
w(1),b(1),ξ

1
2
‖Aw(1) + e1b(1)‖2 + c1e>2 ξ (5)

s.t. − (Bw(1) + e2b(1)) + ξ ≥ e2, ξ ≥ 0,

and

min
w(2),b(2),ξ

1
2
‖Bw(2) + e2b(2)‖2 + c2e>1 ξ (6)

s.t. (Aw(2) + e1b(2)) + ξ ≥ e1, ξ ≥ 0,

where c1 and c2 are positive penalty parameters, ξ is a slack variable, and e1 and e2 are
vectors of appropriately sized ones. The dual of QPPs (5) and (6) can be represented,
respectively, as follows:

min
α

1
2

α>Q(P>P)Q>α− e>2 α (7)

s.t. 0 ≤ α ≤ c1e2

and

min
β

1
2

β>P(Q>Q)P>β− e>1 β (8)

s.t. 0 ≤ β ≤ c2e1

where P =
[
A e1

]
and Q =

[
B e2

]
. From the solutions α and β of (7) and (8),

respectively, the best separating hyperplanes are given by:[
w(1)

b(1)

]
= −(P>P)−1Q>α,

and [
w(2)

b(2)

]
= (Q>Q)−1P>β.

Depending on which of the two hyperplanes (4) a new sample point x ∈ Rn lies closest
to, it is is assigned to class i(i = +1 or − 1) by

class(i) = arg min
i=1,2

|x>w(i) + b(i)|
‖w(i)‖

(9)

where |.| denotes obtaining the absolute value. In actuality, the unconstrained optimization
problem may be reformulated as the QPP of the TSVM problem (5) as follows [43]:

min
w(1),b(1),ξ

1
2
‖Aw(1) + e1b(1)‖2 + c1

m2

∑
i=1
Lhinge

(
1 + (x>i w(1) + b(1))

)
(10)

and

min
w(2),b(2),ξ

1
2
‖Bw(2) + e2b(2)‖2 + c2

m1

∑
i=1
Lhinge

(
1− (x>i w(2) + b(2))

)
, (11)

where Lhinge(u) = max{0, u} is known as the hinge loss function and u = (1− yi(x>i w +
b)). The hinge loss is a loss function that is commonly used to train classifiers. Furthermore,
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it strives to optimize the shortest distance between two classes, resulting in resampling
instability and noise sensitivity from the related classifier [42]. To deal with the problem of
noise sensitivity, Huang [39] presented utilizing the pinball loss function by combining the
SVM classifier with the pinball loss function. The pinball loss function explains how this
approach works by penalizing correctly identified data as follows:

Lpin(u) =

{
u, u ≥ 0,
−τu, u < 0,

(12)

where τ ≥ 0 is a user-defined parameter. The so-called pinball loss is a well-known method
in statistics and machine learning for calculating conditional quantiles. Despite achieving
noise insensitivity, the pinball loss function is unable to achieve sparsity in the process.
In their work, Huang examined a similar type of pinball loss function to ensure sparsity,
which is a ε-insensitive pinball loss. The use of the ε-insensitive pinball loss function
increases the prediction performance of the SVM model significantly. It also maintains
sparsity in the SVM model. This function is defined as follows:

Lε
pin(u) =


u− ε, u > ε,
0, − ε

τ ≤ u ≤ ε,
−τ
(
u + ε

τ

)
, u < − ε

τ ,

(13)

where τ ≥ 0 and ε ≥ 0 are user-defined parameters. In an SVM model, sparsity is well
known to be a highly desirable property. A sparse SVM model constructs the decision
function from a small number of training data points and predicts the responses of test
data points in a very short amount of time. The width of the ε-insensitive zone function
fluctuates with the τ values, but it should ideally change with the variation in the training
data response values. In practicality, it also makes choosing a good ε-value difficult. As a
result, Rastogi [40] saw the necessity to create an ε-insensitive pinball loss function that can
be used to enhance the ε-insensitive method in SVM. They proposed an (ε1, ε2)-insensitive
zone pinball loss function by used this loss in combination with the SVM model. It is also
called a generalized pinball SVM, with the following loss function:

Lε1,ε2
τ1,τ2 (u) =


τ1
(
u− ε1

τ1

)
, u > ε1

τ1
,

0, − ε2
τ2
≤ u ≤ ε1

τ1
,

−τ2
(
u + ε2

τ2

)
, u < − ε2

τ2
,

(14)

where τ1, τ2, ε1, and ε2 are non-negative parameters. In the next subsection, we briefly
describe the generalized pinball SVM model that is proposed by Rastogi. This approach is
a modification of previous loss functions that takes noise sensitivity, resampling stability,
and data scatter minimization into account.

2.3. Support Vector Machine with Generalized Pinball Loss

With this generalized pinball loss function, the resulting formulation, termed as a
generalized pinball support vector machine, is proposed by Rastogi [40], which results in
the unconstrained optimization problem:

min
w,b

1
2
‖w‖2 +

C
m

m

∑
i=1
Lε1,ε2

τ1,τ2

(
1− yi(w>xi + b)

)
. (15)
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Then, the problem (15) can reformulate to the following QPP:

min
w,b,ξ

1
2
‖w‖2 + C

m

∑
i=1

ξi

s.t. yi(wTxi + b) ≥ 1− 1
τ1
(ξi + ε1), (16)

yi(wTxi + b) ≤ 1 +
1
τ2
(ξi + ε2),

ξi ≥ 0, i = 1, 2, 3, . . . , m.

Its dual QPP is generated as follows by inserting the Lagrangian multipliers αi and βi:

min
α,β

1
2

m

∑
i=1

m

∑
j=1

(αi − βi)(αj − β j)yiyj(x>i xj)− (1− ε1

τ1
)

m

∑
i=1

αi + (1 +
ε2

τ2
)

m

∑
i=1

βi

s.t.
m

∑
i=1

(αi − βi)yi = 0, (17)

0 ≤ αi
τ1

+
βi
τ2
≤ C, i = 1, . . . , m.

We can obtain the decision function (18) by solving the dual problem of (17):

y = sign
( m

∑
i=1

(α∗i − β∗i )yi(x>i x) + b
)

. (18)

However, for large-scale applications, the generalized pinball SVM has a high comput-
ing complexity and is quite slow. In the next section, we go after the heart of our proposed
technique, which is to reduce the high computational complexity by proposing a TSVM
with a generalized pinball loss function that is aimed toward the binary classification
problem, and to present both the linear and nonlinear cases, as shown in Figure 1.

Figure 1. The workflow of the improve disadvantages of SVM.

