
����������
�������

Citation: Sadovskii, D.; Zhilinskii, B.

Rearrangement of Energy Levels

between Energy Super-Bands

Characterized by Second Chern Class.

Symmetry 2022, 14, 183. https://

doi.org/10.3390/sym14020183

Academic Editors: Axel Pelster,

Marco Favretti, Franco Cardin and

Andrea Giacobbe

Received: 6 November 2021

Accepted: 4 January 2022

Published: 18 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Rearrangement of Energy Levels between Energy Super-Bands
Characterized by Second Chern Class
Dmitrii Sadovskii and Boris Zhilinskii *

Laboratoire de Physico-Chimie de l’Atmosphère, UR4493, LPCA, Université du Littoral Côte d’Opale,
F-59140 Dunkerque, France; dimitrii.sadovskii@univ-littoral.fr
* Correspondence: boris.jilinski@univ-littoral.fr

Abstract: We generalize the dynamical analog of the Berry geometric phase setup to the quaternionic
model of Avron et al. In our dynamical quaternionic system, the fast half-integer spin subsystem
interacts with a slow two-degrees-of-freedom subsystem. The model is invariant under the 1:1:2
weighted SO(2) symmetry and spin inversion. There is one formal control parameter in addition to
four dynamical variables of the slow subsystem. We demonstrate that the most elementary qualitative
phenomenon associated with the rearrangement of the energy super-bands of our model consists of
the rearrangement of one energy level between two energy superbands which takes place when the
formal control parameter takes the special isolated value associated with the conical degeneracy of the
semi-quantum eigenvalues. This qualitative phenomenon is of topological origin, and is characterized
by the second Chern class of the associated semi-quantum system. The correspondence between the
number of redistributed energy levels and the second Chern number is confirmed through a series
of examples.
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1. Introduction

Parametric quantum dynamical systems exhibit many different qualitative modifi-
cations under variation of his control parameters. Our purpose is to study qualitative
modifications occurring in simple (molecular) quantum systems possessing slow and fast
dynamical variables and one control parameter. The first step in this direction was the anal-
ysis of model Hamiltonians describing one “slow” degree of freedom (rotation) and several
“fast” quantum states (vibrations) and depending on one control parameter [1]. This model
exhibits a typical qualitative phenomenon, namely, the redistribution of energy levels
between energy bands under the variation of the control parameter. The redistribution is
associated with the formation of an isolated degeneracy point between the eigenvalues
of the semi-quantum Hamiltonian which treats fast and slow variables as quantum and
classical, respectively. For molecular applications of semi-quantum approach see [2–7]. The
semi-quantum Hamiltonian takes the form of an Hermitian N×N matrix, with N being the
number of fast quantum states taken into account, and the matrix elements being functions
of the slow variables, defined over the slow classical phase space. Since the codimension of
the degeneracy points of Hermitian matrices depending on parameters is three [8,9], the
degeneracies of semi-quantum eigenvalues in systems with one slow degree of freedom
(two dynamical parameters) and one control parameter occur generically at isolated points.
It follows that the above elementary qualitative phenomenon is the dynamic version of the
geometric phase setup by Berry [10,11]. The phenomenon is of topological origin and is
characterized by the topological invariant [12], the first Chern class c1 of the corresponding
fiber bundle, with the number of redistributed energy levels being related to the topological
invariants of the introduced fiber bundles [2,13–15].
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Soon after Michael Berry formulated his geometrical phase in [10], its generalization
to parametric problem with half-integer spin possessing Kramers degeneracies due to
the time-reversal invariance was formulated by Mead [16] and Avron et al. [17,18]. The
corresponding model Hamiltonian can be considered as a quaternionic generalization
of complex Hermitian parametric Berry Hamiltonian. The construction of the dynamic
quaternionic model and its analysis from the point of view of our qualitative approach
treating fast (half-integer spin) states as quantum and slow dynamic variables as classical
is the subject of the present note.

Due to the Kramers degeneracy of fast quantum states, the eigenvalues of the semi-
quantum matrix are Kramers degenerate and the complete quantum system has degenerate
bands, which we call super-bands. The eigenvalues of the semi-quantum hyperhermitian
quaternionic Hamiltonian have codimension 5 degeneracies and consequently, the simplest
model with qualitative modifications of the super-band structure could appear for at least
four fast states (two Kramers degenerate pairs), a slow subsystem of two degrees of freedom
(four classical variables), and one control parameter. The topological invariant associated
with the formation of the codimension 5 degeneracy is now the second Chern class [19].
As in [1] we conjecture that this class corresponds to the number of quantum energy
levels redistributed between the super-bands under the variation of the control parameter.
The redistribution is associated with the specific isolated parameter value, for which two
degenerate pairs of semi-quantum eigenvalues form a four-fold degeneracy point.

Without going into strict mathematical details associated with the definition of the
spectral flow in the context of the Atiyah–Singer theorem [20–22] we show on concrete ex-
amples that typical qualitative modifications of the (super)band structure can be interpreted
in terms of the correspondence between semi-quantum and quantum quaternionic Hamil-
tonians and allows to relate topological invariant associated with formation of degeneracy
point for semi-quantum model to the number of redistributed quantum energy levels.

