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Abstract: The Cauchy problems of scale-invariant damped wave equations with derivative nonlinear
terms and with combined nonlinear terms are studied. A new method is provided to show that
the solutions will blow up in a finite time, if the nonlinear powers satisfy some conditions. The
method is based on constructing appropriate test functions, by using the solution of an ordinary
differential equation. It may be useful to prove the nonexistence for global solutions for other
nonlinear evolution equations.
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1. Introduction

Many researchers have studied the damped wave equation, such as Usamah [1], who
performed symmetry analysis and exhibited exact solutions for various forms of diffusivity
and viscosity, but in the present, work we study the model:{

utt − ∆u + µ
1+t ut = |ut|p, in [0, T)×Rn,

u(x, 0) = ε f (x), ut(x, 0) = εg(x), x ∈ Rn,
(1)

and: utt − ∆u +
µ

1 + t
ut = |ut|p + |u|q, in [0, T)×Rn,

u(x, 0) = ε f (x), ut(x, 0) = εg(x),
(2)

where µ > 0 is a constant and f (x), g(x) are the initial data with compact support,
which satisfy:

f (x) ∈ H1(Rn), g(x) ∈ L2(Rn),

and
supp f (x), g(x) ∈ {x : |x| ≤ 1}. (3)

The semilinear wave equation with scale-invariant damping has attracted more and
more attention recently: on one the hand, it is the border of the “wave-like” and “heat-like”
phenomena of the damped wave equation; on the other hand, it has a close relation to the
Tricomi equation, which is used to describe gas dynamics. There are many literature works
that have studied the semilinear wave equations with scale-invariant damping; see [2–14]
and the references therein. For Problem (1), Lai and Takamura [15] showed the blow-up for
1 < p ≤ pG(n + 2µ), which seems not to be the sharp blow-up power, since Palmieri and
Tu [16] proved a blow-up result in the range 1 < p ≤ pG(n + σ) for:

σ =


2µ, f or µ ∈ [0, 1),

2, f or µ ∈ [1, 2),

µ, f or µ ∈ [2, ∞).

Symmetry 2022, 14, 198. https://doi.org/10.3390/sym14020198 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14020198
https://doi.org/10.3390/sym14020198
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://doi.org/10.3390/sym14020198
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14020198?type=check_update&version=1


Symmetry 2022, 14, 198 2 of 10

Obviously, when µ ∈ [0, 1], the former result coincides with that in [15], and there
is some improvement for µ ∈ (1, 2), but still some gap for pG(n + µ), while for [2, ∞),
they improved the blow-up power to the expected pG(n + µ). Recently, Hamouda and
Hamza [17] showed blow-up results for (1) when 1 < p ≤ pG(n + µ) and for (2) when:

γ(p, q, n + µ) < 4,

with:
γ(p, q, n) = (q− 1)((n− 1)p− 2), (4)

which improved the results in [15,16,18], by using a similar method in [11]. We should
mention that there are many blow-up results for other nonlinear evolution equations;
see [19–21] and the references therein.

In this work, we aim to show the blow-up results and lifespan estimate in [17] by using
a new method, based on the works [22,23]. We constructed a special test function, the key
ingredient of which is the solution of a ordinary differential equation. Inspired by [24], we
can obtain the explicit solution of the ODE and furthermore obtain the asymptotic behavior.

2. Main Result

Definition 1. We define the upper bound of the lifespan for (1) and (2) as:

Tε = sup{T > 0; there exists an energy solution to (1) and (2) in [0, T)}.

Then, our main results read as follows:

Theorem 1. Let 1 < p ≤ pG(n + µ). Assume that the initial data f , g are non-negative and
do not vanish identically. Furthermore, the compact support assumption (3) holds. If we further
assume the energy solution satisfies:

supp u(t, x) ⊂ {x
∣∣ : |x| ≤ t + 1}, (5)

then the solution of (1) will blow up in a finite time, and the upper bound of the lifespan will satisfy:

T ≤
{

Cε−(p−1)/{1−(n+µ−1)(p−1)/2} for 1 < p < pG(n + µ),
exp

(
Cε−(p−1)

)
for p = pG(n + µ),

(6)

where C denotes a positive constant, which may have a different value from line to line and is
independent of ε.