3. Proposed Twin Support Vector Machine with Generalized Pinball Loss (GPin-TSVM)

In this section, we employ the Lagrange multiplier approach to derive the solution
for our GPin-TSVM model, which is based on just the generalized pinball loss function.
In both linear and nonlinear scenarios, our GPin-TSVM can be employed.
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3.1. Linear Case

In the standard TSVM, we determine the generalized pinball loss and obtain the
following QPPs:

min
w(1),b(1)

1
2
‖Aw(1) + e1b(1)‖2+c1e>2 L

ε1,ε2
τ1,τ2

(
e2 + (Bw(1) + e2b(1))

)
(19)

and

min
w(2),b(2)

1
2
‖Bw(2) + e2b(2)‖2 + c2e>1 L

ε3,ε4
τ3,τ4

(
e1 − (Aw(2) + e1b(2))

)
. (20)

The problems (19) and (20) are translated further into equivalent known formula-
tions (5) and (6) by adding a slack vector ξ, yielding the following QPPs:

min
w(1),b(1),ξ

1
2
‖Aw(1) + e1b(1)‖2 + c1e>2 ξ

s.t. − (Bw(1) + e2b(1)) ≥ e2 −
1
τ1
(ξ + e2ε1), (21)

−(Bw(1) + e2b(1)) ≤ e2 +
1
τ2
(ξ + e2ε2),

ξ ≥ 0,

and

min
w(2),b(2),ξ

1
2
‖Bw(2) + e2b(2)‖2 + c2e>1 ξ

s.t. Aw(2) + e1b(2) ≥ e1 −
1
τ3
(ξ + e1ε3), (22)

Aw(2) + e1b(2) ≤ e1 +
1
τ4
(ξ + e1ε4),

ξ ≥ 0,

where τ1, τ2, τ3, τ4, ε1, ε2, ε3, and ε4 are non-negative parameters. We transform (21) and (22)
to their dual form to arrive at the solution. For this, we use (21) and introduce the Lagrange
multipliers α ≥ 0, β ≥ 0, and γ ≥ 0, and we obtain the Lagrange function:

L(w(1), b(1), ξ, α, β, γ) =
1
2
‖Aw(1) + e1b(1)‖2 + c1e>2 ξ

−α>
(
− (Bw(1) + e2b(1))− e2 +

1
τ1
(ξ + e1ε1)

)
− β>ξ

−γ>
(
(Bw(1) + e2b(1)) + e2 +

1
τ2
(ξ + e2ε2)

)
. (23)
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We use the KKT optimality conditions to find the following results:

∂L
∂w(1)

= A>(Aw(1) + e1b(1)) + B>α− B>γ = 0, (24)

∂L
∂b(1)

= e>1 (Aw(1) + e1b(1)) + e>2 α− e>2 γ = 0, (25)

∂L
∂ξ

= c1e2 −
α

τ1
− β− γ

τ2
= 0, (26)

α>
(
− (Bw(1) + e2b(1))− e2 +

1
τ1
(ξ + e1ε1)

)
= 0, (27)

β>ξ = 0, (28)

γ>
(
(Bw(1) + e2b(1)) + e2 +

1
τ2
(ξ + e2ε2)

)
= 0. (29)

By using (26) and β ≥ 0, we obtain

α

τ1
+

γ

τ2
≤ c1e2 (30)

Combining (24) and (25) yields[
A>

e>1

][
A e1

][w(1)

b(1)

]
−
[

B>

e>2

]
(α− γ) = 0. (31)

Define λ = α− γ, P =
[
A e1

]
, and Q =

[
B e2

]
. Equation (31) can be recast

using these notations as follows:

P>P

[
w(1)

b(1)

]
+ Q>λ = 0, i.e.,

[
w(1)

b(1)

]
= −(P>P)−1Q>λ. (32)

We can obtain the dual of (21) using Equation (23) and the given KKT conditions
as follows:

min
α,λ

1
2

λ>Q(P>P)−1Q>λ− λ>e2(1 +
ε2

τ2
) + α>e2

(
ε1

τ1
+

ε2

τ2

)
s.t. 0 ≤

(
1
τ1

+
1
τ2

)
α− λ

τ2
≤ c1e2, (33)

α ≥ 0, α− λ ≥ 0.

The dual problem of (22) can be derived similarly:

min
ω,µ

1
2

µ>P(Q>Q)−1P>µ− µ>e1(1 +
ε4

τ4
) + ω>e1

(
ε3

τ3
+

ε4

τ4

)
s.t. 0 ≤

(
1
τ3

+
1
τ4

)
ω− µ

τ4
≤ c2e1, (34)

ω ≥ 0, µ ≥ 0,

where ω ≥ 0 and µ ≥ 0 are Lagrange multipliers. Finally, the best separating hyperplanes
are given by: [

w(1)

b(1)

]
= −(P>P + δI)−1Q>λ,
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and [
w(2)

b(2)

]
= (Q>Q + δI)−1P>µ. (35)

Since we cannot ensure P>P and Q>Q are irreversible, it is always positive semi-
definite; however, in some circumstances, it may not be well conditioned. To account for
the possibility of ill-conditioning of P>P and Q>Q, the regularization term δI(δ > 0) must
be used [44]. Depending on which of the two hyperplanes (4) a new sample point x ∈ Rn

lies closest to, it is assigned to class i(i = +1 or −1) by

class(i) = arg min
i=1,2

|x>w(i) + b(i)|
‖w(i)‖

.

3.2. Nonlinear Case

In higher dimensions, support vector machines are even more difficult to interpret. It
is considerably more difficult to view how the data can be separated linearly and what the
decision boundary will look like. In practice, however, data are rarely linearly separable;
therefore, we must transform it into a higher-dimensional space before developing a
support vector classifier. This problem can be solved using the symmetric kernel trick.
Now, we use a symmetric kernel method to extend our linear GPin-TSVM to the nonlinear
case [28,45]. The symmetric kernels used have a significant impact on how well GPin-TSVM
functions. The nonparallel hyperplanes in the kernel-generated space are as follows if the
defined kernel function is K(·, ·):

K(x>, X>)w(1) + b(1) = 0 and K(x>, X>)w(2) + b(2) = 0, (36)

where w(1), w(2) ∈ Rm, and X =

[
Am1×n
Bm1×n

]
. For the nonlinear case of the problems (21)

and (22), the corresponding problems are

min
w(1),b(1),ξ

1
2
‖K(A, X>)w(1) + e1b(1)‖+ c1e>2 ξ

s.t. − (K(B, X>)w(1) + e2b(1)) ≥ e2 −
1
τ1
(ξ + e2ε1), (37)

−(K(B, X>)w(1) + e2b(1)) ≤ e2 +
1
τ2
(ξ + e2ε2),

ξ ≥ 0,

and

min
w(2),b(2),ξ

1
2
‖K(B, X>)w(2) + e2b(2)‖+ c2e>1 ξ

s.t. K(A, X>)w(2) + e1b(2) ≥ e1 −
1
τ3
(ξ + e1ε3), (38)

K(A, X>)w(2) + e1b(2) ≤ e1 +
1
τ4
(ξ + e1ε4),

ξ ≥ 0.

The Lagrange function is applied, and the KKT optimality requirements are used to
produce the dual of (37):
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min
α,γ

1
2
(α− γ)>Q(P>P)−1Q>(α− γ)− (α− γ)>e2(1 +

ε2

τ2
) + α>e2

(
ε1

τ1
+

ε2

τ2

)
s.t.