2. Model Construction

We begin by reviewing the qualitative analysis of model Hamiltonians describing
interaction of two “fast” quantum states with one “slow” degree of freedom. The spin
operators (S1, S2, S3) with S2 = 3/4 describe the fast subsystem. The slow subsystem is
described by angular momentum components (N1, N2, N3), satisfying N2

1 + N2
2 + N2

3 =
const. The operator form of the model quantum Hamiltonian takes the form

H = cos α S1 + sin α S ·N, (1)

where α is the control parameter, whose variation we restrict to the domain 0 ≤ α ≤ π.
Due to the axial symmetry of the system, the quantum version of Hamiltonian (1) possesses
explicit solutions for eigenvalues and eigenfunctions [1]. The secular equation decomposes
into several quadratic, and two linear equations for eigenvalues. For any fixed value of
quantum number N, the eigenvalue of the operator N2 equals N(N + 1), and the energy
level pattern consists of 2(2N + 1) quantum energy levels forming for α ∼ 0 and α ∼ π two
well separated and almost degenerate energy bands consisting of 2N + 1 energy levels each.
Near the control parameter value α ∼ π/2, two nearly degenerate energy bands also exist,
but now the number of the energy levels in these bands is different: the upper-in-energy
band consists of 2N + 2 quantum levels, while the lower-in-energy band consists of 2N
levels. Schematic representation of the quantum energy level pattern for the Hamiltonian (1)
is shown in Figure 1 in the form of correlation diagram relating α = 0, π/2, π limiting cases.
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Figure 1. Correlation diagram connecting two uncoupled limits (left and right ends) and coupled
limit (middle) for the spectrum of quantum Hamiltonian (1). Eigenstates that remain in the same
energy band are called “bulk”, and represented by blue or green color depending on the principal
contribution to the eigenfunction being by the |S1 = 1/2, N1〉 or |S1 = −1/2, N1〉, respectively.
Eigenstates that change the energy band when control parameter is varied are called “edge”, and are
shown in red. Calculation of the first Chern number for energy bands of model Hamiltonian (1) is
given in [15].

The two bands at the α = 0 and α = π endpoints correspond to the uncoupled
system, and the global evolution of the pattern of energy levels under the variation of α
between α = 0 and α = π can be interpreted as crossover of the band structure going
through the intermediate system with coupled spin and orbital momentum at α ∼ π/2.
The two bands near α = π/2 are characterized by the total angular momentum quantum
number J = N + 1/2 and J = N − 1/2.

As can be seen in Figure 1, the rearrangement of the energy levels between the energy
bands is associated with the transition of two quantum levels with J1 = N + 1/2 and
J1 = −N − 1/2. To see the topological origin of the rearrangement phenomenon, we
construct the semi-quantum model by replacing slow quantum operators by classical
variables. In the basis of |S1 = ± 1

2 〉 functions, this results in the 2× 2 Hermitian matrix

Hsemi−q =

( 1
2 cos α + 1

2 sin αN1
1
2 sin αN−

1
2 sin αN+ − 1

2 cos α− 1
2 sin αN1

)
(2)

The eigenvalues of the above semi-quantum matrix Hamiltonian become degenerate
at the isolated points of the three-dimensional space {P, α}, where P is the two-dimensional
classical phase space for slow subsystem and α is the control parameter. More specifically,
P is a two-dimensional sphere S2, defined by N2

1 + N2
2 + N2

3 = N2.
The complex eigenfunctions of semi-quantum Hamiltonian (2) form a rank-two fiber

bundle which can be decomposed into two line eigenbundles if the eigenvalues are not
degenerate. The degeneracy of two eigenvalues of semi-quantum Hamiltonian occurs at iso-
lated points of the three-dimensional base space (P, α): {N1 = N, N2 = N3 = 0, α = π/4}
and {N1 = −N, N2 = N3 = 0, α = 3π/4}.

These line eigenbundles can be characterized topologically in two slightly different
ways. We can consider eigenbundle defined on the closed regular spherical surface in the
three-dimensional {P, α} space surrounding the degeneracy point {Pdeg, αdeg} of the semi-
quantum eigenvalues. We denote this bundle ∆k(Pdeg, αdeg). Its construction reproduces the
one suggested by Simon [12] and used by Mead [16] and Avron et al. [17,18]. Alternatively,
we can consider the fiber bundle with the base space being the classical phase space P of
the slow subsystem for fixed value of control parameter α. When there is no degeneracy
of eigenvalues, each line eigenbundle is characterized by the first Chern class c1. We
denote such eigenbundle by Λk(α). The topological invariant c1 for Λk(α) is a piece-wise
constant function of control parameter α which is not defined for the special parameter
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values α = αdeg corresponding to the degeneracies of the semi-quantum eigenvalues. The
topological invariant c1 of the ∆k(Pdeg, αdeg) bundle plays the role of “δ-Chern” for the c1
invariant for the Λk(α) bundle. It gives the jump of c1(Λk(α)) that occurs when the control
parameter α passes the special isolated values αdeg corresponding to the degeneracy of semi-
quantum eigenvalues (we assume for simplicity that there is only one degeneracy point
(Pdeg, αdeg) for any αdeg) [2,13–15]. The base spaces of ∆ and Λ bundles are represented
schematically in Figure 2.

α

p

q

α< 0

α < 0

p

q

α = 0

p

q

α> 0

α > 0
Figure 2. Schematic representation of (P, α) space near one degeneracy point of eigenvalues of
semi-quantum Hamiltonian corresponding to isolated value of control parameter α = αdeg = 0.
Yellow sphere surrounds isolated degeneracy point and allows to calculate the topological invariant
for ∆k(αdeg) bundle associated with degeneracy point (Pdeg, αdeg = 0) (red point in the center) and
related to the number of redistributed energy levels for corresponding quantum problem. (p, q)
subspaces for fixed α 6= 0 are the base spaces for Λk(α) bundles.

It is important to note that topological invariants c1(∆k) for the semi-quantum version
of Hamiltonian (1) are well defined (over the sphere surrounding the degeneracy point)
regardless on whether the slow classical phase space P is compact or not [15]. On the other
hand, c1(Λk) can be defined for any 0 ≤ α 6= π/2± π/4 ≤ 1 because the classical phase
space for slow variables is compact. Only formal Chern numbers can be used for problems
with non-compact space of slow variables [23,24].