Theorem 2. Let γ(p, q, n + µ) < 4. Assume that the initial data f , g are non-negative and do not
vanish identically. Furthermore, the compact support assumption (3) holds. If we further assume
the energy solution satisfies:

supp u(t, x) ⊂ {x
∣∣ : |x| ≤ t + 1}, (7)

then the solution of (2) will blow up in a finite time, and the upper bound of the lifespan will satisfy:

T ≤ Cε
− 2p(q−1)

4−γ(p,q,n+µ) , (8)

where C denotes a positive constant, which may have a different value from line to line and is
independent of ε.
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3. Test Function

As mentioned above, the key ingredient of the test function is one of the solutions of
the following ODEs:

λ′′(t)− µ

1 + t
λ′(t)− λ(t) = 0. (9)

Lemma 1. The ODE (9) admits one solution:

λ(t) = (1 + t)
µ+1

2 K µ+1
2
(1 + t),

where Kν(z) is the modified Bessel functions of the second kind. In particular, λ is a real and positive
function satisfying:

λ(0) = K µ+1
2
(1) > 0, λ′(0) = −K µ−1

2
(1) < 0, λ′(t) < 0, (10)

and, for large t,

λ(t) =
1
e

√
π

2
(1 + t)

µ
2 e−t ×

(
1 + O

(
1

1 + t

))
= −λ′(t). (11)

Proof. We first collect some useful relations, which can be found in [25].

Kν(z) = K−ν(z) =
π

2
I−ν(z)− Iν(z)

sin(νπ)
, (12)

where Iν(z) is the modified Bessel functions of the first kind, and when ν is an integer, the
right hand-side of this equation is replaced by its limiting value.

K′ν(z) = −Kν−1(z)−
ν

z
Kν(z), K′ν(z) = −Kν+1(z) +

ν

z
Kν(z), (13)

Kν(z) =
√

π

2
z−1/2e−z × (1 + O(z−1)), f or |z| large and | arg z| < 3

2
π. (14)

Then, it is easy to check from (13):

λ′(t) =
µ + 1

2
(1 + t)

µ−1
2 K µ+1

2
(1 + t) + (1 + t)

µ+1
2 K′µ+1

2
(1 + t)

=
µ + 1

2
(1 + t)

µ−1
2 K µ+1

2
(1 + t) + (1 + t)

µ+1
2 [−K µ−1

2
(1 + t)

− µ + 1
2(1 + t)

K µ+1
2
(1 + t)]

= −(1 + t)
µ+1

2 K µ−1
2
(1 + t),

λ′′(t) = −µ + 1
2

(1 + t)
µ−1

2 K µ−1
2
(1 + t)− (1 + t)

µ+1
2 K′µ−1

2
(1 + t)

= −µ + 1
2

(1 + t)
µ−1

2 K µ−1
2
(1 + t) + (1 + t)

µ+1
2 K µ+1

2
(1 + t)

− µ− 1
2

(1 + t)
µ−1

2 K µ−1
2
(1 + t)

= −µ(1 + t)
µ−1

2 K µ−1
2
(1 + t) + (1 + t)

µ+1
2 K µ+1

2
(1 + t)

=
µ

1 + t
λ′(t) + λ(t).
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Hence, λ solves (9). Thanks to the identity (12), we know that Kν(z) = K|ν|(z) for
every ν ∈ R. Since Kν(z) is real and positive for z > 0, also λ is real and positive, whereas
λ′ is negative. Then, we achieve (10), while exploiting Formula (14):

K µ+1
2
(1 + t) = K µ−1

2
(1 + t) =

√
π

2
(1 + t)−1/2e−(1+t) ×

(
1 + O

(
1

1 + t

))
,

λ(t) = (1 + t)
µ+1

2

√
π

2
(1 + t)−1/2e−(1+t) ×

(
1 + O

(
1

1 + t

))
=

√
π

2
(1 + t)

µ
2 e−(1+t) ×

(
1 + O

(
1

1 + t

))
= −λ′(t).