α

τ1
+

γ

τ2
≤ c1e1, (39)

α ≥ 0, α− γ ≥ 0.

Similarly, the dual of Equation (38) can be obtained as follows:

min
ω,µ

1
2
(ω− µ)>P(Q>Q)−1P>(ω− µ)− (ω− µ)>e1(1 +

ε4

τ4
) + ω>e1

(
ε3

τ3
+

ε4

τ4

)
s.t.

ω

τ3
+

µ

τ4
≤ c2e1, (40)

ω ≥ 0, ω− µ ≥ 0,

where P =
[
K(A, X>) e1

]
, Q =

[
K(B, X>) e2

]
, and α, γ, ω, and µ are Lagrange multi-

pliers. Finally, the best separating hyperplanes are given by:[
w(1)

b(1)

]
= −(P>P + δI)−1Q>(α− γ)

and [
w(2)

b(2)

]
= (Q>Q + δI)−1P>(ω− µ). (41)

Thus, a new sample point x ∈ Rn is assigned to class i(i = +1 or − 1) by

class(i) = arg min
i=1,2

|K(x>, X>)w(i) + b(i)|
‖w(i)‖

.

4. Properties of the GPin-TSVM

We examine the noise insensitivity and within-class scatter properties of the GPin-
TSVM in this section.

4.1. Noise Insensitivity

The principal advantage of our proposed algorithm GPin-TSVM is that it is insensitive
to noise and maintains the sparsity. In this subsection, we explain the advantage of giving
a penalty on a correctly classified point and conserving the sparsity to a certain scale at the
same time. Consider the generalized sign function sgnε1,ε2

τ1,τ2 (1− y(w>x + b)) as

sgnε1,ε2
τ1,τ2

(u) =



{τ1}, u > ε1
τ1

,

[0, τ1], u = ε1
τ1

,

{0}, − ε2
τ2

< u < ε1
τ1

,

[−τ2, 0], u = − ε2
τ2

,

{−τ2}, u < − ε2
τ2

.

(42)

sgnε1,ε2
τ1,τ2 (u) is the subgradient of (14). In the linear case, we will concentrate on the first

model of the GPin-TSVM for clarity. Using the KKT optimality condition, Equation (19)
can be written as:

0 ∈ A>(Aw(1) + e1b(1)) + c1

m2

∑
i=1

sgnε1,ε2
τ1,τ2

(1 + (w(1)x−i + b(1)))x−i , (43)
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where 0 is a zero vector. For the given w(1) and b(1), the entire index set can be divided into
five different subsets:

E+
1 =

{
i : 1 + (w(1)>x−i + b(1)) >

ε1

τ1

}
,

E+
2 =

{
i : 1 + (w(1)>x−i + b(1)) =

ε1

τ1

}
,

E+
3 =

{
i : − ε2

τ2
< 1 + (w(1)>x−i + b(1)) <

ε1

τ1

}
,

E+
4 =

{
i : 1 + (w(1)>x−i + b(1)) = − ε2

τ2

}
,

E+
5 =

{
i : 1 + (w(1)>x−i + b(1)) < − ε2

τ2

}
.

The data samples in E+
3 may not benefit w(1) because the sub-gradient at all these

datasets is zero, which is shown in Equation (42). As a result, E+
3 has a direct impact on the

model sparsity. We perceive that ε1 and ε2 control the number of samples in E+
3 . As ε1 and

ε2 approach 0, sparsity is lost, whereas if ε1 → ∞ and ε2 → ∞, we increase the sparsity as a
consequence of having more samples in E+

3 .
Using the notation E+

1 , E+
2 , E+

3 , E+
4 , and E+

5 , Equation (43) can be rewritten as the
existence of ψi ∈ [0, τ1] and θi ∈ [−τ2, 0], such that

1
c1

A>(Aw(1) + e1b(1)) + τ1 ∑
i∈E+

1

x−i + ∑
i∈E+

2

ψix−i + ∑
i∈E+

4

θix−i − τ2 ∑
i∈E+

5

x−i = 0

where i = 1, . . . , m2.

Theorem 1. Let p1 be the number of samples x−i in E+
1 . The following inequalities must hold if the

optimization problems (33) or (39) have a solution:

τ1 +
e>1 (Aw(1) + e1b(1))

c1m2
≥ 0

and

p1

m2
≤ 1−

τ1 +
e>1 (Aw(1)+e1b(1))

c1m2

τ1 + τ2
.

Proof. Let x−i0 be an arbitrary sample in E+
1 . We have βi0 = γi0 = 0 by using the KKT

condition (28) and (29). We obtain αi0 = c1τ1 by using the KKT condition (26), which implies
that αi0 − γi0 = c1τ1. Let λ = α− γ, which implies that λi0 = c1τ1. In addition, we obtain
−e>1 (Aw(1) + e1b(1)) = p1γi0 + ∑i/∈E+

1
λi = p1c1τ1 + ∑i/∈E+

1
λi from the KKT condition (25).

We can obtain −c1τ2 ≤ λi ≤ c1τ1 because αi ≥ 0 and γi ≥ 0. As a result, we obtain

−e>1 (Aw(1) + e1b(1))− τ1c1(m2 − p1) ≤ p1c1τ1

≤ −e>1 (Aw(1) + e1b(1)) + τ2c1(m2 − p1),

thus, − e>1 (Aw(1)+e1b(1))
c1τ1m2

≤ 1 and p1
(
1 + τ2

τ1

)
≤ −e>1 (Aw(1)+e1b(1))+τ2c1m2

c1τ1
. Finally, we have

p1

m2
≤ 1

c1(τ1 + τ2)

(−e>1 (Aw(1) + e1b(1))
m2

+ τ2c1

)
= 1−

τ1 +
e>1 (Aw(1)+e1b(1))

c1m2

τ1 + τ2
.
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Theorem 1 implies that 1−
τ1+

e>1 (Aw(1)+e1b(1))
c1m2

τ1+τ2
is an upper boundary of the number of

samples in E+
1 . The parameters τ1 and τ2 control the numbers of samples in E+

1 , E+
3 , and E+

5 .
When there is a decrease in τ1 and τ2, then the number of elements in E+

1 becomes smaller
and the classification result is sensitive to feature noise around the decision boundary,
which will have a considerable impact. When τ1 and τ2 are both large, all three sets contain
a large number of samples, making the outcome less sensitive to feature noise.