Comparing the topological modifications of the semi-quantum eigenfunction bundles
to the evolution of the energy spectrum of the parent quantum system, we find that the
number of redistributed quantum energy levels equals (with appropriate choice of the sign)
the Chern numbers c1(∆k(Pdeg, αdeg)) associated with the corresponding degeneracy point
of the semi-quantum eigenvalues. Figure 3 illustrates schematically the rearrangement of
the set of basis functions describing the two bands of the spin- 1

2 axially symmetric model
system. The basis functions are classified according to their axial symmetry and describe
the “edge” states (with J1 = ±(J + 1/2)) belonging to different bands at various values
of control parameter and “bulk” states (with −J + 1/2 ≤ J1 ≤ J − 1/2) belonging to the
same band at all different regular values of control parameter. The most simple generic
qualitative modification of the energy bands in the slow-fast system with one slow degree
of freedom consists of the jump of the first Chern class δc1 = ±1 of the semi-quantum
system and in the redistribution of the single quantum level between two energy bands
in the corresponding quantum system. In the case of additional symmetries, the concepts
of local delta-Chern and of the orbit of degeneracy points should be properly introduced
and applied [14,15]. For S = 1/2, the model Hamiltonian (1) has two degeneracy points of
semi-quantum eigenvalues occurring at the north and south poles of the classical phase
space P = S2 (which we denote by (+) and (−), respectively) at two different isolated
values of control parameter. The associated redistribution of the edge energy levels is
represented in Figure 3 as the modification of the set of basis functions associated with each
band under the control parameter variation. Extension to arbitrary spin S > 1

2 does not
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change the number of degeneracy points of Hamiltonian (1) but results in more complicated
simultaneous degeneracy of all 2S + 1 bands. Splitting the basis set into the edge and bulk
states for the case of S = 3

2 is represented in Figure 4. From this figure, we can derive
easily the number of lost/gained energy levels for each of the 2S + 1 bands of the system
after the critical control parameter value associated with the isolated degeneracy is crossed.
For the band attributed in the uncoupled limit to a particular fixed value of k = S1, the
number of the lost/gained levels equals (depending on the direction of the assumed control
parameter evolution)± 2S1. At the same time, this number equals (to a sign convention) the
first Chern number c1(∆k(Pdeg, αdeg)) of the corresponding line eigenbundle component
defined over the 2-sphere surrounding the degeneracy point (Pdeg, αdeg) (yellow sphere in
Figure 2 surrounding the red point).

Figure 3. Schematic representation of band structure inversion for Hamiltonian (1) with S = 1/2
realized in two steps with intermediate formation of coupled basis with J = N ± 1/2.

The above discussion summarizes briefly the principal results of the qualitative analy-
sis of complex generic Hamiltonians describing quantum systems formed by fast subsystem
(of several quantum states) and slow subsystem (with one degree of freedom) and depend-
ing on one control parameter. This analysis can be regarded as a dynamic realization [1] of
the geometric phase setup by Berry [10]. In the present paper we want to formulate the
generalization of this dynamic construction for the non-Abelian geometric phase setup of
Mead [16] and Avron et al. [17,18].

Figure 4. Schematic representation of band structure inversion for Hamiltonian (1) with S = 3/2
realized in two steps with intermediate formation of coupled basis with J = N ± 3/2, N ± 1/2.

The basic physical idea behind this generalization is to study qualitative modifications
of the energy band spectrum in systems consisting of coupled fast and slow subsystems,
but whose fast subsystem is characterized by half-integer spin and is invariant under
spin reversal [25,26]. The invariance of the fast subsystem under the spin reversal is
equivalent for the parametric model of Avron et al. to time reversal invariance because
there is no other dynamical variables. Spin reversal results in the so-called quaternionic
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form of the semi-quantum Hamiltonian with all eigenvalues being Kramers (doubly)
degenerate [27,28]. Due to the Kramers degeneracy of the semi-quantum eigenvalues of the
fast subsystem, we should treat the two components of the Kramers doublets together and
should analyze super-bands or doublet-bands rather than simple bands. The codimension
of the degeneracy of two Kramers-degenerate pairs of eigenvalues of generic quaternionic
semi-quantum Hamiltonians is five. Consequently, the generic qualitative modification of
the band structure in quaternionic dynamical systems can occur if such systems possess
two slow degrees of freedom providing four dynamical variables in addition to one formal
control parameter. In such a case, under variation of the formal control parameter, an
isolated degeneracy point of two Kramers-degenerate doublets can be formed generically
and can be associated with the redistribution of energy levels between superbands in the
quantum version of the same system. Due to the double degeneracy of all quaternionic
semi-quantum eigenvalues, the fibre bundles formed by the respective eigenfunctions are
generically (in the absence of additional degeneracies of eigenvalues) of rank two, and
should be characterized by the second Chern class c2 [29].

The qualitative analysis of corresponding quantum Hamiltonians shows that the
formation of isolated degeneracy points of semi-quantum eigenvalues corresponds to the
rearrangement of energy levels between superbands. In the most trivial generic situation,
this rearrangement involves the transfer of one quantum energy level. Conjecturally, the
number of quantum levels which are redistributed under the variation of control parameter
α across the degeneracy point αdeg to/from the k-th band in the spectrum of the quantum
quaternionic Hamiltonian corresponds to the second Chern class c2(∆k(αdeg)) computed
for the corresponding semi-quantum Hamiltonian. We confirm this conjecture on the
examples below.