We obtain the relations (11).

4. Proof of the Theorem 1

As in [22], we introduce two cut-off functions:

η(t) =


1 for t ≤ 1

2 ,
decreasing for 1

2 < t < 1,
0 for t ≥ 1,

θ(t) =
{

0 for t < 1
2 ,

η(t) for t ≥ 1
2 ,

with:
|η′(t)| ≤ C, |η′′(t)| ≤ C,

and

ηM(t) = η

(
t

M

)
.

Then, we construct our test function as:

Φ(t, x) = −∂t

(
η

2p′
M (t)λ(t)φ(x)

)
,

where M ∈ (1, T] for any T ∈ [1, T(ε)] and:

φ(x) =
∫

Sn−1
ex·ωdσ,

which satisfies:
0 < φ(x) ≤ C(1 + |x|)−

n−1
2 e|x|. (15)

Then, we have:

Φ(t, x) = −
(

∂tη
2p′
M (t)λ(t)φ(x) + η

2p′
M (t)λ′(t)φ(x)

)
≥ η

2p′
M (t)|λ′(t)|φ(x)

≥ 0,

(16)

where we used the fact that both ηM(t) and λ(t) are non-increasing functions.

Remark 1. Note that the test function φ(x) admits some good properties. First, it is non-negative,
and it satisfies:

∆φ = φ.

Finally, it has the asymptotic behavior (15).
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Multiplying the equation in (1) with Φ(t, x) and integrating over [0, T]×Rn, then by
integration by parts, we obtain:

− ε
∫
Rn

λ′(0)g(x)φ(x)dx + ε
∫
Rn

λ(0) f (x)φ(x)dx

+
∫ T

0

∫
Rn
|ut|pη

2p′
M (t)|λ′(t)|φ(x)dxdt

≤
∫ T

0

∫
Rn

utη
2p′
M (t)

(
λ′′(t)− µ

1 + t
λ′(t)− λ(t)

)
dxdt

+
∫ T

0

∫
Rn

ut∂
2
t η

2p′
M (t)λ(t)φ(x)dxdt

+ 2
∫ T

0

∫
Rn

ut∂tη
2p′
M (t)λ′(t)φ(x)dxdt

−
∫ T

0

∫
Rn

µ

1 + t
ut∂tη

2p′
M (t)λ(t)φ(x)dxdt,

(17)

which yields for some positive constant C1 = C( f , g, µ) by combining (9) and (10):

C1ε +
∫ T

0

∫
Rn
|ut|pη

2p′
M (t)|λ′(t)|φ(x)dxdt

≤
∫ T

0

∫
Rn

ut∂
2
t η

2p′
M (t)λ(t)φ(x)dxdt

+ 2
∫ T

0

∫
Rn

ut∂tη
2p′
M (t)λ′(t)φ(x)dxdt

−
∫ T

0

∫
Rn

µ

1 + t
ut∂tη

2p′
M (t)λ(t)φ(x)dxdt,

,I + I I + I I I.

(18)

We estimate the three terms I, I I, I I I by the nonlinear term by using the Hölder
inequality. For I, it follows from (11) and (15) that:

I ≤CM−2
(∫ T

0

∫
Rn
|ut|pθ

2p′
M (t)|λ′(t)|φ(x)dxdt

) 1
p

×
(∫ M

M
2

∫
|x|≤1+t

|λ′(t)|−
1

p−1 |λ(t)|
p

p−1 φ(x)dxdt
) 1

p′

≤CM
−2+ n+µ+1

2
1
p′ ×

(∫ T

0

∫
Rn
|ut|pη

2p′
M (t)|λ′(t)|φ(x)dxdt

) 1
p
.