Briefly, parameters ε1, ε2, τ1, and τ2 control the tradeoff between sparsity and noise
insensitivity. Similarly, we can separate the index set into the five sets on the second model
of the GPin-TSVM:

E−1 =

{
i : 1− (w(2)>x+i + b(2)) >

ε3

τ3

}
,

E−2 =

{
i : 1− (w(2)>x+i + b(2)) =

ε3

τ3

}
,

E−3 =

{
i : − ε4

τ4
< 1− (w(2)>x+i + b(2)) <

ε3

τ3

}
,

E−4 =

{
i : 1− (w(2)>x+i + b(2)) = − ε4

τ4

}
,

E−5 =

{
i : 1− (w(2)>x+i + b(2)) < − ε4

τ4

}
where i = 1, . . . , m1. Similar properties of the parameters τ3 and τ4 can be obtained
as follows:

Theorem 2. Let p2 be the number of samples x+i in E−1 . If the optimization problems (34) or (40)
have a solution, then the following inequalities must hold:

τ3 −
e>2 (Bw(2) + e2b(2))

c2m1
≥ 0

and

p2

m1
≤ 1−

τ3 −
e>2 (Bw(2)+e2b(2))

c2m1

τ3 + τ4
.

It also indicates that 1−
τ3−

e>2 (Bw(2)+e2b(2))
c2m1

τ3+τ4
is an upper bound on the number of samples

in E−1 .

4.2. Scatter Minimization

Scatter minimization can also be used to understand the GPin-TSVM. For simplicity,
consider only the first QPP (19) of the GPin-TSVM. The conclusions for another QPP (20) can
also be obtained in this manner. For the given x−i ∈ B and x+j ∈ A, the positive hyperplane

x>w(1) + b(1) = 0 can be established by data samples under the subset Y+
2 ⊆ A, and the

two hyperplanesH+ = {w(1)>x−i + b(1) + 1 = 0} andH− = {w(2)>x+j + b(2) − 1 = 0} are

defined by data samples in subsets Y+
3 ⊆ E+

3 and subset Y−3 ⊆ E−3 , respectively.
The scatter is calculated by adding the distances between each point x−i and one

supplied negative sample x−i3 ∈ Y+
3 . The scatter of x−i ∈ B around the sample x−i3 can be

determined as

m2

∑
i=1
|w(1)>x−i3 + b(1) − (w(1)>x−i + b(1))| =

m2

∑
i=1
|w(1)>(x−i3 − x−i )|. (44)
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We obtain the following equation by using w(1)>x−i3 + b(1) + 1 = 0:

m2

∑
i=1
|w(1)>(x−i3 − x−i )| =

m2

∑
i=1
|w(1)>x−i3 + b(1) − (w(1)>x−i + b(1))|

=
m2

∑
i=1
| − 1− (w(1)>x−i + b(1))|

=
m2

∑
i=1
|1 + (w(1)>x−i + b(1))|.

Similarly, using a specific data sample x+j2 ∈ Y+
2 , the scatter for every sample x+j ∈ A

is calculated as follows:

m1

∑
j=1
|w(1)>(x+j2 − x+j )| =

m1

∑
j=1
|w(1)>x+j2 + b(1) − (w(1)>x+j + b(1))|

=
m1

∑
i=1
| − (w(1)>x+j + b(1))|

where w(1)>x+j2 + b(1) = 0. Due to the fact that the scatter is a positive value, we can take it

as the sum of squares, i.e., ∑m1
i=1(−(w

(1)>x+j + b(1)))2.
Consider the formula as follows:

min
w(1),b(1)

1
2

m1

∑
i=1

(−(w(1)>x+j + b(1)))2 + c11

m2

∑
i=1
|1 + (w(1)>x−i + b(1))| (45)

where c11 is a constant. This guarantees that the first term may be expressed in such
a way that the scatters x+j ∈ A about the hyperplane x>w(1) + b(1) = 0 are minimized.
Nevertheless, this second term seeks to lower the error values caused according to how close
B samples must be toH+ by minimizing the scatter of x−i ∈ B from around hyperplaneH+.

In the GPin-TSVM (19), the first term of (45) is mentioned in its mathematically
equivalent form, whereas the absolute value used in (45) is extended to Lε1,ε2

τ1,τ2 .
The first term of (45) is expressed within GPin-TSVM (19) in its mathematically equiv-

alent form, whereas the absolute value employed in (45) is extended to Lε1,ε2
τ1,τ2 . Concretely,

we introduce the misclassification term

c12Lhinge

(
1 + (w(1)>x−i + b(1))− ε1

τ1

)
= c12 max

{
0, 1 + (w(1)>x−i + b(1))− ε1

τ1

}
c13Lhinge(1 + (w(1)>x−i + b(1))) = c13 max{0, 1 + (w(1)>x−i + b(1))}

c14Lhinge(−1− (w(1)>x−i + b(1))) = c14 max{0,−1− (w(1)>x−i + b(1))}

c15Lhinge

(
− 1− (w(1)>x−i + b(1))− ε2

τ2

)
= c15 max

{
0,−1− (w(1)>x−i + b(1))− ε2

τ2

}
into (45), where c12, c13, c14 and c15 are positive parameters; that is,

min
w(1),b(1)

1
2

m1

∑
i=1

(−(w(1)>x+j + b(1)))2 + c11

m2

∑
i=1
|1 + (w(1)>x−i + b(1))|

+c12

m2

∑
i=1
Lhinge(1 + (w(1)>x−i + b(1))− ε1

τ1
) + c13

m2

∑
i=1
Lhinge(1 + (w(1)>x−i + b(1)))

+c14

m2

∑
i=1
Lhinge(−1− (w(1)>x−i + b(1))) + c15

m2

∑
i=1
Lhinge

(
− 1− (w(1)>x−i + b(1))− ε2

τ2

)
.
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The GPin-TSVM (19) can be obtained using the following conditions: c11 + c12 + c13 =
c1τ1, c11 + c13 = 0, c11 + c14 = 0, and c11 + c14 + c15 = c1τ2. We have τ1 = c12

c1
and τ2 = c15

c1
from the first and last condition. The interpretation of this report is that the reasonable range
of τ1 ≥ 0 and τ2 ≥ 0. We examine the misclassification error and the within-class scatter of
one class simultaneously in the generalized pinball loss minimization. The GPin-TSVM (19)
is then regarded as a trade-off between low misclassification and reduced scatter.

5. Numerical Experiments

In this section, the classification performance of the proposed approach in terms of
accuracy is compared to that of other relevant approaches, such as the hinge loss twin
support vector machine (TSVM), pinball loss TSVM (Pin-TSVM), and ε- insensitive loss
TSVM (IPin-TSVM), on synthetic datasets and the UCI machine learning repository [46],
and handwritten digit recognition applications have been proposed. We employed 10-fold
cross validation for all of our experiments. The average accuracy and standard deviation
for each experiment are displayed in all tables, with the best one highlighted.

All experiments are implemented in Python 3.9.5. on Windows 8 running on a 1.9 GHz
laptop with 4 GB RAM with system configuration Intel Core i5+ Duo CPU E7500 (2.93 GHz).
From now on, we denote τ1 = τ3, τ2 = τ4, ε1 = ε3, and ε2 = ε4. To derive the nonlinear
case, we use the radial basis function kernel K(x, y) = exp{− ‖x−y‖2

2σ }.