We begin by choosing the slow and fast dynamic variables needed to construct
our model quantum Hamiltonian. The fast subsystem is described by spin operators
(S1, S2, S3) = S with fixed value of S2 = S(S + 1). We take S = 3/2 to model the simplest
interesting situation with redistribution of quantum energy levels between two Kramers
doublets (two superbands). The slow subsystem is described by angular momentum opera-
tors X = (X1, X2, X3) and Y = (Y1, Y2, Y3) with fixed norms X2 = X(X + 1), Y2 = Y(Y + 1).
These angular momenta commute with each other and with spin S. The Hamiltonian is
supposed (by construction) to be invariant with respect to the weighted action of the SO(2)
group. The action on dynamic variables ωS : ωX : ωY = 1 : 1 : 2 is given as follows.
Note that weighted action 1 : 1 : (−2) which will be mentioned below leads to slightly
different results.

R(ϕ)(S1, S+, S−)→ (S1, exp(iϕ)S+, exp(−iϕ)S−), (3)

R(ϕ)(X1, X+, X−)→ (X1, exp(iϕ)X+, exp(−iϕ)X−), (4)

R(ϕ)(Y1, Y+, Y−)→ (Y1, exp(2iϕ)Y+, exp(−2iϕ)Y−), (5)

where we use the notation A± = A2 ± A3 for A = S, X, Y.
Due to presence of this weighted SO(2) symmetry, there exists the integral of motion

j1 = S1 + X1 + 2 Y1. (6)

Another a priori symmetry requirement is the invariance with respect to the inversion
of the sign of the S components. We denote this operation, which acts only on spin, by TS

TSS = −S, TSX = X, TSY = Y. (7)

The invariance with respect to TS implies that the Hamiltonian should be of even
degree (at least quadratic) in Sk.

In what follows we consider S to be half-integer and X, Y to be integer and satisfying
X, Y � S. This requirement is based on the assumption that S describes fast quantum
subsystem, whereas X and Y describe the slow classical subsystem.
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2.1. Quantum Model Hamiltonian

In order to generalize Hamiltonian (1) to describe systems with two slow degrees
of freedom, half-integer spin S, and Kramers degeneracy for semi-quantum eigenvalues,
we consider the following low-degree contributions invariant with respect to SO(2) and
TS symmetry.

The terms which are diagonal in S1 include the traceless term

S2
1 − S2/3, (8a)

which describes splitting of the entire set of basis functions into subsets with |S1| = 1
2 , 3

2 , . . ..
This term replaces the first term in (1), but contrary to its predecessor, it is invariant with
respect to both TS and complete time reversal. When this term is dominant (and all other
contributions are negligible), there exist well-separated superbands characterized by |S1|. For
S = 3/2 there are two superbands with S1 = ± 3

2 and S1 = ± 1
2 . Inversion of the sign of

(8a) results in the crossover (inversion of energy) of the superband spectrum. The two other
diagonal terms

X1(S2
1 − S2/3) and Y1(S2

1 − S2/3) (8b)

represent the diagonal part of the spin–orbital interaction. They are invariant only with
respect to TS.

The contributions which are non-diagonal in S1 include

X±(S1S∓ + S∓S1) and Y±S2
∓. (8c)

Like (8b), these terms are Ts-invariant, but they are not invariant with respect to the
complete time reversal. Note that transformation properties of dynamical variables under
SO(2) symmetry group

SO(2) irrep 0 ±1 ±2
Terms S1, X1, Y1 S±, X± S2

±, Y±
(9)

mean that the first of (8c) terms represents the 1:1 resonance between the fast spin subsystem
and slow X-subsystem, while the second term in (8c) corresponds to the 1:2 resonance of
spin and Y subsystem. It follows that by construction, any combination of (8c) represents
the 1:1:2 fast-slow resonance. Further observe that the presence of the anticommutator
S1S∓ + S∓S1 results in the zero value of the non-diagonal block 〈S1 = ± 1

2 |...|S1 = ∓ 1
2 〉.

This is required for the semi-quantum matrix to be quaternionic.
Collecting all terms in (8), the quantum Hamiltonian takes the following form

Hq = α

(
S2

1 −
S2

3

)
+ d1qX1

(
S2

1 −
S2

3

)
+ d2qY1

(
S2

1 −
S2

3

)
+ c1q(X+(S1S− + S−S1) + X−(S1S+ + S+S1)) + c2q

(
Y+S2

− + Y−S2
+

)
(10)

with real coefficients. The coefficients ciq, diq are supposed to be fixed, whereas α is con-
sidered a control parameter responsible for the crossover of the band structure. Note that
parameter α plays the role of sin α, cos α terms in (1).

The eigenfunctions of the Hamiltonian (10) can be written as the superposition of the
uncoupled-basis functions

Ψn = ∑
mS ,mX ,mY

cmS ,mX ,mY |S, mS; X, mX ; Y, mY〉. (11)

To be more concrete, we consider the case S = 3
2 . The Hamiltonian (10) has two

obvious limits which correspond to α → ±∞. In each of these trivial limits, all energy
levels are grouped into two superbands, one with positive energy, the other with negative
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energy. One superband includes all eigenstates with mS = ± 3
2 , while the other consists of

the eigenstates with mS = ± 1
2 .

2.2. Generating Functions for Numbers of States

The number of states in the two superbands in both trivial limiting cases is the same
but the distribution of eigenstates with respect to the integral j1 (6) is superband specific
and depends on the value of the control parameter α. This means that when α is varied, an
exchange of energy levels between the two superbands must take place.

To characterize the redistribution of quantum energy levels between trivial limit
superbands with different |S1| under the variation of the crossover control parameter, it is
useful to construct the correlation diagram which takes into account the classification of
quantum energy levels by the 1:1:2 symmetry, i.e., by the conserved value of j1. We use for
this purpose generating functions [30].