(19)

In the same way for I I and I I I, we have:

I I :≤CM
−1+ n+µ+1

2
1
p′ ×

(∫ T

0

∫
Rn
|ut|pη

2p′
M (t)|λ′(t)|φ(x)dxdt

) 1
p
, (20)

and:

I I I :≤CM
−2+ n+µ+1

2
1
p′ ×

(∫ T

0

∫
Rn
|ut|pη

2p′
M (t)|λ′(t)|φ(x)dxdt

) 1
p
. (21)

By combining (18)–(21), we obtain:

C1ε +
∫ T

0

∫
Rn
|ut|pη

2p′
M (t)|λ′(t)|φ(x)dxdt

≤CM
−1+ n+µ+1

2
1
p′ ×

(∫ T

0

∫
Rn
|ut|pθ

2p′
M (t)|λ′(t)|φ(x)dxdt

) 1
p
.

(22)
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If for a function w(t, x), we set:

Y[w](M) =
∫ M

1

(∫ T

0

∫
Rn

w(t, x)θ2p′
σ (t)dxdt

)
σ−1dσ,

then as in [24], we have:

Y
[
|ut|p|λ′(t)|φ(x)

]
(M)

=
∫ M

1

(∫ T

0

∫
Rn
|ut|p|λ′(t)|φ(x)θ2p′

σ (t)dxdt
)

σ−1dσ

≤C log 2
∫ T

0

∫
Rn

η
2p′
M |ut|p|λ′(t)|φ(x)dxdt.

(23)

For simplicity, we denote Y(M) for Y[|ut|p|λ′(t)|φ(x)](M), then by (23), we have:

Y(M) ≤ C log 2
∫ T

0

∫
Rn

η
2p′
M |ut|p|λ′(t)|φ(x)dxdt, (24)

d
dM

Y(M) = M−1
∫ T

0

∫
Rn
|ut|p|λ′(t)|φ(x)θ2p′

M (t)dxdt. (25)

Hence, by combining (22), (24), and (25), we know there exist positive constants C2, C3
such that:

MY′(M) ≥ CMp− (n+µ+1)(p−1)
2 (C2ε + C3Y(M))p, (26)

which leads to the lifespan estimate (6).

5. Proof for Theorem 2

For the problem with combined nonlinearity, we have to introduce another cut-off
function:

ζ(t) =


0 for t ≤ 1

4 ,
increasing for 1

4 < t < 1
2 ,

θ(t) for t ≥ 1
2 .

Let:

ζM(t) = ζ

(
t

M

)
, ψM(t) = ζk

M(t),

with k > 0, which will be determined later, and M ∈ (1, T). It is easy to obtain:

|∂2
t ψM(t)| ≤ CM−2ψ

1− 2
k

M (t),

|∂tψM(t)| = CM−1ψ
1− 1

k
M (t).

(27)

Multiplying the equation in (2) with ψM(t, x) and integrating over [0, T]×Rn, then by
integration by parts, we obtain:∫ T

0

∫
Rn
(|ut|p + |u|q)ψM(t)dxdt

=
∫ T

0

∫
Rn

u∂2
t ψMdxdt +

∫ T

0

∫
Rn

µ

(1 + t)2 uψMdxdt−
∫ T

0

∫
Rn

µ

1 + t
u∂tψMdxdt

,IV + V + VI.

(28)
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We estimate IV as:

IV =
∫ T

0

∫
Rn

u∂2
t ψMdxdt

≤CM−2
∫ T

0

∫
Rn
|u|ψ

1− 2
k−

1
2q′

M ψ
1

2q′
M dxdt

≤CM−2

(∫ T

0

∫
Rn
|u|qψ

q(1− 2
k−

1
2q′ )

M dxdt

) 1
q(∫ T

0

∫
|x|≤1+t

ψ
1
2
Mdxdt

) 1
q′

≤CR
−2+ n+1

q′
(∫ T

0

∫
Rn
|u|qψMdxdt

) 1
q
,

(29)

if we choose k large enough such that:

q
(

1− 2
k
− 1

2q′

)
≥ 1. (30)

For V, although there is no derivative on the cut-off function ψM, note that:

supp ψM ⊂
[

R
4

, R
]

,

We can obtain in a similar way as for IV:

V, VI ≤ CR
−2+ n+1

q′
(∫ T

0

∫
Rn
|u|qψMdxdt

) 1
q
, (31)

where we need to choose k > 0 satisfying for VI:

q
(

1− 1
k
− 1

2q′

)
≥ 1. (32)