5.1. Synthetic Dataset

We test our approach on a two-dimensional case in which equal samples are drawn
from two Gaussian distributions: xi, i ∈ {i : yi = 1} ∼ N (µ1, Σ1) and xi, i ∈ {i : yi =

−1} ∼ N (µ2, Σ2), where µ1 = [1,−3]>, µ2 = [−1, 3]> and Σ1 = Σ2 =

[
0.2 0
0 3

]
. In order

to make the dataset more interesting, we introduce noise. The labels of the noise points are
chosen with equal probabilities from {1,−1}. The placements of these samples match the

Gaussian distribution N (µn, Σn), where µn = [0, 0]> and Σn =

[
1 −0.8
−0.8 1

]
. The labels

around the decision boundaries are affected by the noise. The ratio of noise data in the
training set is represented by r. From Figure 2, the bar chart demonstrates the percentages of
the accuracy of classifying different sectors, including GPin-TSVM, IPin-TSVM, Pin-TSVM,
and TSVM during r = 0% to 30%. In the large majority of cases, the GPin-TSVM produces
the greatest outcome. This implies that the GPin-TSVM was the strongest candidate for the
method of classifying the noise-corrupted data.

Figure 2. On the 2D synthetic data, a bar graph depicting the accuracies of four algorithms.

In the next result in Figure 3, we show the obtained value of the slopes of hyperplanes
over four different noisy synthetic datasets by SVM, TSVM, and the proposed GPin-TSVM.



Symmetry 2022, 14, 289 15 of 26

In this result, we show that, when the level of noise increases from 0 to 20%, the hyperplanes
of SVM diverge from 0.6575 to 0.1592 and the hyperplanes of TSVM diverge from 1.7988,
1.2688 to 0.2879, 0.2562, whereas the hyperplanes of our GPin-TSVM slightly changes. This
suggests that our proposed GPin-TSVM model is unaffected by noise near the boundary.

Figure 3. These illustrations show the noise-insensitive features of the material. We have noise
samples ranging from r = 0% to r = 20%. The slopes of the separating hyperplanes are indicated in
brackets in the legend of each figure when we have (a) r = 0% (free noise); (b) r = 5; (c) r = 10%; and
(d) r = 20%.

5.2. UCI Datasets

Additionally, we perform testing on 10 benchmark datasets from the UCI machine
learning database [46]. Imbalanced datasets lead to incorrect classification in classification
problems. The imbalance ratio (IR) [47] is defined as the ratio of the number of data points
on the majority class to the number of data points on the minority class.

IR =
number of data points on the majority class
number of data points on the minority class

. (46)

The dataset descriptions can be found in Table 1. To modify the tradeoff parameters
and kernel parameter σ for UCI benchmark datasets, we used the grid search method [48].
A validation set of 10% randomly selected data points was used for each dataset. We chose
values for parameters c1 and c2 from the set {10i|i = −2,−1, 0, 1, 2} for our tests. Further,
another parameter was tuned in the range {0.1, 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5}. Tables 2 and 3
summarize the experimental results of four approaches (TSVM, Pin-TSVM, IPin-SVM,
and GPin-TSVM) on linear and RBF kernels, respectively. The optimal parameters used
in Tables 2 and 3 are summarized in Tables 4 and 5, respectively. Accuracy is defined
as the mean value of ten time-testing results plus or minus the standard deviation in
Tables 2 and 3.
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Table 1. UCI datasets are described in detail.

Datasets #Features #Samples IR

Breast 10 116 1.23
Planning relax 12 182 2.5
Ionosphere 33 351 1.79
Heart-Statlog 13 270 1.25
Heart-C 13 303 1.19
Spect 22 267 3.85
Saheart 9 462 1.89
WDBC 30 569 1.68
Pima-Indian 8 768 1.86
Australian 14 690 1.25

Table 2. On UCI datasets, 10-fold cross validation using the linear kernel yielded the mean accuracy
(%) and standard deviation.

Datasets r
Existing Algorithm Proposed Algorithm

TSVM Pin-TSVM IPin-TSVM GPin-TSVM

Breast 0 69.02 ± 8.61 69.85 ± 7.92 72.73 ± 16.79 71.67 ± 15.53
0.05 69.02 ± 8.46 69.02 ± 8.61 72.73 ± 16.79 71.74 ± 15.45
0.1 68.03 ± 8.09 68.26 ± 11.86 73.56 ± 14.44 73.41 ± 14.32
0.2 69.85 ± 10.08 70.08 ± 13.15 71.82 ± 15.82 71.82 ± 14.56

Planning relax 0 71.61 ± 13.78 71.61 ± 13.78 71.61 ± 13.78 71.61 ± 13.78
0.05 71.61 ± 13.78 71.61 ± 13.78 71.61 ± 13.78 71.61 ± 13.78
0.1 71.61 ± 13.78 71.05 ± 13.41 71.61 ± 13.78 72.16 ± 13.68
0.2 71.61 ± 13.78 72.69 ± 13.95 71.61 ± 13.78 71.61 ± 13.78

Australian 0 86.09 ± 3.56 86.38 ± 4.45 86.96 ± 3.72 86.81 ± 3.69
0.05 85.36 ± 4.02 86.23 ± 4.50 85.80 ± 4.57 87.39 ± 3.43
0.1 85.22 ± 3.71 85.51 ± 3.67 85.36 ± 5.16 88.26 ± 4.02
0.2 83.91 ± 4.91 85.22 ± 4.04 84.93 ± 4.55 86.81 ± 3.69

Heart-Statlog 0 84.07 ± 8.12 83.33 ± 7.45 83.70 ± 9.40 83.33 ± 6.47
0.05 83.33 ± 8.32 83.70 ± 8.15 83.33 ± 9.69 84.44 ± 6.99
0.1 83.70 ± 8.15 82.59 ± 7.95 83.70 ± 9.54 84.07 ± 7.04
0.2 84.44 ± 8.08 83.33 ± 7.08 81.11 ± 9.86 83.70 ± 8.80

Saheart 0 71.64 ± 5.01 71.01 ± 7.40 72.08 ± 5.34 72.93 ± 6.37
0.05 71.63 ± 5.50 70.58 ± 7.51 71.86 ± 4.43 72.71 ± 6.59
0.1 72.51 ± 5.84 70.37 ± 7.25 71.86 ± 5.90 72.06 ± 5.94
0.2 71.21 ± 5.58 69.93 ± 6.00 71.00 ± 5.28 71.64 ± 5.39

WDBC 0 95.43 ± 1.61 95.96 ± 1.37 96.31 ± 2.54 97.19 ± 1.61
0.05 94.20 ± 3.34 94.03 ± 3.16 95.08 ± 3.02 96.13 ± 2.04
0.1 93.32 ± 2.19 92.97 ± 3.68 93.50 ± 3.05 95.60 ± 1.97
0.2 93.32 ± 2.19 92.44 ± 1.93 93.32 ± 2.57 94.55 ± 1.46

Pima 0 76.83 ± 3.71 76.70 ± 3.36 76.57 ± 4.12 77.22 ± 4.07
0.05 76.70 ± 3.74 76.31 ± 3.53 76.44 ± 3.66 76.96 ± 3.81
0.1 76.44 ± 4.29 77.22 ± 3.30 77.09 ± 3.96 76.44 ± 3.87
0.2 76.18 ± 3.62 76.83 ± 3.23 77.22 ± 4.03 76.18 ± 3.73

Ionosphere 0 90.60 ± 3.61 91.46 ± 3.10 90.90 ± 5.20 92.31 ± 2.87
0.05 87.47 ± 6.28 90.31 ± 2.92 88.89 ± 4.51 90.88 ± 3.34
0.1 87.44 ± 5.90 86.88 ± 5.90 86.62 ± 5.83 89.18 ± 5.05
0.2 84.34 ± 5.85 85.47 ± 5.64 84.91 ± 4.38 87.16 ± 5.17
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Table 3. On UCI datasets, 10-fold cross validation using the RBF kernel yielded the mean accuracy
(%) and standard deviation.