The generating function for the number of states with the same value of j1 for the
entire problem with arbitrary positive integer X, Y, and half-integer S is

g1:1:2(t) =

(
1− t2S+1)(1− t2X+1)(1− t2(2Y+1)

)
(1− t)2(1− t2)

= ∑
n=0

Cntn. (12)

The coefficient Cn in the Taylor series expansion of the generating function gives the
number of states with given j1 = n− (X + 2Y + S).

In order to count the number of states with given j1 belonging separately to one of the
superbands with given projection |S1| = σ (in the limit of α→ ±∞ where such superbands
are well defined), we transform the generating function (12) into the following form

g1σ :1:2(t) =

(
tS−σ + tS+σ

)(
1− t2X+1)(1− t2(2Y+1)

)
(1− t)(1− t2)

= ∑
n=0

Cn,σtn. (13)

The term Cn,σtn in the Taylor expansion of (13) means that among all basis functions
(states) with j1 = n− (S + X + 2Y) there are Cn,σ functions (states) with S1 = ±σ.

We consider the case of S = 3
2 (Figure 5) with two superbands in more detail. The

energies of these superbands are inversed in the limits of α → ±∞. In other words,
when the control parameter α is varied from −∞ to +∞, the superband structure “crosses
over”. This does not mean that all states of the upper band go down and all states of the
lower band go up. Quite the opposite (Figure 5), similarly to the spin–orbit system with
Hamiltonians (1)–(2), most of the states, called “bulk”, remain within their superbands,
while only a few states, called “edge”, need to be transferred between the superbands.
Using generating function (13), we can obtain the explicit expressions for the number of
the eigenfunctions |j1〉, which are exchanged in the crossover. For S = 3

2 , the difference of
generating functions in the two limiting cases gives(

1 + t3 − t− t2)(1− t2X+1)(1− t2(2Y+1)
)

(1− t)(1− t2)
= 1− t4Y+2 − t2X+1 + t2X+3+4Y. (14)

The coefficient at tn gives the number of the edge quantum states with

j1 = n− jmax = n−
(
X + 2 Y +

3
2
)

and the direction of their redistribution. We conclude that during the crossover of the spin- 3
2

superband structure, four quantum states must be tranferred between the superbands. As
illustrated in Figure 5, two quantum states with extremal values j1 = ±(X + 2Y + 3/2)
move in one direction, while two other states with j1 = ±(X− 2Y− 1/2) go in the opposite
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direction. However, the correlation diagram does not reproduce the order (as function of α)
in which quantum levels are redistributed between limiting cases.

1

1

1

1

1
1

1 1

|S  |=1/2

parameter
j  =X+2Y+3/2

j  =−X+2Y+1/2

|S  |=3/2

control

j  =−X−2Y−3/2 
j  =X−2Y−1/2

|S  |=1/2 |S  |=3/2

Figure 5. Schematic correlation diagram for the crossover of the superband energy level structure of
the spin- 3

2 system with Hamiltonian (10) as function of a single control parameter. The bulk states
(blue color) belong to the same superband for all values of the control parameter; the edge states
(two shades of red) change the superbands under the control parameter variation. The value of j1 is
displayed for each edge state.

Consider now the total number n(k) of the slow subsystem basis wavefunctions
|k(X1, Y1)〉 which are eigenfunctions of K = X1 + 2 Y1, the momentum of the slow 1:2-
resonant SO(2) symmetry, with eigenvalue k, and the number nS1(j1) of slow-fast basis
functions |S1〉 |k(X1, Y1)〉 for each spin basis component with S1 = −S,−S+ 1, . . . , S− 1, S
as function of the integral of motion j1 in (6). We say that these functions give, respectively,
the slow and the S1-specific slow-fast distributions of basis wavefunctions. Note that
nS1(j1) follows from n(k) after a trivial linear shift of its argument k by S1, so that nS1(j1) =
nS′1

(j1 + S′1 − S1). Quantum distribution n(k) is a piecewise function which combines a
linear staircase-function and, depending on the relative values of X and 2 Y, a step-function
or a constant function [30]. In the classical limit of large X and Y, we can ignore the h̄-small
steps and approximate the distribution n(k) by the Duistermaat–Heckman diagram [31]
representing the volume of the reduced slow phase space Pk as function of the value k of
momentum K. By the Duistermaat–Heckman theorem, since the total slow phase space
P = S2×S2 and the reduced spaces Pk are of respective dimensions 4 and 2, this diagram is
piece-wise linear, and it can be further argued, that in our case, it is symmetric with respect
to k→ −k, and has the form of a trapezoid. Shifting for each S1 components as shown in
Figure 6, we obtain similar diagrams nS1(j1) for each S1 component of each superband |S1|.
In particular, it can be seen that the number-of-state function for superband |S1| is a sum
of two distributions n±|S1|(j1), which are shifted one with respect to another by 2 |S1|. It
becomes clear that the difference in the number-of-state function for different superbands
is localized in the four regions near j1 values corresponding to the vertices of the diagram
with |S1| = 1

2 . In order to visualize better the number-of-state function for superbands, we
join the distributions n±|S1|(j1) in two alternative graphical ways, as depicted in Figure 6,
middle and bottom, where the parts that are important to further analysis are marked by
red dashed circles.
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X+2Y−S1−X−2Y−S

1 X+2Y+S1−X−2Y+S

1

j1

j 1

j1

Figure 6. Possible geometric representation of the number-of-state functions for the trivial (uncoupled)
superband over S2 × S2 slow space. Edge states are situated near the four vertices of the trapezoid.
See section 3 for the detailed local representation in the regions surrounded by the red dash line.