By combining (28), (29) and (31), we have:∫ T

0

∫
Rn
(|ut|p + |u|q)ψM(t)dxdt

≤CR
−2+ n+1

q′
(∫ T

0

∫
Rn
|u|qψMdxdt

) 1
q

≤CMn− q+1
q−1 +

1
2

∫ T

0

∫
Rn
|u|qψMdxdt,

(33)

which yields: ∫ T

0

∫
Rn
|ut|pψM(t)dxdt ≤ CMn− q+1

q−1 . (34)

The next step is to use the test function:

Ψ(t, x) = −∂t

(
ηk

M(t)λ(t)φ(x)
)
≥ 0
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to obtain the lower bound of the nonlinear term. Multiplying the equation in (2) with
Ψ(t, x) and integrating over [0, T]×Rn, then by integration by parts, we obtain:

− ε
∫
Rn

λ′(0)g(x)φ(x)dx + ε
∫
Rn

λ(0) f (x)φ(x)dx

+
∫ T

0

∫
Rn
|ut|pηk

M(t)|λ′(t)|φ(x)dxdt

=
∫ T

0

∫
Rn

utη
k
M(t)

(
λ′′(t)− µ

1 + t
λ′(t)− λ(t)

)
dxdt

+
∫ T

0

∫
Rn

ut∂
2
t ηk

M(t)λ(t)φ(x)dxdt

+ 2
∫ T

0

∫
Rn

ut∂tη
k
M(t)λ′(t)φ(x)dxdt

−
∫ T

0

∫
Rn

µ

1 + t
ut∂tη

k
M(t)λ(t)φ(x)dxdt,

(35)

which yields for some positive constant C2 = C( f , g, µ) by combining (9) and (10):

C2ε +
∫ T

0

∫
Rn
|ut|pηk

M(t)|λ′(t)|φ(x)dxdt

≤
∫ T

0

∫
Rn
|ut|∂2

t ηk
M(t)λ(t)φ(x)dxdt

+ 2
∫ T

0

∫
Rn
|ut|∂tη

k
M(t)|λ′(t)|φ(x)dxdt

+
∫ T

0

∫
Rn

µ

1 + t
|ut|∂tη

k
M(t)λ(t)φ(x)dxdt,

,Ic + I Ic + I I Ic.

(36)

Furthermore, it is easy to obtain:

|∂2
t ηk

M(t)| ≤ CM−2θk−2
M (t),

|∂tηM(t)| = CM−1θk−1
M (t).

(37)

As above, the term Ic can be estimated as:

Ic ≤CM−2
(∫ T

0

∫
Rn
|ut|pθk

M(t)dxdt
) 1

p

×
(∫ M

M
2

∫
|x|≤1+t

θ
k−2p′
M |λ(t)φ(x)|p′dxdt

) 1
p′

≤CM−2
(∫ T

0

∫
Rn
|ut|pθk

M(t)dxdt
) 1

p

×
(∫ M

M
2

∫
|x|≤1+t

(1 + t)
µp′

2 e−tp′(1 + r)n−1− n−1
2 p′ ep′rdxdt

) 1
p′

≤CM
−2+ µ

2 +
n
p′ −

n−1
2

(∫ T

0

∫
Rn
|ut|pθk

M(t)dxdt
) 1

p
.

(38)

In the same way, we have:

I Ic, I I Ic ≤ CM
−1+ µ

2 +
n
p′ −

n−1
2

(∫ T

0

∫
Rn
|ut|pθk

M(t)dxdt
) 1

p
. (39)
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Then, (36), (38) and (39), yield:

Cε ≤ CM
−1+ µ

2 +
n
p′ −

n−1
2

(∫ T

0

∫
Rn
|ut|pθk

M(t)dxdt
) 1

p
, (40)

which in turn yields:

Cεp Mn− (n+µ−1)p
2 ≤

∫ T

0

∫
Rn
|ut|pθk

M(t)dxdt. (41)

Since:
θk

M(t) ≤ ψM(t) = ζk
M(t),

we then conclude the lifespan (8) by combining (34) and (41).
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