Datasets r
Existing Algorithm Proposed Algorithm

TSVM Pin-TSVM IPin-TSVM GPin-TSVM

Breat 0 74.24 ± 11.23 74.24 ± 11.23 78.71 ± 12.47 74.24 ± 12.16
0.05 74.24 ± 11.23 74.24 ± 11.23 80.38 ± 10.61 74.32 ± 13.35
0.1 73.33 ± 12.36 74.32 ± 10.34 80.38 ± 11.25 73.41 ± 11.79
0.2 73.41 ± 13.15 73.33 ± 12.36 77.80 ± 12.09 75.15 ± 13.63

Spect 0 83.50 ± 6.15 84.25 ± 6.31 84.23 ± 7.00 84.63 ± 7.05
0.05 83.12 ± 5.69 83.49 ± 6.60 84.62 ± 6.46 84.63 ± 6.43
0.1 82.75 ± 5.69 83.15 ± 7.32 83.87 ± 6.97 84.64 ± 7.72
0.2 82.02 ± 5.22 82.01 ± 6.96 83.12 ± 7.05 83.29 ± 7.43

Australian 0 86.81 ± 2.93 86.67 ± 3.60 86.96 ± 3.94 86.67 ± 4.19
0.05 82.46 ± 4.02 84.78 ± 3.90 86.81 ± 4.27 87.39 ± 3.11
0.1 82.61 ± 2.59 82.90 ± 4.93 86.38 ± 3.32 86.52 ± 3.61
0.2 82.32 ± 3.42 82.46 ± 4.74 85.51 ± 2.67 85.65 ± 3.63

Heart-Statlog 0 84.44 ± 7.73 84.81 ± 7.49 83.33 ± 8.32 84.81 ± 7.49
0.05 84.07 ± 7.60 84.44 ± 8.08 84.81 ± 8.36 84.81 ± 7.49
0.1 84.07 ± 7.95 84.44 ± 6.99 83.70 ± 8.31 84.44 ± 7.91
0.2 84.07 ± 7.23 82.59 ± 7.60 84.07 ± 7.42 84.07 ± 6.84

Heart-C 0 82.85 ± 4.52 82.23 ± 8.94 82.85 ± 4.79 82.90 ± 8.36
0.05 82.19 ± 5.04 81.25 ± 8.30 81.87 ± 4.08 82.54 ± 7.08
0.1 81.56 ± 7.04 80.89 ± 6.77 81.89 ± 6.09 82.53 ± 4.59
0.2 80.23 ± 5.95 80.81 ± 5.79 80.23 ± 4.55 82.18 ± 5.46

WDBC 0 97.54 ± 1.17 97.71 ± 1.58 97.89 ± 1.32 97.89 ± 1.32
0.05 95.61 ± 2.51 95.79 ± 2.24 95.61 ± 1.96 95.60 ± 2.26
0.1 95.08 ± 3.12 95.08 ± 2.91 95.78 ± 2.74 95.08 ± 2.58
0.2 93.49 ± 2.75 93.85 ± 1.79 94.03 ± 2.24 94.20 ± 2.72

Ionosphere 0 96.02 ± 2.58 95.17 ± 3.60 95.16 ± 2.23 95.15 ± 4.05
0.05 95.17 ± 3.12 94.60 ± 3.91 94.87 ± 2.49 94.59 ± 3.24
0.1 94.60 ± 3.22 94.60 ± 2.67 94.87 ± 3.07 94.31 ± 3.36
0.2 93.46 ± 3.09 92.60 ± 2.91 92.59 ± 4.09 93.48 ± 4.44

Pima 0 77.09 ± 3.31 76.96 ± 3.20 77.35 ± 3.71 77.48 ± 3.33
0.05 76.96 ± 3.45 76.83 ± 3.34 76.70 ± 3.01 76.96 ± 3.83
0.1 76.57 ± 2.51 75.66 ± 3.14 75.92 ± 3.42 76.43 ± 2.68
0.2 75.53 ± 1.65 76.18 ± 3.51 76.05 ± 2.82 76.57 ± 3.16

Table 2 illustrates the results of applying TSVM, Pin-TSVM, IPin-TSVM, and our
proposed GPin-TSVM to a linear kernel on eight distinct UCI datasets. The results with the
highest accuracy are highlighted in bold. In most datasets, the classification performance of
GPin-TSVM outperforms TSVM, Pin-TSVM, and IPin-TSVM in terms of accuracy, according
to the experimental results. Our proposed GPin-TSVM has the highest prediction accuracy
in 20 of the 32 scenarios. Furthermore, when the number of noise samples varies from r = 0
(noise free) to r = 0.2, our proposed GPin-TSVM outperforms existing methods in terms
of classification accuracy and stability. However, in Breast, the classification accuracies of
IPin-TSVM are better than those of our proposed GPin-TSVM.

The nonlinear kernel with an RBF kernel was subjected to a similar analysis, with the
results presented in Table 3. Our proposed GPin-TSVM has the best prediction accuracy
in 20 of the 32 cases. In most of the datasets, our proposed GPin-TSVM offers the best
prediction accuracy, as shown in Tables 2 and 3. As a result, the accuracy of our proposed
GPin-TSVM outperforms that of existing models.

The sparsity of the proposed approach of the GPin-TSVM is compared to that of the
standard TSVM for the linear and nonlinear cases in Tables 6 and 7, respectively. When we
look at the results, we can see that as ε1 = ε2 grows, our solution becomes more sparse. It
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is clear from both tables that our proposed GPin-TSVM is more sparse than the standard
TSVM while still keeping noise-insensitive properties. The prediction process is faster than
the standard TSVM because of the sparsity of the solution, which is extremely useful in
datasets with big samples.

Table 4. The optimal parameters of Table 2.