Before going further into the local analysis of the number-of-states functions in the case
of arbitrary S, we would like to return to the quantum system with S = 3/2. According
to our general conjecture, the distribution of energy levels between energy (super)bands
can be realized at control parameter values associated with the formation of degeneracy
points between the eigenvalues of the semi-quantum version of the quantum Hamiltonian.
The latter is obtained from (10) by replacing angular momentum operators X̂ and Ŷ by
their classical analogs and computing matrix elements of the spin operators in the basis
{|S1 = 3/2〉, |S1 = −3/2〉, |S1 = −1/2〉, |S1 = 1/2〉}. We obtain the 4×4 matrix

α + d1qX1 + d2qY1 0 c2q
√

6 Y− c1q 2
√

3 X−
0 α + d1qX1 + d2qY1 −c1q 2

√
3 X+ c2q

√
6 Y+

c2q
√

6 Y+ −c1q 2
√

3 X− −α− d1qX1 − d2qY1 0
c1q 2
√

3 X+ c2q
√

6 Y− 0 −α− d1qX1 − d2qY1

, (15)

where X1, X±, Y1, Y± are components of classical angular momenta, d1q, d2,q, c1q.c2q are
fixed real phenomenological coefficients of model Hamiltonian (10) and α is a control
parameter. Rewriting this matrix in a more symbolic form

t 0 a + ib c + id
0 t −c + id a− ib

a− ib −c− id −t 0
c− id a + ib 0 −t

, (16)

we can see that it is of the typical quaternionic form with real coefficients a, b, c, d, t and
consequently, the semi-quantum Hamiltonian (16) has two doubly degenerate eigenvalues.
Their explicit analytical expression E1,2;3,4 = ±

√
a2 + b2 + c2 + d2 + t2 shows that the

degeneracy of eigenvalues occurs only if the five conditions are satisfied a2 = b2 = c2 =
d2 = t2 = 0. This provides an elementary demonstration of the codimension 5 degeneracy
of the eigenvalues of the quaternionic hyper-Hermitian matrix. These eigenvalues depend
on five parameters, which include four dynamical parameters being local coordinates on
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the slow classical phase space P = S2× S2, and one formal parameter α describing the
crossover of the superband structure. Their isolated degeneracies can be easily found
because they are associated with fixed points (critical orbits) of the SO(2) group action on P.

The action of the 1:2 weighted SO(2) symmetry group on the slow classical phase
space S2 × S2

R(ϕ)(θX , φX , θY, φY))→ (θX , φX + ϕ, θY, φY + 2ϕ), (17)

expressed here in terms of spherical coordinates on each of the S2 factors in S2 × S2, has
four isolated critical one-point orbits, the poles at which X1 = ±X and Y1 = ±Y, and
which can be denoted accordingly as (++), (+−), (−+), and (−−).

(++) : (X1 = X, Y1 = Y); (−−) : (X1 = −X, Y1 = −Y); (18a)

(+−) : (X1 = X, Y1 = −Y); (−+) : (X1 = −X, Y1 = Y). (18b)

Four values of control parameter α at which degeneracy points of semi-quantum
version of quantum Hamiltonian (10) occur are

αdeg = ±
(
d1qX± d2qY

)
,

Each of the four conical degeneracy points is associated with the transfer of a single
quantum level between the two superbands. This is illustrated by the results of the direct
numerical calculation for a concrete example of quantum Hamiltonian (10) in Figure 7.
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Figure 7. Spectrum of Hamiltonian (10) computed numerically as function of control parameter α for
X = Y = 5, S = 3/2, d1q = 1/5, d2q = 2/5. The choice of c1q, c2q coefficients influences internal structure
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of superbands and is not important for analysis of the redistribution. Four edge states are shown by
red color. 480 bulk states are marked by three different colors depending on j1 value. Eigenvalues
of the semi-quantum version of (10) are represented by shaded areas, and empty circles mark
semi-quantum energies for critical orbits (18a) and (18b). The values of the control parameter α,
corresponding to the formation of conical degeneracy points of the semi-quantum eigenvalues, and
to the redistribution of quantum energy levels between superbands, are precised in the text following.
Equation (18).

In this particular numerical example, conical semi-quantum eigenvalue degeneracies
at points (++) and (−−) (18a) occur at α = −3 and α = 3, respectively, and are associated
with the transfer of single states |J1 = X + 2Y + 3/2〉 and |J1 = −X − 2Y − 3/2〉 in the
same direction (upwards when α increases), while degeneracies at points (−+) and (+−)
(18b) occur at α = 1 and α = −1 (see Figure 7), and are associated with the transfer of
states |J1 = ∓(X− 2Y− 1/2)〉 in the opposite direction. Four states changing superbands
under control parameter variation are named edge in Figure 7 and marked by two shades
of red. In order to visualize better internal structure of superbands formed by 480 bulk
states, three different colors are used to represent bulk states depending on their j1 value.
Note that the internal structure of superbands strongly depends on the numerical values of
ciq but we do not discuss it in this paper devoted to redistribution phenomenon.

We conclude that the crossover of the trivial limit (uncoupled) band structure of
(10), which takes place when we make α vary between −∞ and +∞ (or, in the concrete
example in Figure 7, from α� −3 to α� 3), engages four elementary one-state transfers,
each localized at a different point in the total control parameter space (cf. the red point in
Figure 2), i.e., a different pole of S2×S2 and a different isolated critical value of α. It follows
that a universal description of such phenomena is intrinsically local. We turn to such local
analysis in the next section.