Datasets
TSVM Pin-TSVM IPin-TSVM GPin-TSVM

c1, c2 c1, c2, τ c1, c2, τ, ε
c1, c2, τ1, τ2,

ε1, ε2

Breast 0.01, 0.01 0.01, 0.01, 1 10, 0.01, 1, 1
0.01, 0.01, 0.75, 0.5,

0.1, 0.1

Planning relax 0.1, 1 0.1, 1, 0.1 0.1, 1, 0.1, 0.1
0.1, 0.1, 1, 0.1,

0.1, 0.1

Australian 1, 0.1 0.1, 0.1, 0.5 1, 0.1, 0.1, 1
1, 0.1, 1, 0.5,

0.1, 0.1

Heart-Statlog 0.1, 0.1 1, 1, 1 1, 10, 0.5, 1
1, 10, 1, 0.5,

0.1, 0.5

Saheart 0.1, 0.1 1, 1, 1 1, 1, 1, 0.1
1, 1, 1.5, 0.5,

0.5, 0.1

WDBC 0.01, 0.01 0.1, 0.1, 0.1 1, 10, 0.1, 0.5
0.01, 0.01, 2, 1,

0.5, 0.1

Pima 0.1, 0.1 0.1, 0.1, 1.5 1, 1, 1, 0.1
1, 1, 1, 0.5,

0.1, 0.1

Ionosphere 0.01, 0.01 0.1, 0.1, 0.1 1, 10, 0.1, 0.5
1, 10, 1, 0.1,

0.5, 0.5

Table 5. The optimal parameters of Table 3.

Datasets
TSVM Pin-TSVM IPin-TSVM GPin-TSVM

c1, c2, γ c1, c2, τ, γ
c1, c2, τ,

ε, γ
c1, c2, τ1, τ2,

ε1, ε2, γ

Breast 0.01, 0.01, 0.1 0.01, 0.01, 0.1, 0.1
0.01, 0.01, 0.1,

1, 0.1
0.1, 0.1, 1, 1,
0.5, 0.5, 0.01

Spect 0.1, 0.1, 0.01 0.1, 0.1, 0.75, 0.01
0.1, 0.1, 1,
0.5, 0.01

0.1, 0.1, 1, 1,
0.75, 0.75, 0.01

Australian 10, 10, 0.01 10, 10, 1, 0.01
10, 10, 1,
0.1, 0.01

0.01, 0.01, 1, 1,
0.5, 0.5, 0.01

Heart-Statlog 0.1, 0.1, 0.01 1, 1, 1, 0.01
1, 10, 0.5,

1, 0.01
1, 10, 1, 0.5,
0.1, 0.5, 0.01

Heart-C 0.01, 0.01, 0.1 0.01, 0.01, 0.1, 0.1
0.01, 0.01, 0.5

0.1, 0.1
0.01, 0.01, 0.5, 0.5

0.1, 0.1, 0.1

WDBC 0.1, 0.1, 0.01 0.1, 0.1, 0.5, 0.01
1, 1, 1,

0.1, 0.01
0.01, 0.01, 2.5, 2.5,

0.1, 0.1, 0.01

Ionosphere 0.1, 1, 0.1 0.1, 1, 0.5, 0.1
1, 1, 0.5,
0.1, 0.1

0.1, 0.1, 1, 1,
0.5, 0.5, 0.01

Pima 0.1, 0.1, 0.01 0.1, 0.1, 1.5, 0.1
0.1, 0.1, 1,

0.5, 0.1
0.1, 0.1, 1, 1,
0.1, 0.1, 0.01
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Table 6. Sparsity for UCI datasets employing linear kernel with τ1 = τ2 and ε1 = ε2.

Datasets ε1
TSVM GPTSVM

τ1 = 0 τ1 = 0.5

Heart-Statlog 0 112 133 92 113
0.05 78 85
0.1 66 68
0.2 50 56
0.3 46 46
0.4 33 31

Australian 0 257 255 254 232
0.05 128 151
0.1 124 136
0.2 113 114
0.3 104 89
0.4 72 69

Breast 0 59 47 51 48
0.05 45 46
0.1 40 44
0.2 39 41
0.3 30 32
0.4 24 23

WDBC 0 339 196 234 150
0.05 136 125
0.1 93 103
0.2 69 66
0.3 51 42
0.4 30 26

Ionosphere 0 108 199 94 151
0.05 89 81
0.1 76 69
0.2 61 58
0.3 51 46
0.4 41 31

5.3. Hybrid CNN-GPin-TSVM Classifier for Handwritten Digit Recognition

The proposed algorithms GPin-TSVM and their application to handwritten digit
recognition problems are discussed in this part. Handwritten digit recognition is a difficult
topic that has been intensively researched in the subject of handwriting recognition for
many years. As a result of its many practical uses and financial implications, handwritten
digit recognition is still a popular topic. Here, we use MNIST handwritten datasets to carry
out the experiments. In the field of machine learning, the MNIST dataset is commonly used
for training and testing. There are 60,000 samples in the training set and 10,000 in the test
set in this dataset. Each sample has a size of 28 × 28 pixels. As seen in Figure 4, the MNIST
dataset comprises grayscale images of handwritten digits from ‘0’ to ‘9’. Several approaches
for handwriting recognition have been proposed in the literature, such as k-nearest neighbor
(KNN) [49], SVM [49–52], artificial neural network (ANN) [53,54], convolutional neural
network (CNN) [51,55,56], etc.



Symmetry 2022, 14, 289 20 of 26

Table 7. Sparsity for UCI datasets employing RBF kernel with τ1 = τ2 and ε1 = ε2.

Datasets ε1
TSVM GPTSVM

τ1 = 0 τ1 = 0.5

Heart-C 0 138 165 138 165
0.05 113 115
0.1 78 83
0.2 62 65
0.3 53 52
0.4 38 38

Spect 0 55 212 55 212
0.05 55 121
0.1 55 90
0.2 54 64
0.3 50 56
0.4 36 47

Australian 0 383 307 383 307
0.05 134 155
0.1 121 138
0.2 114 117
0.3 100 95
0.4 71 67

Ionosphere 0 126 225 126 225
0.05 91 61
0.1 73 50
0.2 41 41
0.3 33 28
0.4 24 21

Breast 0 64 52 64 52
0.05 55 52
0.1 50 49
0.2 42 44
0.3 33 37
0.4 23 23

Figure 4. Samples from MNIST dataset.

One of the most important aspects of our cognition system success is feature extrac-
tion. Traditional feature extraction by hand is a tedious and time-consuming procedure
that does not work with raw images, but features can be recovered directly from raw
images using automatic extraction algorithms. On ear recognition, Alshazly [57] analyzed
CNN-learnt features that are automatically optimized and found that features extracted
by CNN produced the capacity to learn more specific features that are robust to wide
image variations and to obtain a state-of-the-art recognition performance. On the clinical
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electroencephalogram (EEG) data classification problem, Xin [58] constructed a convolution
support vector machine for classifying epilepsy EEG signals, and produced the highest
accuracy. Recently, the hybrid CNN–SVM classifier for recognizing handwritten digits was
proposed by [50–52]. They created a hybrid model that combines a powerful CNN with a
SVM for handwritten digit recognition using the MNIST dataset, where SVM is a binary
classifier and CNN is an automatic feature extractor, which both display a strong efficiency
for handwritten digit recognition. Inspired by this particular work, the goal of this section
is to use CNN to extract features from the MNIST dataset of input handwritten digit images.
TSVM, Pin-TSVM, IPin-SVM, and GPin-TSVM work as a binary classifier, replacing the
softmax layer of CNN. Moreover, we compare the performance between TSVM, Pin-TSVM,
IPin-TSVM, and GPin-TSVM. We choose four pairs of handwritten digits on raw pixel
features for our comparisons.