3. Local Spin-Oscillator Approximation and Large-Spin Systems

The local approximation of quantum Hamiltonians (1) and (10) near one of the degener-
acy points of the eigenvalues of their semi-quantum forms leads to a class of systems which
can be named spin-oscillators [32,33]. In the particular case of (10), its local approximations
represent a “fast” half-integer spin subsystem coupled to a “slow” two-dimensional oscilla-
tor in resonances 1:(±1):(±2) or 1:(±1):(∓2). Specifically, this quaternionic spin-oscillator
is described by Hamiltonian

Hlocal
q = α

(
S2

1 −
S2

3

)
+ c1q

(
a†

X(S1S∓ + S∓S1) + aX(S1S± + S±S1)
)

+ c2q

(
a†

YS2
∓ + aYS2

±

)
, (19)

where aX and aY are annihilation operators of the two-dimensional harmonic oscillator,
which replace angular momentum operators X− or X+ and Y− or Y+ in (10), respec-
tively, depending on which of the four poles in (18) is taken as the origin of the lineariza-
tion [15]. The system has the flat slow phase space Plocal = R4 with symplectic coordinates
{qX , pX , qY, pY} which is the tangent space to S2×S2 at the chosen pole. The latter maps to
the origin of Plocal.

The so obtained dynamical system with Hamiltonian (19) can be also regarded as a
particular (quaternionic) realization of the two-dimensional Dirac oscillator [15,34], which
is invariant with regard to the specific weighted (resonant) diagonal action of the dynamical
symmetry group SO(2) on subspaces associated with dynamical variables S, {aX , a†

X}, and
{aY, a†

Y}. The two cases with weights 1:1:2 and 1:1:(−2) are essentially different. Since
Plocal is not compact, the spectrum of (19) is unbounded. As the control parameter, we
retain the diagonal parameter α. Its variation corresponds to the crossover of the trivial
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superband structure and is associated with the transfer of energy levels between energy
superbands in the neighborhood of α = 0.

Due to the invariance of (19) under spin-inversion (7), all eigenvalues of its semi-
quantum form are double degenerate, i.e., they constitute Kramers doublets. At the point
α = 0, q = 0, p = 0 (cf. Figure 2), all semi-quantum eigenvalues become degenerate. For
half integer S > 3

2 , this means that the qualitative phenomenon of the redistribution of
energy levels is not elementary, and therefore—not generic. Nevertheless, it is possible to
calculate the number of quantum energy levels, which should be transferred between the
superbands by using the correlation diagram relating the α→ ±∞ limits of the entire band
structure. This can be done for each super-band directly by comparing the distributions of
states over the values of momentum

jlocal
1 = S1 + IX ± 2 IY

of the SO(2) action, where IX and IY are actions of the X and Y oscillators, respectively, and
the ± sign refers to two qualitatively different spin-oscillator resonances..

As can be seen in Figure 6, the structure of the trivial (uncoupled) limit superbands
depends only on |S1| ≤ S and not on spin S itself. We compute the number of quantum
states transferred between the energy superbands during the crossover of the trivial limit
band structure. This can be done for an arbitrary S > 1

2 , if we first compare all superbands
with |S1| > 1

2 to the superband |S1| = 1
2 with minimal number of states for each j1-value

of the integral of motion. This comparison gives the distribution over j1 of the number of
surplus states in superband |S1| (see Figure 8), i.e., states, which do not find counterparts in
the superband |S1| = 1

2 . Manipulation with generating functions [30] allows to obtain an
explicit expression for the number of surplus states with given jlocal

1 for each superband
with given |S1|. The same expression can be deduced directly from Figure 9, where the
surplus states of the 1:1:2 spin-oscillator (left column) and missing states of the 1:1:(−2)
spin-oscillator (right column) are marked by filled and empty red circles, respectively. Thus,
the surplus state of the 1:1:2 Dirac oscillator approximating Hamiltonian (10) with spin- 3

2
near the pole (++) has an extremal value of |jlocal

1 |.
The number of surplus states in the superband for |S1| = 1

2 , 3
2 , . . . , S− 1, S is

N1:1:2
edge(|S1|) =

1
2

(
|S1| −

1
2

)(
|S1|+

1
2

)
(20)

In the inverted energy limit, after the crossover, the superband with |S1| connects to
the superband with |S1| = S− |S1|+ 1

2 and the number of the surplus states becomes

N1:1:2
edge(|S− S1 +

1
2
|) = 1

2
(S− |S1|)(S− |S1|+ 1). (21)

The difference in the number of surplus states for the two superbands connected in
the crossover gives the number of edge states which are lost/gained by the superband
during the rearrangement of the band structure. Even though the corresponding isolated
degeneracy point of semi-quantum eigenvalues at (q, p) = 0 is highly non-generic for large
spins S > 3

2 this works correctly. Figure 8 illustrates rearrangement of surplus states during
the crossover of superband structure for S = 7/2.
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7/2
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1/2

3/2

5/2

7/2
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−2

−6

∆(surplus states)

Figure 8. Schematic representation of the redistribution of surplus states between the superbands
during the crossover of the band structure for the local model with Hamiltonian (19) and S = 7/2
in case of resonance 1:1:2. For each superband, surplus states are shown by red filled circles and
arranged by the value of j1. The whole set of surplus and bulk states for the S = 7/2 system is
represented in Figure 9, left.

.
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Figure 9. Representation of basis sets for quaternionic high-spin local models. Surplus states for
1 : 1 : 2 Dirac oscillator (left subfigure) are shown by fill red circles. For 1 : 1 : (−2) model (right
subfigure) the holes are shown by empty red circles. The representation for |S1|-superband is valid
for any S ≥ |S1|. The vertical axis for each superband can be labeled as (IY + 1/2) sign(−S1).
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According to our general conjecture, which was already used for the C-systems
in [1,15], and which we expect to apply to the H-systems as well, the number of gained/lost
quantum levels, or the spectral flow, equals the Chern number calculated for the ∆-
eigenbundle over the closed surface surrounding the degeneracy point in the full parametric
space whose coordinates include slow dynamical variables and formal control parameter.
Figure 2, which illustrates the model C-system Hamiltonian (1) of [1], can also represent
the full parameter space of the quaternionic Hamiltonian (10) with two slow degrees of
freedom or of its local approximations (19). To that end, it is sufficient to imagine that the
{q, p} planes in Figure 2 are four dimensional (two degrees of freedom) and the sphere
surrounding the isolated degeneracy point at 0 is S4.