We build the network using the following. The first is placing the convolutional
(Conv2D) layer into a channel of dimension 1, since the images are grayscale. The kernel
size is set to 5 × 5 with a stride of 1. This convolution output is set to nine channels,
implying that it will extract nine feature maps using nine kernels. We use a padding size
of 1 to ensure that the input and output dimensions are the same. These layer output
dimensions are 9× 28× 28. The second convolutional (Conv2D) layer has an input channel
size of 9. We set the output channel size to 16, which implies that 16 feature maps will be
extracted. This layer kernel size is 5 with a stride of 1. After that, we add a RelU activation
and a pooling (MaxPool2D) layer with a kernel of size 2 and a stride of 2. The pooling
layer is mainly integrated to reduce the data dimension. Finally, two fully connected layers
are used. The first fully connected layer will receive a flattened version of the feature
maps. As a result, it must have a dimension of 16× 7× 7, or 256 nodes. This layer will
be connected to a fully connected 80-node layer. Finally, a hidden layer of the neural
network containing 84 nodes is implemented. After the architecture of the model is defined,
the model needs to be compiled. Here, we use TSVM, Pin-TSVM, IPin-SVM, and GPin-
TSVM, as it is a binary classification problem. The architecture of the proposed model is
described in Figure 5.

Figure 5. Architecture of the CNN.

We compare the performance of the proposed model on MNIST handwritten datasets
with other supervised recognition systems. The results of the suggested approach on the
MNIST handwritten dataset are shown in Figure 6 and the optimal parameters of the
result in Figure 6 are shown in Table 8. From Figure 6, we can learn that the classification
performance of GPin-TSVM yields the best prediction accuracy of two pairwise digits out
of the four total ones in terms of accuracy. On the 1 vs. 7 pairwise digit, our proposed GPin-
TSVM and IPin-TSVM have an accuracy of 99.80%, which is greater than the recognition
accuracy of another Pin-TSVM and TSVM classifier. However, the accuracy of GPin-TSVM
on some pairwise digits, such as 5 vs. 8, is not the best. Overall, our GPin-TSVM performs
well in terms of accuracy.



Symmetry 2022, 14, 289 22 of 26

Table 8. The optimal parameters of the result in Figure 6.

Datasets

TSVM Pin-TSVM IPin-TSVM GPin-TSVM

c1, c2 c1, c2, τ c1, c2, τ, ε
c1, c2, τ1, τ2,

ε1, ε2

0 vs. 8 0.1, 0.1 0.1, 0.1, 0.5 0.01, 0.01, 1, 1
0.01, 0.01, 1, 1,

0.1, 0.1

2 vs. 4 0.1, 0.1 0.1, 0.1, 0.5 0.1, 0.1, 1, 0.5
0.1, 0.1, 1, 1,

0.5, 0.5

1 vs. 7 1, 1 1, 1, 0.5 1, 1, 0.1, 1
1, 0.1, 1, 0.5,

0.1, 0.1

5 vs. 8 0.1, 0.1 1, 1, 1 1, 1, 0.5, 1
0.1, 0.1, 1, 0.5,

0.1, 0.5

Figure 6. TSVM, Pin-SVM, IPin-TSVM, and GPin-TSVM accuracy and standard deviations on the
MNIST dataset.

5.4. Statistical Analysis

On the four pairs of handwritten digits, the Friedman test is primarily used to evaluate
the classification performance of the proposed GPin-TSVM algorithm. The Friedman test,
along with post hoc testing, is a statistical test method that ranks algorithms differently
for each data set, with the best method having the lowest ranking number [59]. The tests
allow for a more accurate assessment of the algorithms’ relevance. We compare four
different classifiers on four different pairs of handwritten digits. The accuracy of the related
classifiers on each dataset is ranked, and the classifier with the highest accuracy has the
smallest rank ri. Based on the accuracy of the four pairs of handwritten digits, the average
rank of all methods is shown in Table 9.
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Table 9. Average rank of different algorithms on four pairs of handwritten digits.

Datasets TSVM Pin-TSVM IPin-TSVM GPin-TSVM

0 vs. 8 4 3 2 1
2 vs. 4 3.5 3.5 2 1
1 vs. 7 4 3 1.5 1.5
5 vs. 8 4 3 1 2

Average Rank 3.88 3.13 1.63 1.38

Under the null hypothesis, the chi-square distribution and F-distribution with a degree
of freedom (k− 1)(N − 1) in the Friedman test are:

X 2
F = 12N

k(k+1)

[
∑j R2

j −
k(k+1)2

4

]
,

FF =
(N−1)X 2

F
N(k−1)−X 2

F
,

respectively, where Rj =
1
N ∑N

j=1 rj, the number of methods is k, and the number of datasets
is N. According to Table 9, we obtain X 2

F = 10.58 and FF = 22.35. For a significance level
of 0.05, the F(3, 9) critical value is 3.86, and 22.35 > 3.86. As a result, the null hypothesis is
rejected, i.e., there is a significant difference here between the four classifiers. Furthermore,
as shown in Table 9, the proposed GPin-TSVM was ranked lowest on average. On the four
pairs of handwritten digits, the classification performance of the proposed GPin-TSVM
outperforms the other classifiers.

6. Conclusions

In this paper, a new version of a TSVM for pattern classification—a twin support
vector machine—is created, and a generalized pinball loss function (GPin-TSVM) is imple-
mented to improve the TSVM generalization performance, providing a lower sensitivity
to noise and the ability to handle losing sparsity. We conduct wide experiments on syn-
thetic datasets and the UCI machine learning repository, and handwritten digit recognition
applications are compared to standard TSVM, Pin-TSVM, and IPin-TSVM. In most cases,
the accuracy performance of our suggested GPin-TSVM is superior to that of existing clas-
sifiers, according to the experimental data. Additionally, the GPin-TSVM is less sensitive
to noise and achieves sparsity, which is a major benefit of our proposed method. In the
proposed GPin-TSVM, we also investigate the effect of value εi(i = 1, 2). GPin-TSVM is
more sparse than standard TSVM for the sparsity of the solution. At last, the proposed
algorithm of GPin-TSVM was used to solve the problem of handwritten digit recognition
in the application, and we used the Friedman test to evaluate the classification perfor-
mance of the proposed GPin-TSVM algorithm. From the results, it can be seen that our
proposed GPin-TSVM is an effective approach for handwritten digit recognition, thereby
demonstrating the effectiveness of the proposed algorithm.

Our future study will focus on the applicability of GPin-TSVM to multi-class super-
vised classification problems and to large-scale classification problems.
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