For any spin S > 1
2 , the spectral flow equals the difference between the number (20)

of surplus states in the trivial limit superband and the number (21) of such states in the
reciprocal superband, to which a given superband is connected by the crossover. This
spectral flow depends on both S and |S1|, and its general expression reproduces exactly
that for the second Chern class

c2(S, |S1|) = vS

(vS
2
− |S1|

)
, (22)

with vS = (2S + 1)/2 the number of superbands, calculated in [18,19] for the parametric
spin-quadrupole system, which we used as the initial point of our dynamical construc-
tion. The appearence of the second Chern class (22) as the topological invariant of the
model quaternionic systems with Hamiltonians (10) and (19) comes naturally because their
semi-quantum energies are double degenerate (form Kramers pairs) everywhere, and the
corresponding eigenbundles have rank two.

Figure 9 presents another illustration of the above results. It shows the distribution
of both edge (surplus) and bulk states for superbands with S = 7/2. In this figure, the
set of uncoupled spin-oscillator basis functions |S1, IX, IY〉, with S1 = −S,−S + 1, . . . , S,
IX = 0, 1, 2 . . ., and IY = 0, 1, 2, . . . is represented for each superband |S1| in the form of a
lattice in coordinates {S1 + IX ± 2IY, (IY + 1/2) · sign(−S1)}. This figure allows to compare
resonances 1 : 1 : 2 and 1 : 1 : (−2) which correspond to two different types of degeneracies
of semi-quantum eigenvalues. As we have seen in Section 2 and Figure 7, both types
appear in the example system with Hamiltonian (10) and compact slow classical phase
space P = S2 × S2. To see the similarity between the 1:1:(±2) resonances, it is sufficient to
replace the concept of “surplus states” by “missing states” or “holes”. This modifies the
direction of redistribution while keeping the number of redistributed states (more details
will be discussed separately [35]).

Figure 6 represents graphically the way how local figures for spin-oscillators fit within
the global representation of the number of state functions for the superbands for quater-
nionic model with the slow phase space S2 × S2. Two regions surrounded by red dash lines
in the central subfigure of Figure 6 correspond to local lattices represented in Figure 9, left.
In these regions, the superbands with |S1| > 1/2 have surplus states shown by red dots in
Figure 9, left. In a similar way, two fragments surrounded by red dash lines in the bottom
part of Figure 6 correspond to lattices for the local 1 : 1 : (−2)-resonant oscillator models
in Figure 9, right. They indicate that the number-of-states distribution of the superbands
with |S1| = 1/2 and |S1| > 1/2 differ in the absence of certain states (or the presence of
missing states, which we call “holes”) for |S1| > 1/2. The latter are represented by red
empty circles in Figure 9, right. The interpretations of the redistribution of quantum states
between superbands in terms of surplus states and in terms of holes are complementary. In
fact, the replacement of surplus states by holes corresponds to the inversion of the direction
of redistribution.

4. Conclusions

Our main result in this paper is the indication of a topological origin of the rearrange-
ment of energy levels between the superbands of quaternionic slow-fast dynamical systems.
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Such systems comprise a fast subsystem with one degree of freedom (spin) and a slow
subsystem with two degrees of freedom, and provide the dynamical realization of the
model by Avron et al [17,18] which generalizes the geometric phase setup of Berry [10,11]
to the non-Abelian geometric phase. We constructed our example dynamical system with
Hamiltonian (10) as a quaternionic generalization of our initial example (1) in [1] which was
introduced as a dynamical analog of the original complex parametric Berry Hamiltonian
in [10]. The one-parameter family of Hamiltonians (10) describes the generic qualitative phe-
nomenon consisting in redistribution of energy levels between doubly degenerate Kramers
superbands. We expose a correspondence between the number of redistributed energy
levels and the second Chern class for the eigenbundle of the corresponding semi-quantum
Hamiltonian. The most simple elementary qualitative phenomenon for quaternionic Hamil-
tonians with two slow degrees of freedom, the minimal fast subsystem with two Kramers
doublets, and with one additional general control parameter corresponds to the transfer of
a single quantum level between two quantum superbands. This transition is associated
with the formation of the degeneracy point (Pdeg, αdeg) of the eigenvalues of the semi-
quantum Hamiltonian. The latter form eigenbundles ∆k(Pdeg, αdeg) with k = 1, 2 over the
sphere S4 surrounding the degeneracy point in the total 5-dimensional parameter space
of the semi-quantum system. The bundles ∆k are characterized by the second Chern class
c2 = ±1. Moreover, we demonstrate that the second Chern numbers calculated for the
quaternionic model by Avron et al. [18,19] in the case of arbitrarily high half-integer spin
S match exactly the number of quantum energy levels transferred between the energy
super-bands of the corresponding local dynamical fully quantum model describing the
crossover of the Dirac oscillator super-band structure. A more detailed and systematic
analysis of the model Hamiltonians, which describe such qualitative modifications of the
superband structure, will be given in a separate publication [35] within the framework of
constructing dynamical analogs of the complex (C) geometric phase setup by Berry, its
generalizations to the quaternionic non-Abelian case (H), and its restriction to the real (R)
systems, all inspired by the R−C−H trinity concept in [36].
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